

Dos and Don'ts for the General Science & Ability Paper

Hi there – you've prepared well!

Q:3(a) ~~Structure and function of human heart~~ Remember, knowing the content is one thing, but presenting it in the paper exactly as required is another. Here are a few key points to keep in mind:

→ ~~Structure of human heart~~ 1. For a 5 mark part, aim to write at least 2 and at most 3 sides of the answer sheet.

Often, a question has two or three parts, and the marks are divided accordingly –

• 4 ~~Chambers~~

→ ~~so address each part fairly.~~

→ 2. ~~Pump: Upper Chamber (Receive blood)~~

→ 2. ~~Ventricles: Lower chamber (pump blood)~~

• Valves ~~Tricuspid, Bicuspid, mitral, pulmonary, aortic~~ comes down to around 8 minutes for each 5-mark part. Stick to this to avoid rushing later

• Double ~~Circulatory system~~

3. Make your answers look scientific, not ~~pulmonary (lungs), systemic (body)~~ just theoretical. Use flowcharts and

→ ~~Function of heart~~ diagrams wherever they add clarity.

4. ~~Neatness matters~~ – keep your handwriting clean, avoid cutting or overwriting

~~delivering O₂ and nutrients to cells while removing waste products like C_{0₂}~~

5. Mind your spelling and grammar – while GSA doesn't deduct marks for these, your expression leaves an impression.

→ ~~Cardiac cycle~~

6. In the ability portion, explain analytical

~~Relaxation E₁ AV valve open~~

~~filling ability of ventricle~~

~~isovolumic contraction~~

~~Relaxation E₂ AV valve close~~

~~All valves close~~

~~isovolumic relaxation~~

~~Relaxation E₃ AV valve open~~

~~filling ability of atria~~

~~isovolumic contraction of heart~~

~~Relaxation E₄ AV valve close~~

~~All valves close~~

~~isovolumic relaxation~~

~~Relaxation E₅ AV valve open~~

~~filling ability of atria~~

~~isovolumic contraction of heart~~

~~Relaxation E₆ AV valve close~~

~~All valves close~~

~~isovolumic relaxation~~

~~Relaxation E₇ AV valve open~~

~~filling ability of atria~~

~~isovolumic contraction of heart~~

~~Relaxation E₈ AV valve close~~

~~All valves close~~

~~isovolumic relaxation~~

~~Relaxation E₉ AV valve open~~

~~filling ability of atria~~

~~isovolumic contraction of heart~~

~~Relaxation E₁₀ AV valve close~~

~~All valves close~~

~~isovolumic relaxation~~

~~Relaxation E₁₁ AV valve open~~

~~filling ability of atria~~

~~isovolumic contraction of heart~~

~~Relaxation E₁₂ AV valve close~~

~~All valves close~~

~~isovolumic relaxation~~

~~Relaxation E₁₃ AV valve open~~

~~filling ability of atria~~

~~isovolumic contraction of heart~~

~~Relaxation E₁₄ AV valve close~~

~~All valves close~~

~~isovolumic relaxation~~

~~Relaxation E₁₅ AV valve open~~

~~filling ability of atria~~

~~isovolumic contraction of heart~~

~~Relaxation E₁₆ AV valve close~~

~~All valves close~~

~~isovolumic relaxation~~

~~Relaxation E₁₇ AV valve open~~

~~filling ability of atria~~

~~isovolumic contraction of heart~~

~~Relaxation E₁₈ AV valve close~~

