




Elements of Logical Reasoning

Some of our earliest experiences of the conclusive force of an argument
come from school mathematics: faced with a mathematical proof, we
cannot deny the conclusion once the premisses have been accepted.
Behind such arguments lies a more general pattern of ‘demonstrative
arguments’ that is studied in the science of logic. Logical reasoning
is applied at all levels, from everyday life to advanced sciences, and a
remarkable level of complexity is achieved in everyday logical reason-
ing, even if the principles behind it remain intuitive. Jan von Plato pro-
vides an accessible but rigorous introduction to an important aspect
of contemporary logic: its deductive machinery. He shows that when
the forms of logical reasoning are analysed, it turns out that a limited
set of first principles can represent any logical argument. His book will
be valuable for students of logic, mathematics, and computer science.

jan von plato is Professor of Philosophy at the University of
Helsinki. He is the author of Creating Modern Probability (Cambridge,
1994) and, with Sara Negri, Structural Proof Theory (Cambridge, 2001)
and Proof Analysis (Cambridge, 2011).





Elements of Logical Reasoning

jan von plato



University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is a part of the University of Cambridge.

It furthers the University’s mission by disseminating knowledge in the pursuit of

education, learning and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781107036598

C© Jan von Plato 2013

This publication is in copyright. Subject to statutory exception

and to the provisions of relevant collective licensing agreements,

no reproduction of any part may take place without the written

permission of Cambridge University Press.

First published 2013

Printed in the United Kingdom by MPG Printgroup Ltd, Cambridge

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data

Von Plato, Jan, author.

Elements of logical reasoning / Jan von Plato.

pages cm

Includes bibliographical references and index.

ISBN 978-1-107-03659-8 (hardback) – ISBN 978-1-107-61077-4 (paperback)

1. Logic, Symbolic and mathematical. 2. Reasoning. I. Title.

QA9.V66 2013

511.3 – dc23 2013039013

ISBN 978-1-107-03659-8 Hardback

ISBN 978-1-107-61077-4 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of

URLs for external or third-party internet websites referred to in this publication,

and does not guarantee that any content on such websites is, or will remain,

accurate or appropriate.

http://www.cambridge.org
http://www.cambridge.org/9781107036598


Contents

Preface [page ix]

part i first steps in logical reasoning

1 Starting points [3]
1.1 Origins [3]

1.2 Demonstrative arguments [4]

1.3 Propositions and assertions [7]

1.4 The connectives [8]

1.5 Grammatical variation, unique readability [10]

1.6 A grammar for propositional logic [12]

1.7 Idealization [14]

2 Rules of proof [15]
2.1 Steps in proofs [15]

2.2 Negation [18]

2.3 Natural deduction in a linear form [19]

2.4 The notion of a derivation [21]

2.5 How to construct derivations? [23]

2.6 Schematic formulas, schematic derivations [25]

2.7 The structure of derivations [27]

Notes and exercises to Chapter 2 [29]

3 Natural deduction [31]
3.1 From linear derivations to derivation trees [31]

3.2 Gentzen’s rules of natural deduction [34]

3.3 Derivations with cases [38]

3.4 A final modification [42]

3.5 The role of falsity and negation [46]

3.6 Axiomatic logic [49]

3.7 Proofs of unprovability [58]

3.8 Meaning explanations [61]

Notes and exercises to Chapter 3 [62]

4 Proof search [64]
4.1 Naturally growing trees [64]

4.2 Invertibility [68]

4.3 Translation to sequent calculus [70]

4.4 Unprovability through failed proof search [74] v



vi Contents

4.5 Termination of proof search [76]

Notes and exercises to Chapter 4 [78]

5 Classical natural deduction [80]
5.1 Indirect proof [80]

5.2 Normal derivations and the subformula property [85]

Notes and exercises to Chapter 5 [88]

6 Proof search in classical logic [89]
6.1 Assumptions and cases [89]

6.2 An invertible classical calculus [90]

Notes and exercises to Chapter 6 [95]

7 The semantics of propositional logic [96]
7.1 Logical truth [96]

7.2 The semantics of intuitionistic propositional logic [101]

7.3 Empty tautologies? [108]

7.4 The completeness of classical propositional logic [110]

Notes and exercises to Chapter 7 [112]

part ii logical reasoning with the quantifiers

8 The quantifiers [115]
8.1 The grammar of predicate logic [115]

8.2 The meaning of the quantifiers [120]

Notes to Chapter 8 [128]

9 Derivations in predicate logic [129]
9.1 Natural deduction for predicate logic [129]

9.2 Proof search [133]

9.3 Classical predicate logic [143]

Notes and exercises to Chapter 9 [150]

10 The semantics of predicate logic [152]
10.1 Interpretations [152]

10.2 Completeness [155]

10.3 Interpretation of classical logic in intuitionistic logic [156]

part iii beyond pure logic

11 Equality and axiomatic theories [161]
11.1 Equality relations [161]

11.2 Sense and denotation [169]

11.3 Axiomatic theories [172]

12 Elements of the proof theory of arithmetic [177]
12.1 The Peano axioms [177]



Contents vii

12.2 Heyting arithmetic [179]

12.3 The existence property [185]

12.4 A simple-minded consistency proof [188]

part iv complementary topics

13 Normalization and cut elimination [195]
13.1 Proofs by structural induction [195]

13.2 A proof of normalization [198]

13.3 The Curry–Howard correspondence [205]

13.4 Cuts, their elimination and interpretation [210]

14 Deductive machinery from Aristotle to Heyting [220]
14.1 Aristotle’s deductive logic [220]

14.2 The algebraic tradition of logic [228]

14.3 The logic of Frege, Peano, and Russell [239]

14.4 Axiomatic logic in the 1920s [248]

Suggestions for the use of this book [253]
Further reading [256]
Bibliography [258]
Index of names [261]
Index of subjects [262]





Preface

When I was little and Christmas time was approaching, we children knew

that there would be two kinds of presents: the soft packages that contained

useful but unexciting clothes, and the hard boxes that contained gorgeous

new toys. I learned later that the same formula repeats itself often in life, and

even in logic. There are the discussions about first principles: what rests on

what, what comes first in the end of all analyses, and what it all means – and

these are the useful but relatively unexciting soft packages. Then there is the

box that is really interesting to open, and that is what I call the deductive

machinery of logic – how it all actually works. Others have called it the

inferential engine. I believe that logic should not be presented to us just in

those soft packages – the hard box has to be there to be opened as well,

so that we can find out how logical arguments function. It is a hands-on

kind of learning in which one tries and retries things by oneself until the

machinery runs smoothly. Then it is the time to discuss the nature of the

first principles.

The book begins with a linear form of proofs that I learned from Dag

Prawitz’ Swedish compendium ABC i Symbolisk Logik. Little did I think,

back in 1973 when using that text for the first time, that my teaching of

elementary logic would one day grow into a comprehensive presentation

in the form of a book. Over the years that I have taught logic, students too

numerous to be listed here have added to my understanding of how the

presentation of the topics should be structured. Next to these experiences,

Sara Negri is the person who has contributed decisively to the direction of

my work in logic in general. I want to dedicate this book to her and to our

proof-theoretical adventure that began quite casually in 1997.

Cambridge University Press sent me, through the good offices of Hilary

Gaskin, four anonymous referees’ reports with overwhelmingly positive

views and comments on the manuscript, which also led to numerous

improvements in the presentation.

ix





part i

First steps in logical reasoning





1 Starting points

Some of our earliest experiences of the conclusive force of an argument

come from school mathematics: Faced with a mathematical proof, however

we try to twist the matter, there is no possibility of denying the conclusion

once the premisses have been accepted.

