

> How Optical fibres work: The core and cladding made of glass and plastic. The light travels through the core minimizing the refraction as it is covered with a cladding that further protects it to get convert and to protect it from bending or straining, buffer jacket plays the role. The networks of thousands of optical fibres work in such a way, in which light travels from one end to another end and amplifiers on the ends further speeds up the process of receiving and transferring signals in a matter of time -> Uses of optical fibres.

	In the Big Bang phase, energy is dissipated
	randomly and irregulary, it deals with the
	explanation of how the universe began whereas
	the Big Crunch theory says, the converse
	will stop expanding one day and then
	it will become smaller As the universe
	shinks it will also get hotter Everything
	that exists in the universe will collapse,
	taking it to a tiny point from where
	it all started. This process of expanding
	and shrinking, heating and coming will
	occur in a cyclic monner.
	→ Age of Universe:
T. F.	The astronomers before 1999 estimated the
	The astronomers begin

age of universe somewhere between 7 to 20 billion years. But with the advancement of technology and modern techniques it is now to be said near's about 13.7 billion years. We donot know if its exact or not. But the age of volverse (canno) can be determined in two ways: a) By looking for the aldest stars

-> As many scientists and astronomers believed that all the stars in a globular cluster are formed at the same time, they can serve as clocks (cosmic). b) The 'Hubble Constant' -> By measuring the rate of expansion of

	Date:
universe and extrapolating 1	pack to the Big-
QN0.3	
(a) <u>COP-28</u>	
Hurdles in Developing Count impacts of global wo	ries to tackle the
	the last 174 years.

etc. And to these extremeties the wast affectees are the developing countries like South Africa, Pakistan Brazil India etc. Various factors contributes to the challenges faced by · developing counties: proper infrastructure Famine, Food-Insecurity - Already dealing with the aftermaths of natural disasters. Humanitarian Crists lack of resources, technological advancements, and proper management. Ballooning of circular debts.

The developing countries are in the phase of developing. as according to COP-28, all the countries need to reach Net-Zero Carbon by it is to be done by developed countries first because the developing countries are not in the condition to do so for now but with the help of superpowers and operationalization of Loss and Damage Fund (LDF), for the worst affectees by climate change, the developing countries can deal with the consequences of global warning.

Date:	<u> </u>
should comprises of numerity from each major.	-
group. It can be consumed either from the natural	
Sources or in the form of capsules.	
The John St. Capacita	
· Protein -> Meat, Fish, Eggs etc	
· Carbohydrates -> Rice . Wheat etc	
是这个大学的一种,我们就是一个大学的,我们就是一个大学的,我们就是一个大学的,我们就是一个大学的,我们就是一个大学的,我们就是一个大学的,我们就是一个大学的,他	
• Fibre -> Careen leafy regetables, Barley, Cereals	
· Vitamins -> Fresh bright fruits	
Calcium > Milk, beans, lentils	
· Minerals -> Dary products, nuts	
> Balanced Amount of Each Nutrient:	
It is necessary	
to have a poportionate amount of each	-
nutriet to maintain a healthy body	_

consuming excessive deficiency of other Therefore, Malnutrition. balanced all the nutrients propert amount as per the need body varying and weight. Attempt only 2 questions from sec 1 NO.4 (a) lanagement collecting, transporting, and disposing The

off the waste is basically known as solid waste management. This process is done in a proper manner in which the solid waste is firstly collected from different locations and then the next step is to gother it at one place, separating and analyzing the waste according to the category: biodegradable or non-biodegradable. -> STEPS IN SOLID WASTE MANAGEMENT: (i) firstly, the wasted is collected from all the (ii) Secondly, the collected waste is gathered at one place, specifically separated for the

Date:

		300
	different locations for the	
	waste management. There are different locations for the	
1	variety of wastes such as for the industrial	
+	waste which is hazardous for the environment	
	as well as the human it is to be stored	
	So and location	
1	in a far away location.	
+	(iii) The gathered waste will be analyzed and an	
1	the basis of its category it will be separated	
	(iv) The re-usable maste will be taken for the	
	re-use, making it useful for different purposes.	
	and then managed	
	(v) All the remaining waste is then managed	
,	by applying different methods to minimize the	
	harm, after that with the use of heavy	
	vehicles, rolling over the wheels again and again	
	so the sol with its o	
-	layering them to set in the soil, until its a	
	smoth surface.	

Date:_ (d) (i) Uses of Microwave: (a) The microunive rays are used for the satelite communications (b) Microwave radiations are used in celephones, telephonic conversations. (c) H is used in the heating sources such as microwave oven. (d) It is used for the weather forecasting. (e) It is used for the fixed traffic Cameras.

(ii) Uses of Ultraviolet: (a) It is used in the aerosal sprays. (b) It is used in the reingerator equipments

(c) Creating Fluorescent Effects

(d) It is used for killing backeria.