~~All valves close~~

~~isovolumic relaxation~~

~~Relaxation E₁₉ AV valve open~~

~~filling ability of atria~~

~~isovolumic contraction of heart~~

~~Relaxation E₂₀ AV valve close~~

~~All valves close~~

~~isovolumic relaxation~~

~~Relaxation E₂₁ AV valve open~~

~~filling ability of atria~~

~~isovolumic contraction of heart~~

~~Relaxation E₂₂ AV valve close~~

~~All valves close~~

~~isovolumic relaxation~~

~~Relaxation E₂₃ AV valve open~~

~~filling ability of atria~~

~~isovolumic contraction of heart~~

~~Relaxation E₂₄ AV valve close~~

~~All valves close~~

~~isovolumic relaxation~~

~~Relaxation E₂₅ AV valve open~~

~~filling ability of atria~~

~~isovolumic contraction of heart~~

~~Relaxation E₂₆ AV valve close~~

~~All valves close~~

~~isovolumic relaxation~~

~~Relaxation E₂₇ AV valve open~~

~~filling ability of atria~~

~~isovolumic contraction of heart~~

~~Relaxation E₂₈ AV valve close~~

~~All valves close~~

~~isovolumic relaxation~~

~~Relaxation E₂₉ AV valve open~~

~~filling ability of atria~~

~~isovolumic contraction of heart~~

~~Relaxation E₃₀ AV valve close~~

~~All valves close~~

~~isovolumic relaxation~~

~~Relaxation E₃₁ AV valve open~~

~~filling ability of atria~~

~~isovolumic contraction of heart~~

~~Relaxation E₃₂ AV valve close~~

~~All valves close~~

~~isovolumic relaxation~~

~~Relaxation E₃₃ AV valve open~~

~~filling ability of atria~~

~~isovolumic contraction of heart~~

~~Relaxation E₃₄ AV valve close~~

~~All valves close~~

~~isovolumic relaxation~~

~~Relaxation E₃₅ AV valve open~~

~~filling ability of atria~~

~~isovolumic contraction of heart~~

~~Relaxation E₃₆ AV valve close~~

~~All valves close~~

~~isovolumic relaxation~~

~~Relaxation E₃₇ AV valve open~~

~~filling ability of atria~~

~~isovolumic contraction of heart~~

~~Relaxation E₃₈ AV valve close~~

~~All valves close~~

~~isovolumic relaxation~~

~~Relaxation E₃₉ AV valve open~~

~~filling ability of atria~~

~~isovolumic contraction of heart~~

~~Relaxation E₄₀ AV valve close~~

~~All valves close~~

~~isovolumic relaxation~~

~~Relaxation E₄₁ AV valve open~~

~~filling ability of atria~~

~~isovolumic contraction of heart~~

~~Relaxation E₄₂ AV valve close~~

~~All valves close~~

~~isovolumic relaxation~~

~~Relaxation E₄₃ AV valve open~~

~~filling ability of atria~~

~~isovolumic contraction of heart~~

~~Relaxation E₄₄ AV valve close~~

~~All valves close~~

~~isovolumic relaxation~~

~~Relaxation E₄₅ AV valve open~~

~~filling ability of atria~~

~~isovolumic contraction of heart~~

~~Relaxation E₄₆ AV valve close~~

~~All valves close~~

~~isovolumic relaxation~~

~~Relaxation E₄₇ AV valve open~~

~~filling ability of atria~~

~~isovolumic contraction of heart~~

~~Relaxation E₄₈ AV valve close~~

~~All valves close~~

~~isovolumic relaxation~~

~~Relaxation E₄₉ AV valve open~~

~~filling ability of atria~~

~~isovolumic contraction of heart~~

~~Relaxation E₅₀ AV valve close~~