Behind the examples from mathematics, there is a more general pattern

of ‘demonstrative arguments’ that is studied in the science of logic. Logical

reasoning is applied at all levels, from everyday life to the most advanced

sciences. As an example of the former, assume that under some specific

conditions, call them A, something, call it B , necessarily follows. Assume

further that the conditions A are fulfilled. To deny B under these circum-

stances would lead to a contradiction, so that either B has to be accepted or

at least one of the assumptions revised – or at least that is what the fittest

thinker would do to survive.

A remarkable level of complexity is achieved in everyday logical reasoning,

even if the principles behind it remain intuitive. We begin our analysis of

logical reasoning by the observation that the forms of such reasoning are

connected to the forms of linguistic expression used and that these forms

have to be made specific and precise in each situation. When this is done,

it turns out that a rather limited set of first principles is sufficient for

the representation of any logical argument. What appears intuitively as an

unlimited horizon of ever more complicated arguments, can be mastered

fully by learning these first principles as explained in this book.

1.1 Origins

The idea of logical reasoning appears in the ancient ‘science of demonstrative

arguments’, a terminology from the first logic book ever, Aristotle’s Prior

Analytics. Demonstrative arguments move from what is assumed to be given
to a thing sought. The given can consist of a list of assumptions, the sought

of a claim to be proved. A demonstrative science is organized as follows:

1. There are, first, certain basic concepts supposed to be understood

immediately. Think, as an example, of points and lines in geometry, of a 3
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point being incident with a line, and so on. Next there are defined concepts,

ones that are not immediately understood. These have to be explained

through the basic concepts. A triangle, say, can be defined to be a geomet-

ric object that consists of three straight line segments such that any two

segments meet at exactly one common endpoint.

2. A second component of a demonstrative science consists of axioms.

These are assertions the truth of which is immediately evident. We shall

soon see some examples of ancient axioms. Next to the axioms, there are

assertions the truth of which is not immediately evident. These are the

theorems and their truth has to be reduced back to the truth of the axioms

through a proof.
Proofs are things that start from some given assumptions and then pro-

ceed step by step towards a sought conclusion. The most central aspect of

such a demonstrative argument is that the conclusion follows necessarily

if the assumptions are correct. What the nature of this necessary follow-

ing is, will be shown by some examples. We shall not, in general, aim at

giving any exhaustive coverage of the various concepts that arise, but pass

forward through examples. These are situations in which we have a good

understanding of things.

1.2 Demonstrative arguments

Let us have a look at some examples of arguments in which the conclusion

follows from some given assumptions.

(a) Ancient geometry. There are two types of situations in elementary

geometry. In the first, we have some given objects of geometry such as

points, lines, and triangles, with some prescribed properties. Next there is a

sought object that has to have a prescribed relation to the given ones. Say,

there are two given points, with the property that they are distinct, and the

sought object is a triangle with the properties that the line segment with the

given points as extremities is the base of the triangle, and that the triangle

is equilateral. This is the first result to be established in Euclid’s Elements,

formulated as what is called a construction problem.

In a second kind of situation, there are also given objects with some

properties, but the task is to simply prove that these objects have some

additional new property. No explicit task of construction is mentioned, but

the solution of the task to prove a property often requires intermediate steps

of construction of auxiliary geometrical objects.
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The following example comes from ancient Greek geometry and is of

the second kind. Some of the terminology and notation is modern, but

the geometrical argument in the example remains the same. Consider any

given triangle with the three angles α, β, and γ . Then the sum of these

angles is 180◦. The result clearly is not anything the truth of which would be

immediately evident, but a proof is required. The following figure illustrates

the situation:

α

γ

β

We have a base of the triangle, limited by the angles α and β. To prove the

claim about the sum of the three angles, the sides are next prolonged and a

parallel to the base drawn through the point that corresponds to angle γ .

These are the auxiliary constructions needed:

β1 γ1 α1

γ

βα

Symbols have been added to the figure, namely α1, β1, and γ1. We reason

as follows: The angle opposite to the original angle γ , namely γ1, is equal

to γ . Next, the line from the original angle α to angle γ intersects the base

and the parallel to it. Therefore the angle that is marked by α1 is equal to

the lower left angle α of the triangle. Similarly, β1 is equal to the lower right

angle β of the triangle. We now see that α, β, and γ make up two right

angles, or 180◦.

The principles that were used in the proof were:

I. The opposite angles of two intersecting lines are equal.

II. If a line intersects two parallel lines, the corresponding angles are equal.

Both of these were taken to be immediate geometric truths in ancient

geometry, i.e., they were considered axioms. If they are accepted, it seems

that the claim about the sum of the angles of a triangle would not be a

matter of opinion, but a necessary consequence of what has been assumed.
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In addition to the axioms, what are called construction postulates were

also used. These include the following, directly from the mentioned standard

presentation of Greek geometry, Euclid’s Elements:

III. To continue a given finite straight line segment indefinitely.

IV. To draw a parallel to a given line through a point outside the line.

We have a geometric configuration, some properties of which are assumed

and with further properties that follow from the construction postulates.

We go through in detail the steps that were taken in the proof:

1. By postulate III, the sides of the triangle are continued.

2. By postulate IV, a line parallel to the base is constructed.

3. By axiom II, α = α1.

4. By axiom II, β = β1.

5. By axiom I, γ = γ1.

6. α1 + γ1 + β1 = 180◦.

7. By 3, 4, and 5, α1 + γ1 + β1 = α + γ + β.

8. By 6 and 7, α + γ + β = 180◦.

Step 8 is based on an axiom that is given in Euclid’s Elements as:

V. Any two things equal to a third are equal among themselves.

Laws of addition have also been used, and in 6 it is seen from the construction

that the three angles make up for two right angles.

(b) An example from arithmetic. One might think that perhaps the objects

of geometry are too abstract and our intuitions about their immediately

evident properties not absolutely certain. We can take instead the natural

numbers: 0, 1, 2, . . . . Such a number is prime if it is greater than one and

divisible by only one and itself: 2, 3, 5, 7, 11, 13 . . . . This series goes on

to infinity. Twin primes are two consecutive odd numbers that are prime,

say 5 and 7, 11 and 13, 17 and 19, and so on. Nobody knows if there is a

greatest twin prime pair, or if their series goes on to infinity. Consider three

consecutive odd numbers greater than 3. We claim that they cannot each

be prime. Assume to the contrary this to be the case, i.e., assume there to

be three numbers n, n + 2, n + 4 such that each is prime and n > 3. One

out of any three consecutive numbers is divisible by 3 and, thus, one of

n, n + 1, n + 2 is divisible by 3. By our assumption, it can be only n + 1.

But then also n + 1 + 3 = n + 4 is divisible by 3. Our assumption about

three primes in succession turned out false.
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There is a point in the argument that calls for some attention: It is essential

to require that the three odd numbers be greater than 3. We concluded that

for any n, one of n, n + 1, n + 2 is divisible by 3, and to further conclude

that a number divisible by 3 is not prime, it needs to be distinct from 3.

Indeed, the sequence 3, 5, 7 is excluded by the requirement.

There does not seem to be any place for opinions about the arithmetical

truth established by the above argument. Someone might come and make

a clever observation about a proof, especially if it was more complicated

than the above example: Maybe something went wrong at some place in

the proof. The thing to notice is that the very possibility of having made a

mistake presupposes the possibility of the contrary, namely to have a correct

proof.

(c) An example from everyday life. At Cap Breton in France, everyone

agrees about the following rule: If the wind is hard, it is forbidden to swim.

Here comes someone, in agreement with the rule, who also adds: I see

some people swimming so I conclude that it is not forbidden to swim,

even if I can see that the wind undoubtedly is hard. We could rebuke this

someone: You accept that if the wind is hard, it is forbidden to swim. You

also accept that the wind is hard. Therefore you accept that it is forbidden to

swim, but you also deny it, which makes you contradictory. The person in

question might say that it is not forbidden in any legal or moral way to hold

contradictory opinions, nor is it a psychological impossibility. Whether it is

disadvantageous in the struggle for survival can be debated.