(e) It is used for a variety of purposes in industrial, household, and dental processes (iii) Uses of X-rays: (a) It is used for detection and dignosis. (b) X-rays are used in radiation therapy such as in the treatment of concer. (e) It is used in the airport security.

(d) By penetrating in the soft-tissues of a human body it is used to detect joint fractures, inflammation etc. (a) Different Methods of food Preservation: There are different methods for different kinds of foods to preserve them for a long-time Some of the common methods, that are generally used on a larger scale are as follow:

(a) Freezing:

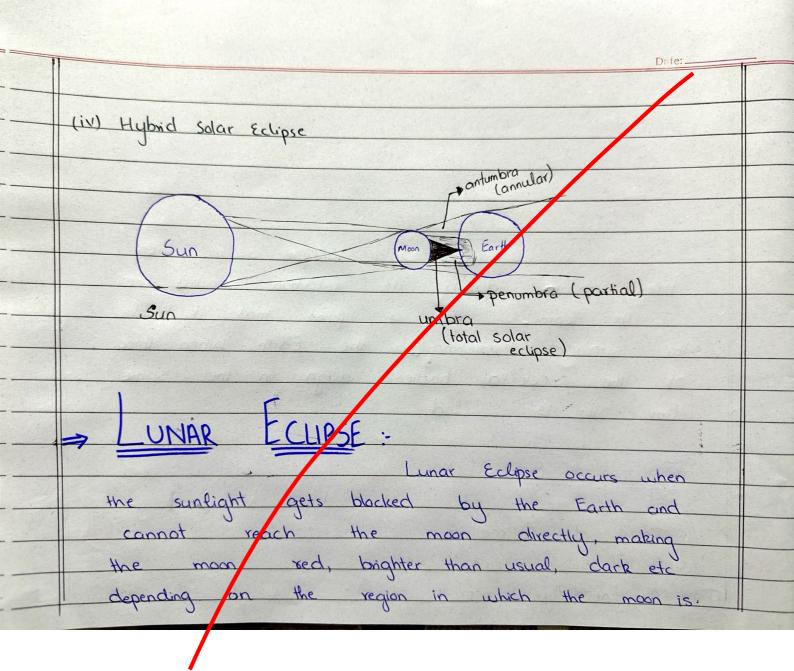
The fruits and vegetables that are weather

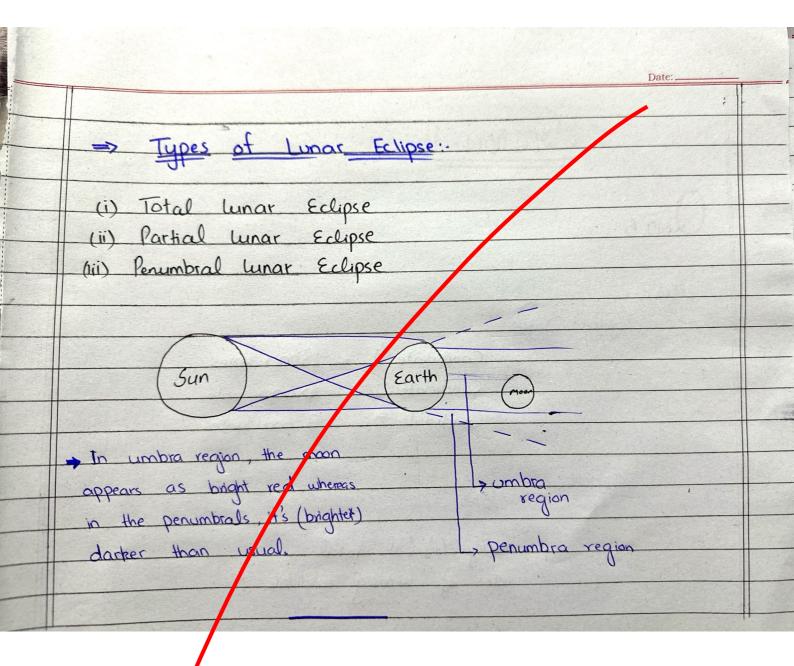
(a) Freezing:

The fruits and vegetables that are weather off-season or for a longer period of time, Colt spoilage of food. (b) <u>Salting</u>:

The use of salt like to store pickles, preserving it from the bacteria and fungus. It removes the microbes from the food (c) Semi-Cooked: The food items to stay fresh and to be used later can be semi-cooked or boiled in order to save them from rolling, extending its life.