~~All valves close~~

~~isovolumic relaxation~~

~~Relaxation E₅₁ AV valve open~~

~~filling ability of atria~~

~~isovolumic contraction of heart~~

~~Relaxation E₅₂ AV valve close~~

~~All valves close~~

~~isovolumic relaxation~~

~~Relaxation E₅₃ AV valve open~~

~~filling ability of atria~~

~~isovolumic contraction of heart~~

~~Relaxation E₅₄ AV valve close~~

~~All valves close~~

~~isovolumic relaxation~~

~~Relaxation E₅₅ AV valve open~~

~~filling ability of atria~~

~~isovolumic contraction of heart~~

~~Relaxation E₅₆ AV valve close~~

~~All valves close~~

~~isovolumic relaxation~~

~~Relaxation E₅₇ AV valve open~~

~~filling ability of atria~~

~~isovolumic contraction of heart~~

~~Relaxation E₅₈ AV valve close~~

~~All valves close~~

~~isovolumic relaxation~~

~~Relaxation E₅₉ AV valve open~~

~~filling ability of atria~~

~~isovolumic contraction of heart~~

~~Relaxation E₆₀ AV valve close~~

~~All valves close~~

~~isovolumic relaxation~~

~~Relaxation E₆₁ AV valve open~~

~~filling ability of atria~~

~~isovolumic contraction of heart~~

~~Relaxation E₆₂ AV valve close~~

~~All valves close~~

~~isovolumic relaxation~~

~~Relaxation E₆₃ AV valve open~~

~~filling ability of atria~~

~~isovolumic contraction of heart~~

~~Relaxation E₆₄ AV valve close~~

~~All valves close~~

~~isovolumic relaxation~~

~~Relaxation E₆₅ AV valve open~~

~~filling ability of atria~~

~~isovolumic contraction of heart~~

~~Relaxation E₆₆ AV valve close~~

~~All valves close~~

~~isovolumic relaxation~~

~~Relaxation E₆₇ AV valve open~~

~~filling ability of atria~~

~~isovolumic contraction of heart~~

~~Relaxation E₆₈ AV valve close~~

~~All valves close~~

~~isovolumic relaxation~~

~~Relaxation E₆₉ AV valve open~~

~~filling ability of atria~~

~~isovolumic contraction of heart~~

~~Relaxation E₇₀ AV valve close~~

~~All valves close~~

~~isovolumic relaxation~~

~~Relaxation E₇₁ AV valve open~~

~~filling ability of atria~~

~~isovolumic contraction of heart~~

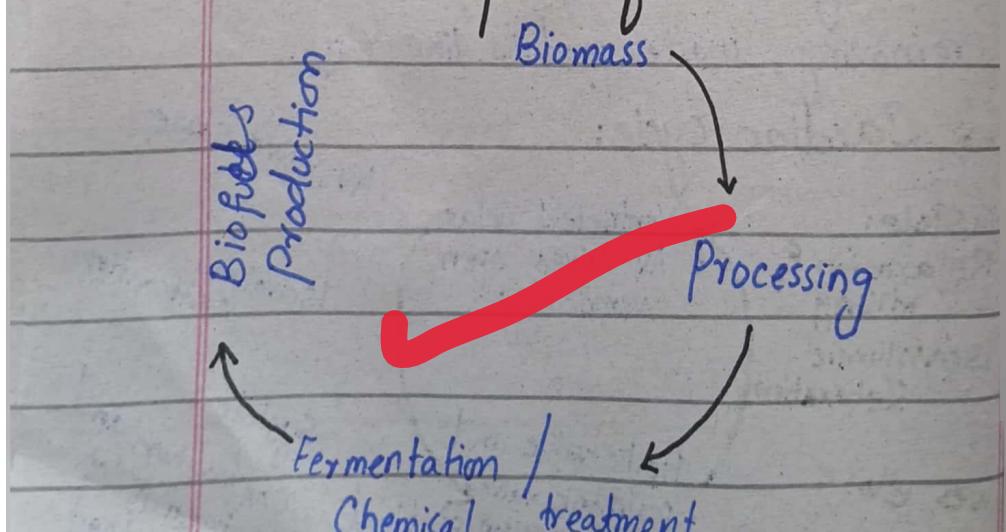
~~Relaxation E₇₂ AV valve close~~

~~All valves close~~

~~isovolumic relaxation~~

→ Role in blood circulation:

- Maintain double circulation (pulmonary, systemic)
- Ensure continuous oxygen supply and waste removal.


→ Blood pressure Regulation:

- Baroreceptors detect pressure → Signal brain
- Autonomic nervous system adjusts heart rate and vessel diameter.
- Hormones (e.g. adrenaline, renin angiotensin) assist.

(b) Biofuels:

“Renewable fuels from biological materials (plant, waste)”

Production of Biofuels:

- Bioethanol: from sugar cane, corn (fermentation)
- Biodiesel: from vegetable oils/fats (transesterification)
- Biogas: from animal/organic waste (anaerobic digestion)

Advantages:

- Renewable and biodegradable.
- Reduces dependence on fossil fuels.
- Lower CO_2 emissions.

Disadvantages:

- Competes with food crops.
- Requires large land and crops resources.
- Lower energy content.