Logical reasoning is based on the acceptance of certain criteria of ration-

ality, such as not to both accept and deny a claim. Such accepting and

denying may be hidden: If we accept a claim of a conditional form, say, if

something A, then something B , but deny B , acceptance of A will lead to

a contradiction as with the Cap Breton bather. The chain of inferences that

leads to a contradiction can be so long that we do not necessarily notice

anything. However, if a contradiction is pointed out, we should revise some

of our assumptions.

1.3 Propositions and assertions

Logical reasoning operates on assumptions and what can be concluded from

these. Assumptions and conclusions are things we obtain from proposi-
tions. We can also call them sentences. There is no use in trying to define

what sentences are in general. We shall be content to have examples of
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complete declarative sentences. Such a sentence expresses a possible state
of affairs. Again, what possibility or state of affairs etc. is need not be

explained in general, but we rest content with good examples. Consider the

sentence It is dark. Whether this is correct depends on time and place, so let

us assume they are fixed. Correctness may also depend on how one defines

darkness, astronomically, in civil terms, or what have you, but that is not

essential: We have paradigmatic examples of darkness and know what that

means and we also know that the notion can be a bit hazy at times. Things

such as the natural numbers and their properties would be less hazy, as in:

One of 1733, 1735, and 1737 is divisible by 3, something we should believe

in by the argument of S ec tion 1.2.

A sentence is something neutral: It merely expresses a possible state of

affairs. To make a sentence, call it A, into an assumption, we have to add

something to A. This we do by stating: Let us assume that A. Similarly, if

we conclude A, we actually make a claim, namely: A is the case. Thus, a

sentence is turned into an assertion by the addition of an assertive mood:

It is the case that . . . . Other such moods include the interrogative mood

for making questions and the imperative mood for giving commands. The

sentences that we utter come with a mood that is usually understood by

the listener. We do not need to add in front of every sentence it is the case

that . . . , even if we sometimes do it for emphasis or clarity.

Note also the difference between the negation of a sentence, as in It is

not dark, and the denial of a sentence, as in It is not the case that it is dark.

Denial, like its opposite, namely affirmation, is a mood that can be added

to a sentence with a negative assertion as a result.

1.4 The connectives

Consider the sentence: If the wind is hard, it is forbidden to swim. Its imme-

diate components are two complete declarative sentences The wind is hard

and It is forbidden to swim. These are combined into a conditional sentence

with the overall structure: If . . . , then . . . . The word then did not occur in

the original but is often added in a logical context, to make the structure

of conditional sentences clear. Similarly to the conditional, the two com-

ponents can be combined into the sentences: The wind is hard and it is

forbidden to swim, The wind is hard or it is forbidden to swim, The wind is

not hard. The combinators in boldface are called connectives. We choose a

basic stock of connectives and give them names and symbols. For brevity,

let the letter A stand for The wind is hard and B for It is forbidden to swim:
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Ta b l e 1 . 1 The propositional

connec t ives

A & B A ∨ B A ⊃ B ¬ A

A & B is the conjunct ion of A and B , to be read  A and  B . A ∨ B is the

disjunct ion of A and B , to be read  A or  B.  A ⊃ B is the implicat ion of A

and B , to be read If A, t h e n B . Finally, ¬ A is the ne g a t i on of A, to be read

No t A .

The sentence A or  B  can b e ambiguous: Sometimes A or B or both is meant,

sometimes it is a choice between exclusive alter natives. In propositional

log ic, disjunc tion is meant in the inclusive sense, the one that is sometimes

w r itten and/or.

Fur ther propositional connec t ives include equivalence: A if and  only if

B . T he sy mbolic notation is A ⊃⊂  B . Howe ver, the four connec t ives of

Table 1.1 w ill suffice for us, because other connec t ives can b e defined in

terms of them.

The symbolic notation is useful for keeping in mind that the meanings of

the logical connectives are fixed and do not depend on the interpretation of

a linguistic context by a user of language. The choice of symbols is historical:

Most of it comes from Giuseppe Peano in the 1890s, some from Bertrand

Russell in the early twentieth century, some later. The implication symbol

was originally an inverted letter C, to indicate consequence. When a page

was set in a printing office, the letter could be easily inverted and thus the

stylized symbol ⊃ evolved. Conjunction is found on a typewriter keyboard

and the capital V disjunction symbol comes from the Latin word vel which

means and/or. (Latin has also a word for an exclusive disjunction, namely

aut.) The minus-sign was used for negation.

Logicians after Peano and Russell have made their own choices of symbols.

Here is a partial list of symbols that have been used:

Table 1.2 Notational variants of the connectives

Conjunction: A & B , A ∧ B , A · B , AB .

Disjunction: A ∨ B , A + B , A|B .

Implication: A ⊃ B , A → B , A ⇒ B .

Equivalence: A ⊃⊂ B , A ↔ B , A ⇔ B , A ≡ B .

Negation: ¬A, −A, ∼ A, A.

When symbolic languages were created they were sometimes accompanied

by ideas about a universal language, such as Peano’s creation he called
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Interlingua. Other similar languages such as Esperanto have been created

with the idea of promoting understanding: With a language common to

all mankind, wars would end, etc. It is good to remember that part of

the motivation for the development of logical languages came from such

idealistic endeavours.

The one who contributed most to the development of the basic logical

systems, namely Gottlob Frege, called his logical language Begriffsschrift,

conceptual notation. He added with obvious pride that in it, ‘everything

necessary for a correct inference is expressed in full, but what is not necessary

is generally not indicated; nothing is left to guesswork’.

1.5 Grammatical variation, unique readability

(a) Grammatical variation. The two sentences If A, then B and B if A seem

to express the same thing. Natural language seems to have a host of ways

of expressing a conditional sentence that is written A ⊃ B in the logical

notation. Consider the following list:

From A, B follows. A is a sufficient condition for B. A entails B. A implies B.

B provided that A. B is a necessary condition for A. A only if B.

The last two require some thought. The equivalence of A and B , A ⊃⊂ B

in logical notation, can be read as A if and only if B, also A is a necessary

and sufficient condition for B. Sufficiency of a condition as well as the ‘if ’

direction being clear, the remaining direction is the opposite one. So A only

if B means A ⊃ B and so does B is a necessary condition for A.

It sounds a bit strange to say that B is a necessary condition for A means

A ⊃ B . When one thinks of conditions as in A ⊃ B , usually A would be a

cause of B in some sense or other, and causes must precede their effects. A

necessary condition is instead something that necessarily follows, therefore

not a condition in the causal sense.

The conjunction A and B in natural language can contain shades of

meaning not possessed by the conjunction of propositional logic. In the

sentence John is married and his wife is Mary, the second conjunct presup-

poses the first one, as can be seen by considering the sentence with the

conjuncts reversed: John’s wife is Mary and he is married.

Grammatical variation is an aspect of natural language that renders it

less monotone, but that is not an issue in logic.

(b) Unique readability. In logic, the symbols are not the essential point, but

the uniqueness of meaning of sentences. Let A, B, C, . . . be sentences. We
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call them simple because they do not show any logical structure. Consider

the compound sentence A & B ∨ C . It is ambiguous between a conjunction

of A and B ∨ C and a disjunction of A & B and C . To avoid the ambiguity,

we use parentheses with the following rule:

Whenever a sentence is part of a longer sentence, parentheses are put around

it.

This rule is the basis, but it produces lots of parentheses that make it difficult

to see the structure of sentences. Therefore we simplify:

Parentheses are left out if a sentence is simple. Parentheses are left out if a

conjunction or a disjunction is a component of an implication.

Following the rule about parentheses, to disambiguate our example sen-

tence A & B ∨ C we write A & (B ∨ C ) or (A & B) ∨ C , and following the

simplification, A & B ⊃ C ∨ D instead of ((A)&(B)) ⊃ ((C ) ∨ (D)), etc.