(d) Air-Tight:

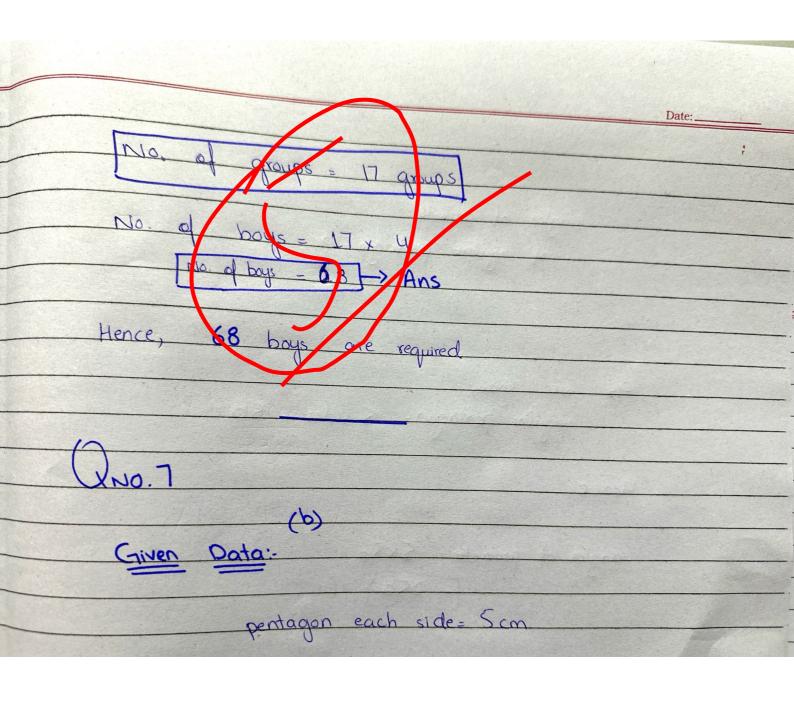

To protect from the outside moisture, the


nuts, cereals are kept in a diretight for to use it for a longer period, without reducing the taste

(e) <u>Vaccum</u> <u>Packing</u>:

Drying 'aut and Storing temperature makes the food durable for a longer period. (f) <u>Sugaring</u>:-Jams, Jellies are all saved due to the process of sugaring as it has the property to stick with the food and to save it from retting, expanding its shelf-life.

(0) Bolar Eclipse occur when the man during its rotation around the Earth comes at a point that it blacks the sunlight reaching to the Earth. When three of the celestial bodies align in the same line, it is called syzgy. Types of Solar Edipses: (i) Total Solar Eclipse (ii) Partial Solal Sclipse (iii) Annular Solar Eclipse



	Date:	
	SECTION-11	
1	OECIION - II	
1		
	QN0.6	
	CNU. 6	
	(a)	
	Given Data:	
	Candidate 1 = 15000 votes	
	Candidate 2 - 10,000 votes	
	Candidate 3 = 8,000 votes	
	Course view of the course of t	4
	To Find:	
	Manager Committee Committe	
	percentage(%) of total	
	votes of winning candidate =?	

	Date:
Solution:	
Total votes = 15000 + 10000 + 8000	
= 37,000	
% of total votes of winning cardidate	
$\frac{500}{100} \times \frac{500}{100}$	
11 33000	
/ = 15· · · / Ans	
due to a senior by grown and	

	Date:
QNO. 6	
(c)	
Given Data:	
Each group = 4 boys + 6 girls No. of girls = 102 To Find:	
No. of boy =?	
Solution:	
Each group= 4 boys + 6 girls No. of groups as per given data	
No. of groups = 102 = 17 groups	

	Date:
To Find:	
angles of perimeter	
angles of perimeter of regular pentagon:?	
Solution:	
Baker Commencer	
As Irau,	
regular pentagon = 5 sides = 50	
Henge,	//
	//
angles of perimeter = 5 x Sa	
= 250 - 7Ans	

	Date:
QNO.7	
(d)	
Given Data:	
Avg. age of 3 bays = 15 years	A Marian
In ration 3:5:7	
To Find:	
Age of youngest =?	
Salution:	
As .	
Arg = <u>sum</u> = 15	
n	
Mulitiphying each by 3,	
Boy 1 - 3x3 = 9	

Date: Boy 2 = 3 x 5 = 15 Boy 3 = 3x 7 = 21 Hence, Age of the youngest = 9 Ans S.ONL (a) Given Data: Sum of 3 consecutive odd no. = 273

\Box	-	4	-	-	

To Find:

three odd no. =?

Solution:

Let,

x, x+2, x+4 > add numbers

Sum = 273

x + x+2+x+4= 2/13

3x+6=)13

3x=213-6

x = 767/3

x 89

Hence, three consecutive odd no are 89, 91 and 93

			Date:
Qno: 8			
	(c)		
Solution:			
(i) THRSI	= SHART		
(ii) GNDREA	= DANGER		
	= STOMACH		
(iv) ONLDO	LONDON	Es and	
(V) HIODALY	HOLIDAY	Harrist Harrist	
		EC SA 6	
		612 - 10 - 1	
		allacs -	
		Da L	
The second second			