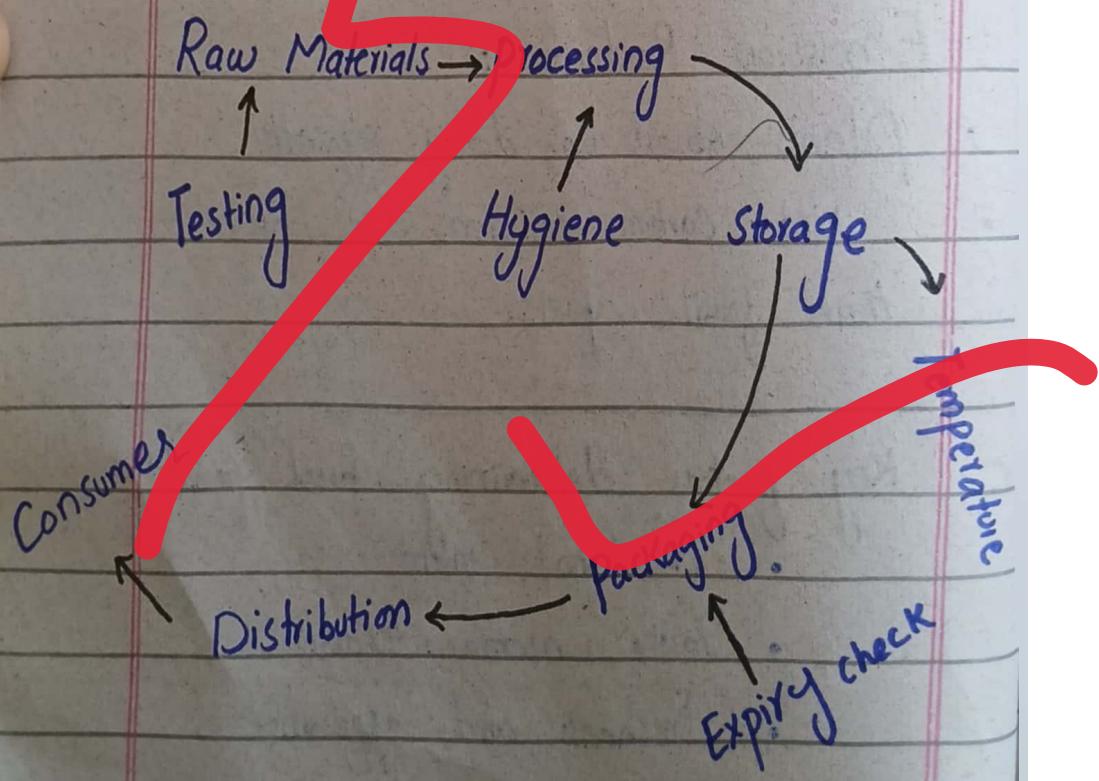
Emission Reduction:

- Plants absorb CO_2 during growth
- Net carbon emissions are lower than fossil fuels.

c Key factors determining food quality:

- Nutritional content
- Taste, aroma, texture.
- Freshness and appearance

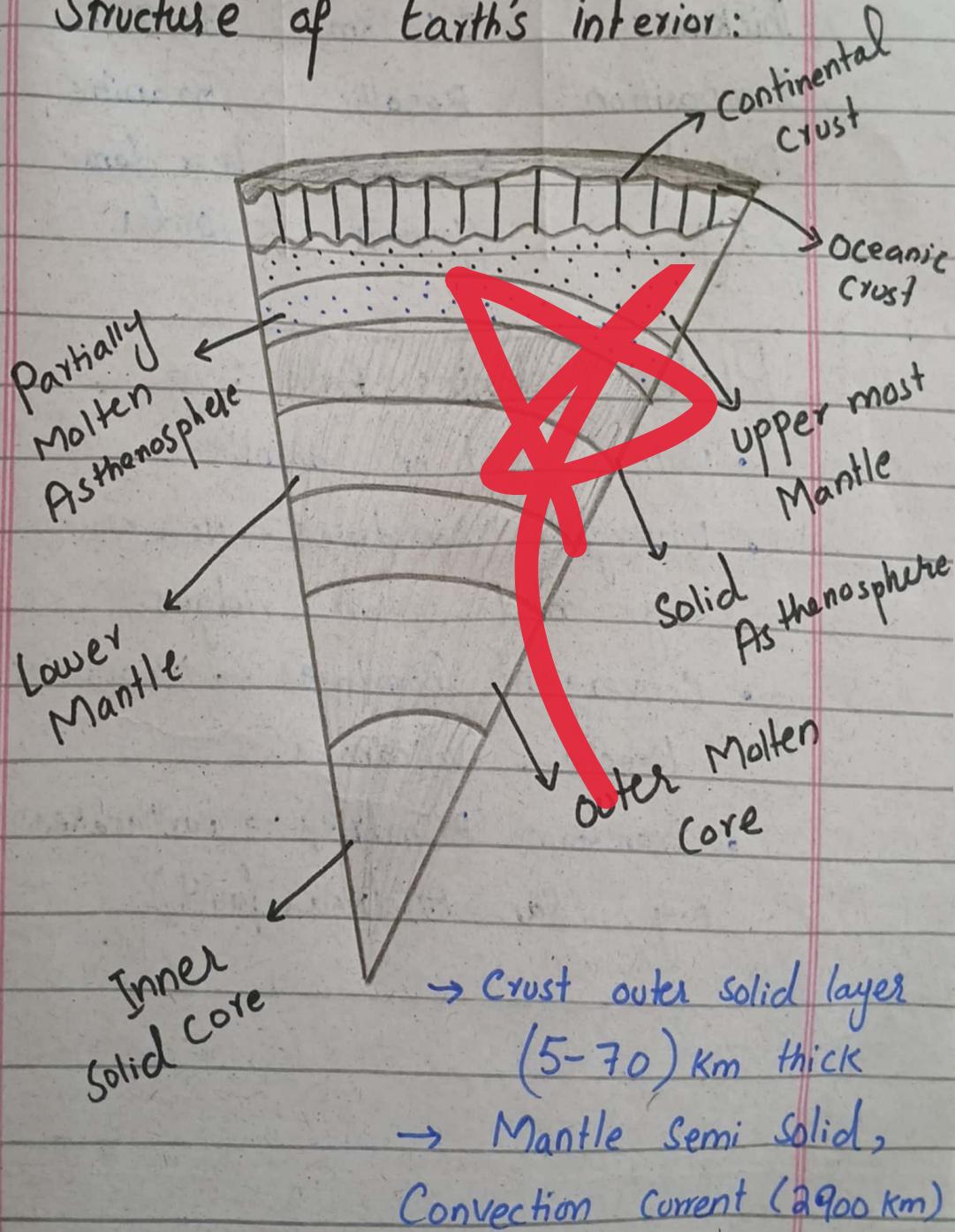
- Absence of contaminants


Importance of food safety:

- prevents foodborne disease
- protects public health
- Ensure consumer trust.

Food Quality Control measures:

- HACCP (Hazard Analysis and critical control points)
- ISO standards, lab testing.
- Expiry date monitoring and proper storage.


Food Safety Control:

How Consumers Ensure Safety:

- Read labels / Expiry dates.
- Buy from reputable sources.
- Cook food thoroughly
- Store food properly

d Structure of Earth's interior:

Core :

- Outer core : Liquid (iron, Nickel)
- Inner core : Solid (dense, iron)

Difference b/w oceanic vs Continental Crust :

Feature	Oceanic	Continental
Thickness	5-10 km	30-40 km
Composition	Basaltic	Granitic
Density	More dense	Less dense
Age	Younger	Older

Plate tectonics Role :

- plates float on mantle.
- Divergent boundaries → New crust
e.g. mid-ocean ridges.
- Convergent Boundaries → Mountains, trenches, Volcanoes.
- Transform Boundaries → Earthquakes
e.g. San Andreas fault)

Q: No 4

(a) Characteristics of a tropical cyclone:

- Low-pressure system with organized thunderstorms.
- Strong winds rotating Counter-Clockwise (Northern hemisphere) or Clockwise (Southern hemisphere)
- Eye (calm centre), eye wall (strongest winds), rainband
- Wind speeds exceed 119 km/h (74 mph)
- Heavy rainfall and storm surge

Formation Process:

- Warm ocean water $> 26.5^{\circ}\text{C}$
- Moist air rising and creating low pressure.
- Critical temp. cause rotation.
- Continuous heat release from condensation fuels storm.
- Organized into cyclic system.

Intensity factors:

- Sea surface temp.
- Atmospheric moisture content.

- wind shear (less shear = stronger storm)
- upper-level divergence

Impacts on coastal communities:

- Flooding from Storm.
- High winds damaging.
- Salinization of fresh water supplies.
- Displacement of populations.
- Disruption to agriculture and fisheries.

(b) Remote Sensing:

The use of satellite or aerial sensor technologies to collect data about earth's surface.

Uses:

- Tracking land/ use land cover change.
- Monitoring deforestation.
- Assessing vegetation health
- Observing Climate Change
- Disaster response (floods, fires etc)

Advantages:

- Wide area coverage.
- Frequent, repetitive data collection.
- Access to remote or dangerous area.
- Multispectral and temporal data.

Disadvantages:

- High cost of satellite and data processing.
- Cloud cover interferes with optical sensors.
- Limited ground truthing.

(C) Types of vitamins and their role in health:

→ Fat-Soluble Vitamins:

- Vit A, vision, immune function, skin health.
- Vit D, Bone, Calcium absorption.
- Vit E, Antioxidant, skin protection.
- Vit K, Blood Clotting.