A text is read as it is produced, in a linear succession of letters and

other symbols. In reading, words appear about which one has to suspend

judgement, with the expectation that the overall structure of the sentence

and the meaning of individual words in it will become clear when one

proceeds. Similarly with the symbolic expressions of logic: Start reading,

say, the formula:

(A ⊃ B) ⊃ ((B ⊃ C ) ⊃ (A ⊃ C ))

It happens that the overall structure is seen only after a certain point.

In this example, the structure ‘from the outside’ is an implication with the

antecedent A ⊃ B and the consequent (B ⊃ C ) ⊃ (A ⊃ C ). The structure

of the formula can be represented in the following syntax tree, drawn with

the branches pointing down:

(A ⊃ B) ⊃ ((B ⊃ C) ⊃ (A ⊃ C))

A ⊃ B (B ⊃ C) ⊃ (A ⊃ C)

BBA ⊃ C A ⊃ C

CACB
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We see now how the sentence is composed of the simple sentences A, B ,

and C by the repeated construction of implications. There is no order in

which, say, B ⊃ C and A ⊃ C would have been constructed. This aspect of

sentences is captured by the two-dimensional tree in which these formulas

do not come one before the other, but independently of each other. We could

say that parentheses are used for the unique coding in a linear dimension

of a thing the true nature of which is two dimensional.

We shall concentrate first on a very restricted but precise logical language,

what is called propositional logic.

1.6 A grammar for propositional logic

Logical languages are articifial creations, but many of the standard ways of

looking at natural languages apply to them. In categorial grammar, the

basic idea about a language is that expressions have the form of a function

and an argument, instead of a subject and a predicate as in traditional

school grammar. An intransitive verb, say, is considered a function that

is applied to an argument that must be a noun phrase, i.e., something

that names an individual. Let N stand for the category of noun phrases

and S for the category of sentences. In mathematics, a function f from one

category of objects to another, as fromN toS , is categorized by the notation

f : N → S . If a is an object in the category N , i.e., a is an expression for

an individual, we categorize it through the notation a : N . (Note that in

the preceding phrase we talked first about the object a , then the expression
a . It would be tedious to say all the time ‘expression for an object a’ instead

of just a , so this qualification is left implicit.) The category of intransitive

verbs is N → S . Given an object in this category, i.e., a specific intransitive

verb f , and an object a in N , functional application gives us a sentence,

as in the scheme:

Table 1.3 The scheme of

functional application

f : N → S a : N
f (a) : S

Let us make, for a concrete example, the categorizations walk : N → S and

John : N . Then by functional application, walk(John) : S . The sentence John

walks is obtained from walk(John) through some ‘surface transformations’

that hide the function-argument structure from the latter.



Starting points 13

We can define the language of propositional logic by giving it a categorial

grammar. The category to be specified is that of formulas, denoted F . We

assume there to be some basic building blocks for formulas, ones that do

not have any logical structure and that we call atomic formulas or shortly

just atoms. These are introduced by the categorizations:

P : F , Q : F , R : F , . . .

Whenever we need to consider atoms, we can ‘declare’ such by writing the

categorizations as above.

Following the basic idea of categorial grammar, we write the connectives

as functions that are applied to formulas and that give other formulas as

values. To be able to do this in a completely general way, we need letters

for indicating arbitrary arguments, just like in mathematics in general one

writes, say, f (x), g (y, z), etc. Here the variables x, y, z are just characters

(letters) and nothing more. When a function is applied, a value is fed in

the place of the variable that indicates the argument place or places of the

function. In a similar way, we build up formulas through connectives and

indicate through the letters A, B, C, . . . the argument places in which spe-

cific formulas can be fed. One more thing has to be noted before we are

ready to categorize the connectives: In f (x), g (y, z) above we had, obvi-

ously, a ‘one-place’ function f and a ‘two-place’ function g . If we consider

g (y, z) an abbreviation for g (y)(z), we have just one-place functions. With

f , we apply it to x by writing f (x). With g , we apply it to y by writing

g (y). The result is not simply a value, but a one-place function that takes

the argument z, with the writing g (y)(z). Now the connectives:

Table 1.4 Connectives defined through a categorial grammar

A : F B : F
&(A)(B) : F

A : F B : F
∨(A)(B) : F

A : F B : F
⊃(A)(B) : F

A : F
¬(A) : F

The expression A & B is obtained from the functional form &(A)(B)

through the ‘infix’ notation for &, i.e., through writing the operation

between the arguments, and by dropping the parentheses.

We note that categorial grammar automatically produces unambiguous

formulas. For example, A & (B ∨ C ) and (A & B) ∨ C are obtained

through the application of the functions & and ∨ in different orders:

A : F
B : F C : F
∨(B)(C ) : F

&(A)(∨(B)(C )) : F

A : F B : F
&(A)(B) : F C : F
∨(&(A)(B))(C ) : F
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1.7 Idealization

Our language of propositional logic has just four connectives by which

the expressions are built, starting from some given simple sentences. This

seems extremely restricted as compared to any natural use of a language. On

the other hand, idealization is the starting point of many great discoveries.

Consider the historically most successful scientific theory, namely Newton’s

celestial mechanics, based on Newton’s three laws of motion. The simplest

case to consider is the motion of two mass points. It follows from Newton’s

laws that if one of the points is considered fixed, the other one will move

along an elliptic orbit. This result comes from an explicit solution of the

Newtonian equations of motion for two mass points. Already in the case

of three mass points in an otherwise empty universe, no general solution

of the equations has been found. The laws have instead been applied as

follows: First take the Sun, which is very massive relative to the planets.

Then consider one massive planet and solve the corresponding equation

to get its trajectory. Now add another planet and try to determine how

much it ‘perturbs’ the motion of the first planet, and so on. The method is

approximative and would not answer to a question such as what happens

to the system if left to itself for an indefinite time. Will some planets escape

in the universe, will some eventually hit the Sun, etc.? These are theoretical

questions that cannot be answered by approximative methods. Just as in

celestial mechanics, so also in logic: Our starting point has to be as simple

as possible if we are to expect any precise results, and so we start with the

forms of logical reasoning for the four propositional connectives and, or,

if . . . , then . . . , not.
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Logical reasoning proceeds from given assumptions to some sought conclu-

sion. The essence of assumptions is that they are hypothetical so that it is not

determined if they hold, and the point with the steps of reasoning is that

they produce correct conclusions whenever the assumptions are correct.

These steps are two-fold: In one direction, we analyse the assumptions into

their simpler parts, in another direction, we look at the conditions from

which the sought for conclusion can be synthesized. The aim is to make

these ends meet. Some examples lead us to a small collection of basic steps

and it turns out that all logical arguments based on the connectives can be

reproduced as combinations of the basic steps.

2.1 Steps in proofs

Consider our bather in Cap Breton. The argument was: We have assump-

tions of the forms A ⊃ B and ¬B . Now A is added to these assumptions,

and a contradiction follows. The argument can be presented as a succession

of steps each one of which is in itself hard to doubt. We write the steps one

after another together with a justification at right:

Example argument 2.1. Proof of a contradiction from A ⊃ B, ¬B , and A.

1. A ⊃ B by assumption

2. ¬B by assumption

3. A assumed with the aim of proving a contradiction

4. B from 1 and 3

5. B & ¬B from 4 and 2

This was simple. The conclusion on line 5 depends on the assumptions

made on lines 1–3. These form the open assumptions of the argument.

Consider next the formula

(A ⊃ B) ⊃ ((B ⊃ C ) ⊃ (A ⊃ C ))

15
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We encountered it already above. It is in fact correct with no assumptions

made, so a general logical conclusion. To see that this is the case, assume

A ⊃ B . The task is now to argue for the implication (B ⊃ C ) ⊃ (A ⊃ C )

under the added assumption A ⊃ B . Assume therefore next B ⊃ C , and

the task is to argue for A ⊃ C under the assumptions A ⊃ B and B ⊃ C .

Assume therefore A, and the task is to argue for C under the assumptions

A ⊃ B , B ⊃ C , and A. From A ⊃ B and A, we get B . From B ⊃ C and

B , we get C . Therefore A ⊃ C follows from A ⊃ B and B ⊃ C . Therefore

(B ⊃ C ) ⊃ (A ⊃ C ) follows from A ⊃ B . Therefore (A ⊃ B) ⊃ ((B ⊃
C ) ⊃ (A ⊃ C )) follows with no open assumptions left, i.e., as a general

logical law. The individual steps in this proof can be reproduced as follows:

Example argument 2.2. A proof with no assumptions: the general logical

law (A ⊃ B) ⊃ ((B ⊃ C ) ⊃ (A ⊃ C )).

1. A ⊃ B temporary assumption for proving (B ⊃ C ) ⊃ (A ⊃ C )

2. B ⊃ C temporary assumption for proving A ⊃ C

3. A temporary assumption for proving C

4. B from 1 and 3

5. C from 2 and 4

6. A ⊃ C from 3 to 5

7. (B ⊃ C ) ⊃ (A ⊃ C ) from 2 to 6

8. (A ⊃ B) ⊃ ((B ⊃ C ) ⊃ (A ⊃ C )) from 1 to 7

Eight single steps were taken to make the result evident. Lines 4–5 depend

on the open assumptions of lines 1–3. The formula on line 6 does not

depend on the assumption on line 3, because the latter has been closed, and

similarly for lines 7 and 8.

Let us take a more complicated example, an argument the correctness of

which is not immediate. Let there be given the assumptions A ⊃ B ∨ C,

B ⊃ D, C ⊃ E , and ¬E . From these assumptions, A ⊃ D can be con-

cluded. To this end, we assume A to be the case. From A ⊃ B ∨ C and A,

we get now B ∨ C . There are thus two cases. In the second case, that of C ,

we get from C ⊃ E and C the conclusion E . By the assumption ¬E , we get

as in the bather argument E & ¬E , a contradiction. Therefore case C turned

out impossible and we conclude ¬C , so only the first case B remains. This

one leads to D by the assumption B ⊃ D. Since the assumption of A has

now led to D, the implication A ⊃ D can be concluded and the temporary

assumption A removed from the list of open assumptions. The individual

steps are given in:
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Example argument 2.3. A proof of A ⊃ D from the four assumptions

A ⊃ B ∨ C, B ⊃ D, C ⊃ E , and ¬E .

1. A ⊃ B ∨ C by assumption

2. B ⊃ D by assumption

3. C ⊃ E by assumption

4. ¬E by assumption

5. A assumed temporarily for proving D

6. B ∨ C from 1 and 5

7. C consideration of the second case from 6

8. E from 3 and 7

9. E & ¬E from 8 and 4

10. ¬C from 7 to 9

11. B consideration of the first case from 6

12. D from 2 and 11

13. A ⊃ D from 5 to 12

There was a good number of steps but none of them was difficult. In the

handling of the two cases B and C , we could also have inferred to B ∨ C

as on line 6, then to prove ¬C by assuming C and showing that it is

impossible, as on lines 7–10. Now we have B ∨ C and ¬C and these give B

as a conclusion, not as a case as on line 11.

As a last informal example, consider the following assumption: Sentences

in Thailand are twice as hard as in Finland. The following seems to be a

consequence of the assumption: If one commits a crime in Thailand that

gives a thirty-year sentence, it follows that if one commits the same crime

in Finland, it gives a fifteen-year sentence. We can formalize the latter as

(A ⊃ B) ⊃ (C ⊃ D). Now consider If one commits a crime in Thailand

that gives a thirty-year sentence and one commits the same crime in Finland,

it gives a fifteen-year sentence. We can formalize this as (A ⊃ B) & C ⊃ D.

It follows logically from the former:

Example argument 2.4. A proof of (A ⊃ B) & C ⊃ D from the assumption

(A ⊃ B) ⊃ (C ⊃ D).

1. (A ⊃ B) ⊃ (C ⊃ D) by assumption

2. (A ⊃ B) & C assumed temporarily for proving D

3. A ⊃ B from 2

4. C ⊃ D from 1 and 3

5. C from 2

6. D from 4 and 5

7. (A ⊃ B) & C ⊃ D from 2 to 6
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Looking at the argument, we notice that the internal structure of A ⊃ B was

never used. Exactly the same form of argument gives in fact the conclusion

A & B ⊃ C from the assumption A ⊃ (B ⊃ C ).

Could we go on with ever new examples of correct logical arguments as the

assumptions grow in number and complexity? If so, what are they based on?

In other words, could it happen that the modes of correct logical inference are

inexhaustible?

The following turns out to be the case for the logical languages dealt with

in this book, namely propositional logic and predicate logic:

There is a collection of basic steps of logical inference, such that any logical

inference can be given as a suitable combination of the basic ones.

The collection of basic steps is finite and not very numerous at all, which

is remarkable because a priori, nothing guarantees that all logically sound

arguments can be coded in a finite system of rules of proof. Historically

speaking, it seems not to have occurred to anyone that such is possible

before Frege in 1879.

It is no fantasy to contemplate an unlimited horizon of ever new forms of

correct arguments; on the contrary, such is precisely the situation in most

parts of mathematics, by what is known as Gödel’s incompleteness theorem

for formal systems of arithmetical proof.

2.2 Negation

In example argument 2.1, we ended in a contradiction B & ¬B . In example

argument 2.3, case C from line 7 led to the contradiction E & ¬E on line

9, by which ¬C was concluded on line 10. The lines that followed, 11–13,

do not depend on line 7. This will become clear through the treatment of

negation as a defined connective.

We assume there to be a sentence that is always false, called falsity and

denoted ⊥. It can be considered from the categorial grammar point of view

a connective with zero number of arguments. Thus, we categorize it by

⊥ : F .

Definition 2.1. ¬A ≡df A ⊃ ⊥.

The notation ≡df means that the expression at left is an abbreviation
for the expression at right. The subscript df is often left out from such

definitions. With the definition of negation, the conclusion ⊥ follows from
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the assumptions ¬A and A, just like B follows from the assumptions A ⊃ B

and A.

2.3 Natural deduction in a linear form

We shall put up a system of proof for the three connectives &, ⊃, and ¬.

The rules have been already used informally in the example arguments of

the previous section. In example argument 2.1, we concluded B & ¬B from

B and ¬B . The rule by which the conclusion is drawn is:

Conjunction introduction: To conclude a formula of the form A & B, it is

sufficient to have the components A and B .

The components are called the premisses of the rule and A & B its conclu-
sion. The premisses can be open assumptions or conclusions of previously

applied rules. When the rule of conjunction introduction is applied, the

lines of the components as well as the application of the rule are indicated

as in the following:

1. A assumption

2. B assumption

3. A & B 1, 2, &I

There is a similar introduction rule for implication:

Implication introduction: To conclude a formula of the form A ⊃ B, it is

sufficient to make the temporary assumption A and to arrive at B.