→ Water-Soluble Vitamins:

- B-Complex (B_1 to B_{12}) Energy metabolism, nerve function,

- Red blood cell formation.
- Vit C (Ascorbic acid), collagen production, antioxidant, immune support.

Importance for Skin, Hair, eyes:

- Vit A:
 - Prevents dry eyes, maintains vision
- Vit C:

- Biotin (B7):
 - Support collagen for skin
 - Healthy hair and nails

- Vit E:
 - Prevent skin aging.

Consequences of Deficiencies:

Vit A: Night blindness

Vit C: Scurvy

Vit B1: Beriberi

Vit D: Rickets

Biotin: Hair loss

(d) Poliomyelitis (polio) :

- A viral disease caused by polio virus.
- Attacks nervous system, can cause paralysis.

Transmission :

Fecal - oral route → Contaminated Water / food)

Person to person via → oral Secretions.

Global Eradication efforts :

- Led by WHO, UNICEF, CDC, Rotary, Gavi and GPEI.
- Use of oral polio vaccine and inactivated polio vaccine.
- Mass immunization campaigns.

Challenges :

- Inaccessibility in conflict zones.
- Vaccine misinformation and hesitancy.
- Incomplete surveillance.
- Vaccine derived polio strains.

Importance of Vaccination

- prevent infection and transmission.
- Builds herd immunity.
- Essential for global eradication.

Section II

Q. No 6 (a)

Original Selling price = x

Then

Original profit = $x - 100$

New SP = $2x$

New profit = $2x - 100$

New profit = $3 \times$ original profit

So,

$$2x - 100 = 3(x - 100)$$

$$2x - 100 = 3x - 300$$

$$-100 + 300 = 3x - 2x$$

$$200 = x$$

So,

SP = Rs 200 and

C.P. = Rs 100

Profit = $200 - 100 =$

100.

Profit : :

$$\frac{100}{100} \times 100 = 100\%$$

4

b Let y's pay = y

Then x's pay = 120% of y =
 $1.2y$

Total pay:

$$y + 1.2y = 2.2y = 550$$

Solving

$$y = \frac{550}{2.2} = 250$$

So,

y is paid Rs 250, and x
is paid Rs 300.

C Let breadth = b

then perimeter = 5b

perimeter of rectangle = $2(l+b) = 5b$

$$2(l+b) = 5b \Rightarrow l+b = \frac{5b}{2} \Rightarrow l = \frac{3b}{2}$$

$$\text{Area} = l \times b = 216$$

$$\frac{3b}{2} \cdot b = 216 \Rightarrow \frac{3b^2}{2} = 216 \Rightarrow$$

$$3b^2 = 432 \Rightarrow b = 144$$

$$b = 12$$

Then

$$l = \frac{3 \cdot 12}{2} = 18$$

$$\text{Length} = \boxed{18 \text{ cm}}$$

d List of tickets : 1 to 20

Multiples of 3 : 3, 6, 9, 12, 15, 18 \rightarrow 6 nos

Multiples of 5 : 5, 10, 15, 20 \rightarrow 4 nos

Common multiple of both (3, 5) =

15 counted twice

So total,

$$6+4-1 = 9$$

$$= \frac{9}{20}$$

Q No : 7

(a) $5\% \text{ of } A + 4\% \text{ of } B = \left(\frac{2}{3}\right) \times$

$6\% \text{ of } A + 8\% \text{ of } B$.

Convert % to decimal.

$$0.05A + 0.04B = \frac{2}{3} (0.06A + 0.08B)$$

Multiply both sides by 3,

$$3(0.05A + 0.04B) = 2(0.06A + 0.08B)$$

$$0.15A + 0.12B = 0.12A + 0.16B$$

So,

$$0.15A - 0.12A = 0.16B - 0.12B \Rightarrow$$

$$0.03A = 0.04B \Rightarrow \frac{A}{B} = \frac{0.04}{0.03} =$$

$$\frac{4}{3}$$

$$A:B = 4:3$$

C Let Common multiplier = x

Then :

$$A = 5x$$

$$B = 2x$$

$$C = 4x$$

$$D = 3x$$

Given

$$4x - 3x = 1000$$

$$x = 1000$$

Now B's share = $2x = 2 \times 1000$
= 2000

d Son's present age = x

Father's age at son's birth = $38 - x$

At Son's birth, father's age =

Son's current age is x ,

$$38 - x = x \Rightarrow 2x = 38 \Rightarrow x = 19$$

Son's current age = 19

Son's age five years ago = $19 - 5$
= 14