One would usually arrive at B some lines down from the making of the

assumption A. After A ⊃ B has been concluded, A and whatever depends

on it cannot be used. To indicate that an assumption is a temporary one, or a

hypothesis that will be closed later, a stroke is drawn at the beginning of the

line. When the hypothesis is closed, the stroke is completed into a bracket

to exclude the use of anything on the lines that depend on the hypothesis,

as in the following:

1. A hypothesis: goal B
...
n. B

n + 1. A ⊃ B 1 − n, ⊃I

If we apply later, say, rule &I to infer some formula C & D, the components

C and D can be on any lines that are not inside the bracket drawn for the

closing of a hypothesis in any instance of rule ⊃I .
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We g ive as a first example of the use of the r ule system a proof of the

for mula A ⊃ ( B ⊃ A & B ):

1. A hy pothesis: go al B ⊃ A & B

2. B hy pothesis: go al A & B

3. A & B 1,2, & I

4. B ⊃ A & B 2–3, ⊃ I

5. A ⊃ ( B ⊃ A & B ) 1–4, ⊃ I

Lo oking at the for mula to be proved, we notice that its outer most connec t ive

is an implication. Therefore we t r y to conclude it by r ule ⊃ I . It will be

sufficient to assume the ante ce dent A of the implication and to prove the

consequent B ⊃ A & B . T he latter is again an implication so that B can b e

assumed w ith the aim of prov ing A& B . To prove the latter, it is by r ule & I

sufficient to have the conjunc ts A and B available separ ately, which is the

case. Lines 3–5 record the steps that are made to ar r ive at the goals indicate d

in the making of the hy potheses.

If an assumption is of the for m A & B , it can be split into its components

A and B . T hese steps are represente d by the two r ules:

Conjunc t ion e liminat ion: Fro m A & B , A and B can be concluded.

These r ules are used as in the follow ing two schemes:

1. A & B 1. A & B

2. A 1, & E 1 2. B 1, & E 2

The conclusion need not b e on the next line but can be dr aw n w hene ver it

is needed, provided that the premiss A & B is not inside a closed bracket at

that point. We often drop the subscripts from &E 1, &E 2 because it can be

seen from the premiss and the conclusion which of the two variants of the

rule was used.

The rule of implication elimination has been used in all of the example

arguments of S ec tion 2.1:

Implication elimination: From A ⊃ B and A together, B can be concluded.

The rule is used as in the following scheme:

1. A ⊃ B

2. A

3. B 1, 2, ⊃E
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Ag ain, the conclusion can o ccur at any later line, as long as the premisses

are not inside closed br acke ts.

As a last r ule for the connec t ives &, ⊃, and ⊥, we have

Falsit y e liminat ion: Fro m ⊥, any for mula can be concluded.

The r ule is often called by its Latin name, ex fals o quodlibe t, from a falsit y

any thing follows.

1. ⊥
2. C 1, ⊥ E

There is no int ro duc t ion r ule for falsit y.

The system of r ules for &, ⊃, and ⊥ is  called a system of  natur al deduc-
tion, after Ger hard Gentzen who invente d it in 1932. Earlier systems of

log ic were based on log ical axioms and r ule ⊃ E , called after its Latin name

modus p one ns (something like ‘the mode of positing’). T he idea in axiomatic

systems of log ic was that log ical axioms express basic log ical t r uths, and

axioms are used for der iv ing other log ical t r uths. One dr aw back of the

appro a ch is that some of the axioms are r ather complicate d, p er haps not

re co g nized as log ical t r uths, w hereas some of the theorems are among the

simplest. For example, the for mula A ⊃ A is a theorem w ith a pro of in

axiomatic log ic that is not easy to find. Gentzen’s system, in cont r ast, is nat-

ur al in the sense that it cor responds to the way in w hich pro ofs are ac tual ly

made in the deduc tive sciences. Proofs have a ver y clear st r uc ture and are

as a r ule easy to find.

We can now g ive by Gentzen’s r ules of natur al deduc tion a for mal der iva-

tion of example argument 2.2:

1. A ⊃ B hypothesis: goal (B ⊃ C ) ⊃ (A ⊃ C )

2. B ⊃ C hypothesis: goal A ⊃ C

3. A hypothesis: goal C

4. B 1, 3, ⊃E

5. C 2, 4, ⊃E

6. A ⊃ C 3–5, ⊃I

7. (B ⊃ C ) ⊃ (A ⊃ C ) 2–6, ⊃I

8. (A ⊃ B) ⊃ ((B ⊃ C ) ⊃ (A ⊃ C )) 1–7, ⊃I

2.4 The notion of a derivation

When the sentences of log ic are defined precisely, as in Section 1.6, the y are

called formulas. Similarly, when the principles of proof are made explicit,
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proofs that follow these rules are called derivations. The last line in a

derivation is the conclusion. Assumptions, possibly none, that have not

been closed, are the open assumptions of a derivation.

Definition 2.2. Formula B is derivable from the assumptions A1, . . . An if

there is a derivation with B as a conclusion and A1, . . . An as open assumptions.

We shall write A1, . . . , An � B to indicate derivability. The symbol �
denotes the derivability relation between assumptions, possibly none, and

a conclusion. The last line of a derivation is also called its endformula. If

there are no open assumptions left in a derivation of B , i.e., if � B , then

B is a theorem. Theorems give general logical laws that are correct with no

assumptions made.

There is a limiting case of a derivation in which an assumption A is made.

It is at the same time a derivation of the conclusion A from the assumption

A, as in:

1. A hypothesis: goal A

2. A ⊃ A 1, ⊃I

In terms of the derivability relation, the hypothesis on line 1 can be written

as A � A and line 2 as � A ⊃ A. Consider as another case A ⊃ (B ⊃ A).

Verbally, if we assume A, then A follows under any other assumption

B :

1. A hypothesis: goal B ⊃ A

2. B ⊃ A 1, ⊃I

3. A ⊃ (B ⊃ A) 1–2, ⊃I

This does not look particularly nice: We have closed an assumption B that

was not made. But if we say that an assumption was used 0 times, the thing

starts looking more reasonable. Consider the opposite case, one in which

an assumption is used several times, as in the following derivation of the

logical law (A ⊃ ((A ⊃ B)) ⊃ (A ⊃ B):

1. A ⊃ (A ⊃ B) hypothesis: goal A ⊃ B

2. A hypothesis: goal B

3. A ⊃ B 1, 2, ⊃E

4. B 3, 2, ⊃E

5. A ⊃ B 2–4, ⊃I

6. (A ⊃ (A ⊃ B)) ⊃ (A ⊃ B) 1–5, ⊃I

Note the order in which the premisses are listed on line 4: First the major
premiss with the connective, from line 3, then the minor premiss from line
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2. Note further that assumption A from line 2 was used twice in ⊃E , on line

3 and on line 4. It is known that the endformula of the derivation cannot

be derived without such multiple use of an assumption.

Analogously to a multiple use of an assumption, we can say that assump-

tion B in the derivation of A ⊃ (B ⊃ A) was used vacuously. Another way

in which a formula has to be used twice is in the derivation of A ⊃ A & A:

1. A hypothesis: goal A & A

2. A & A 1, 1, &I

3. A ⊃ A & A 1–2, ⊃I

The components of the conjunction came from the same line. The next

chapter gives Gentzen’s original system of natural deduction in which such

unniceties will not occur.

We summarize the system of rules of natural deduction for &, ⊃, and ⊥:

Table 2.1 Rules of linear natural deduction

&I : Premisses A and B, conclusion A&B.

⊃I : Premiss B derived from the hypothesis A, conclusion A ⊃ B.

&E : Premiss A & B, conclusion A. Premiss A & B, conclusion B.

⊃E : Premisses A ⊃ B and A, conclusion B.

⊥E : Premiss ⊥, conclusion C.

Compared to Gentzen’s natural deduction that uses a tree form, the for-

mulas are arranged in a linear succession, one after the other, and the

construction of derivations is straightforward.

2.5 How to construct derivations?

The task is to show that a conclusion B can be reached from the assumptions

A1, . . . , An. The following ‘manual’ will be helpful in finding a way from

given assumptions to a sought conclusion.

Table 2.2 Procedure for finding derivations in linear natural

deduction

1. Write down the assumptions A1, . . . , An as the first n lines of a derivation.

2. Check if any of the assumptions can be analysed into components by the E -rules.

3. When no E -rule applies, check from the conclusion what I -rule can be used to

derive it and try to derive the premisses of that rule.

4. Repeat 2 and 3 until the derivation succeeds.
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These instructions will give a derivation in most cases, but there are other

cases in which a dead end is reached and one has to have some insight into

how to proceed. The following examples are straightforward:

a. (A ⊃ B) & (B ⊃ C ) � A ⊃ C

1. (A ⊃ B) & (B ⊃ C ) assumption

2. A ⊃ B 1, &E

3. B ⊃ C 1, &E

4. A hypothesis: goal C

5. B 2, 4, ⊃E

6. C 3, 5, ⊃E

7. A ⊃ C 4–6, ⊃I

b. A ⊃ B � ¬(A & ¬B)

1. A ⊃ B assumption

2. A & ¬B hypothesis: goal ⊥
3. A 2, &E

4. ¬B 2, &E

5. B 1, 3, ⊃E

6. ⊥ 4, 5, ⊃E

7. ¬(A & ¬B) 2–6, ⊃I

Remember that negation is a special case of implication, so that line 6 in

this derivation is concluded by ⊃E and line 7 by ⊃I .

c. � A & B ⊃ ¬¬A & ¬¬B .

1. A & B hypothesis: goal ¬¬A & ¬¬B

2. A 1, &E

3. B 1, &E

4. ¬A hypothesis: goal ⊥
5. ⊥ 4, 2, ⊃E

6. ¬¬A 4–5, ⊃I

7. ¬B hypothesis: goal ⊥
8. ⊥ 7, 3, ⊃E

9. ¬¬B 7–8, ⊃I

10. ¬¬A & ¬¬B 6, 9, &I

11. A & B ⊃ ¬¬A & ¬¬B 1–10, ⊃I

Eleven steps were required to check that double negations can be added

in front of conjuncts. None of the steps required more than a following of
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the inst r uc t ions for const r uc t ing der ivations. Thre e tempor ar y assumptions

were made in the der iv ation. These hy p otheses were closed in an order that

comes from the follow ing pr inciple:

Closing of hy p otheses. In a der ivat ion, the hy p othesis made last must b e

clos ed first.

In g r aphical ter ms, the effec t is that the br a ckets do not cross each other.

The y either fol low one another or app ear one completely inside another.

This r ule w il l be sufficient for the cor re c t hand ling of hy potheses.

One could think that such detail as in the last der ivation is somehow

exagger ate d. The p oint is that each step is as simple as possible, and that

complexit y comes from the putting to gether of the e lementar y steps. When

the syntax of the der ivation t rees is sp e cified in the same detail as that of the

for mulas in S ec tion 1.6, the cor re c t ness of a der iv ation c an b e checke d by a

prog r am. Er rors in the const r uc t ion of der iv ations are just er rors in syntax,

i.e., basically the same as er rors in w r iting .

2.6 Schematic formulas, schematic derivations

As explained in S ec tion 1.6, the sentences of prop ositional log ic are built

from some given atomic sentences P , Q, R, . . . and ⊥ through the use of

connectives. The letters A, B, C, . . . that we use are schematic. We indicate

by them arbitrary sentences, just like one indicates arbitrary numbers by

a, b, c , . . . in arithmetical laws such as a + b = b + a . Each instance of

such a law has some concrete numbers in place of the schematic letters,

such as in 7 + 5 = 5 + 7.

Consider the sentence

(A & B) & C ⊃ D

It is not really a sentence, because sentences are built from atomic sentences

and falsity. It just gives a possible form of a sentence, although we would

not usually say ‘form of a sentence’ but just ‘sentence’ for short. Let the

following four atomic sentences be substituted for A, B, C , and D in the

schematic sentence:

Point a is incident on line l ,

Point b is incident on line l ,

Points a and b are distinct,

The connecting line of points a and b is equal to the line l .
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The result of substitution is the sentence:

(Point a is incident on line l & Point b is incident on line l) & Points a and b

are distinct ⊃ The connecting line of points a and b is equal to the line l .

It goes in the same way for derivations: The derivations we have constructed

are schematic, because the formulas in them are schematic, as in:

1. A hypothesis: goal ¬¬A

2. ¬A hypothesis: goal ⊥
3. ⊥ 2, 1, ⊃E

4. ¬¬A 2–3, ⊃I

5. A ⊃ ¬¬A 1–4, ⊃I

Any derivation in which A is a concrete sentence is a correct derivation

of a concrete instance of A ⊃ ¬¬A. Say, if we substitute in the whole

derivation for A the sentence Point a is incident with line l , we get a derivation

of:

Point a is incident with line l ⊃ ¬¬ Point a is incident with line l

What if the arbitrary sentence A in the above derivation is a negation, say,

of the form ¬B? Substitution of ¬B for A in the schematic derivation will

give another schematic derivation:

1. ¬B hypothesis: goal ¬¬¬B

2. ¬¬B hypothesis: goal ⊥
3. ⊥ 2, 1, ⊃E

4. ¬¬¬B 2–3, ⊃I

5. ¬B ⊃ ¬¬¬B 1–4, ⊃I

The replacement was done by an algorithm (a human writer would have

perfected the job by aligning the justifications). This text is produced by

the LATEX text editing program. It has a command by which any string of

symbols in the source file for a text can be replaced by any other string

of symbols. The printed version of the derivation was compiled from the

source file that is visible on the screen in a way that emulates the style of

writing with a traditional typing machine: Each letter has a constant width,

each letter looks the same, etc. Things such as italics or logical symbols are

produced by special commands. The typewriter style on the screen
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can be reproduced in the printed text. The substitution of A by ¬B was

done so that a command was given for replacing the string of symbols A in

the source file for the derivation by the string of symbols \neg B. In the

same way, we can replace A in the derivation by ¬A, to get a derivation

of:

¬A ⊃ ¬¬¬A

We can make a simultaneous substitution of several sentences in a formula

or a derivation. The equivalence A & B ⊃⊂ B & A consists of the conjunc-

tion of the two implications A & B ⊃ B & A and B & A ⊃ A & B . When we

have derived A & B ⊃ B & A, we obtain from that derivation a derivation

of B & A ⊃ A & B by substituting A for B and B for A. It has to be simul-

taneous: If we first substituted B for A in A & B ⊃ B & A, we would get

B & B ⊃ B & B . If next we substituted A for B in the latter, we would get

A & A ⊃ A & A, not B & A ⊃ A & B as in the simultaneous substitution.

Once A is replaced by B in A & B ⊃ B & A, the structure of the original

file is messed up: There is no way of recovering it from the result of the

replacement.

A simultaneous substitution is in practice done as a sequence of single

substitutions. In the example, we can avoid mixing occurrences of A and B

by choosing new symbols C and D, then substituting first C for A, then D

for B , then A for D, and last B for C .

What symbols we use is of no consequence, as long as the form of sentences and

derivations is not affected.

2.7 The structure of derivations

A logician would not be interested in the mere making of formal deriva-

tions, but in more general questions. How can the structure of derivations

in a given system of rules be characterized? Is there a method for automat-

ically producing derivations? What if some detail of the system of rules is

changed?

A first general property of a system of rules is that it does not lead

to a contradiction, i.e., that the formula ⊥ is not derivable in the sys-

tem. It is said that the system is then consistent. It is not such a trivial

task to establish consistency as might seem at first, because the number of

possible derivations has no bound. So one has to prove that none of the



28 Fir st ste ps in log ical reas oning

infinitely many der ivations that leave no op en assumptions cannot have the

endfor mula ⊥.

If we look at the der ivations in Sec t ion 2.5, esp ecial ly the order of appli-

cation of the rules, we notice that after the assumptions have been made,

elimination rules are applied. Towards the end of a derivation, there are

instead applications of introduction rules. Example 2.5c deviates somewhat

from this pattern, because new hypotheses appear after some eliminations

have been made. This phenomenon is caused by the linear arrangement of

formulas.

Consider now a derivation that has a part such as:

...

n. A
...

m. B
...

k. A & B n, m, &I
...

l . A k, &E
...

Assume the derivation to be such that the open assumptions on which

the occurrence of formula A on line l depends are all included among

the open assumptions on which the occurrence of formula A on line n

depends. Then the derivation has a loop, or cycle, because the same for-

mula appears twice and no new assumptions have been made. We can

delete the part of derivation between the two occurrences, to get a simpler

derivation:

...

n. A
...

The derivation continues from line n as the original derivation continued

from line l . Also here the linear arrangement of formulas in derivations can

be problematic: What if some formulas from the part that is cut out are

used to justify steps after line l? How to fix it?
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We notice that a conjunction with the components A and B was first

introduced, then eliminated, against the standard order of eliminations

followed by introductions in the examples of the previous section. The step

of elimination after a step of introduction makes the second conjunct B a

useless part of the derivation and that part can be deleted. By this deletion,

the standard order is re-established.

The main result about systems of natural deduction is that all parts

of derivations in which an introduction is followed by a corresponding

elimination on the introduced formula, can be removed from a derivation.

It must be warned again that the line of the ‘corresponding elimination’

is not fixed in the linear variant of natural deduction, which complicates

things. The net effect of removing introductions followed by eliminations

is a derivation in normal form, a notion to be defined in a precise way in

the next chapter.

Notes and exercises to Chapter 2

The arrangement of derivations in a linear succession is often called the

‘Fitch-system’ of natural deduction, after its appearance in the book Sym-

bolic Logic by Frederic Fitch (1952). We have followed the handsome bracket

notation of the Swedish textbook Prawitz (1991).

1. Give a statement in words of the formula on line 8 of example

argument 2.2.

2. Show by an informal argument that A & B ⊃ C follows from the

assumption A ⊃ (B ⊃ C ).

3. Give derivations of the following:

a. � A & B ⊃ A

b. � (A ⊃ B) & A ⊃ B

c. � (A ⊃ B) & (B ⊃ C ) ⊃ (A ⊃ C )

d. � A & ¬A ⊃ ⊥
e. � (A ⊃ B) ⊃ (¬B ⊃ ¬A)

f. � A ⊃ ¬¬A

g. � (A ⊃ (B ⊃ C )) ⊃ (B ⊃ (A ⊃ C ))

h. � (A & B ⊃ C ) ⊃ (A ⊃ (B ⊃ C ))

4. More derivations:

a. � ¬¬¬A ⊃ ¬A

b. � (A ⊃ ¬B) ⊃ (B ⊃ ¬A)
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c. ¬(A & ¬B) � A ⊃ ¬¬B

d. A & ¬B � ¬(A ⊃ B)

e. (A ⊃ B) & (A ⊃ C ) � A ⊃ B & C

f. A & B ⊃ C � B & A ⊃ C

g. A ⊃ B & C � A ⊃ C & B



3 Natural deduction

The linear variety of natural deduction makes it possible to construct deriva-

tions in steps, one after the other. On the other hand, we have not treated

disjunction yet, and we have noticed that the normal form of derivations

would not be transparent and simple in a linear arrangement of formulas.

Both of these defects are corrected when we now turn to a study of Gentzen’s

original system of natural deduction for propositional logic. Formulas in

derivations are arranged in a tree form, such that each formula is either an

assumption or the conclusion of exactly one logical rule, and each formula

except the endformula of the whole derivation is a premiss of exactly one

logical rule. When we here talk about ‘each formula’, we mean more pre-

cisely each single formula occurrence in a rule instance in a derivation, but

don’t repeat that each time.

Tree derivations were in practice a novelty with Gentzen and their wide-

spread use in logic derives from his doctoral thesis (1934–5). He took

the idea over from the work of Paul Hertz of the 1920s. The tree form

shows ‘what depends on what’ in a derivation and makes it possible to

transform the order of application of rules; the most central methodological

novelty in Gentzen that soon led to spectacular results about the structure of

proofs.

The tree form has a problematic aspect, namely, that a tree would grow

naturally from its root to the leaves at the ends of the branches, but trees in

natural deduction are constructed in the wrong way. We have to start from

the leaves, keep things in mind, and try to fit it all together.

3.1 From linear derivations to derivation trees

The following instructions will automatically produce derivations in the

or ig inal t ree for m of Gentzen from the linear der iv ations of Chapter 2:

31
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Ta b l e 3 . 1 Tr anslation of linear der ivations to t ree for m

1. Wr ite dow n the e ndfor mula and a line above it.

2. Wr ite nex t to the line the r ule that was us ed in concluding the e ndfor mula. If

it was ⊃ I , w r ite afte r the r ule the numbe r of the line on w hich the hy pothesis

clos ed by the r ule occur re d.

3. Wr ite above the line, from le ft to r ig ht, the for mula or for mulas that c or respond

to the numbe r s that just ified the applicat ion of the r ule. If it was ⊃ I ,  write  the

cons eque nt of the implicat ion.

4. Re peat the above unt il you c ome along each branch of the de r ivat ion t ree to an

assumpt ion. If it is te mporar y, i.e., a hy p othesis, w r ite the numbe r of its line

above it.

The following derivations are produced when these instructions are applied

to example der ivations (a)–(c) of Sec t ion 2.5:

a. (A ⊃ B) & (B ⊃ C ) � A ⊃ C

(A ⊃ B) & (B ⊃ C )
B ⊃ C

&E 2

(A ⊃ B) & (B ⊃ C )
A ⊃ B

&E 1 4
A

B
⊃E

C
⊃E

A ⊃ C
⊃I,4

The number 4 after the downmost inference line and rule symbol ⊃I is an

assumption label, or label for short. The translation produces the number

also above the hypothesis A, to indicate which hypothesis is closed where

in a derivation. The assumption (A ⊃ B) & (B ⊃ C ) of the derivation was

used twice in the linear variant, and the formula appears correspondingly

with two occurrences in the tree. The hypothesis A occurs as a topformula.

Note that there is no need to write, next to the rules, where their premisses

come from, because we get by the translation:

In a derivation tree, the premisses of a rule stand directly above and the

conclusion directly below the inference line.

b. A ⊃ B � ¬(A & ¬B)

2
A & ¬B

¬B
&E 2

A ⊃ B

2
A & ¬B

A
&E 1

B
⊃E

⊥ ⊃E

¬(A & ¬B)
⊃I,2
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The closed assumption is again a topfor mula, cont r ar y to the linear

der ivation.

c. � A & B ⊃ ¬¬A & ¬¬ B

4
¬ A

1
A & B

A
& E 1

⊥ ⊃ E

¬¬ A 
⊃ I,4

7
¬ B

1
A & B

B
& E 2

⊥ ⊃ E

¬¬ B
⊃ I,7

¬¬ A & ¬¬ B
& I

A & B ⊃ ¬¬A & ¬¬ B
⊃ I,1

The linear der ivation had elimination and int roduc tion steps mixed w ith

each other. The t re e for m instead has, along each der iv at ion br a nch ,
assumptions fol lowe d by e liminations fol lowe d by int ro duc t ions. Thus, the

der ivation is nor mal because no int roduc tion is followed by an elimination.

Let us look next at the translation of some of the problematic derivations

in Sec t ion 2.4. T he t r anslation of the linear der ivation of A ⊃ ( B ⊃ A) is:

1
A

B ⊃ A
⊃I

A ⊃ (B ⊃ A)
⊃I,1

When we come to line 2 of the linear derivation, the translation manual

tells us to write after the inference line the number of the line in the linear

derivation on which the hypothesis B is made. There is no such number to

be written, so only the rule is indicated.

The translation of the linear derivation of (A ⊃ (A ⊃ B)) ⊃ (A ⊃ B) is

left as an exercise. The derivation of A ⊃ A & A becomes:

1
A

1
A

A & A
&I

A ⊃ A & A
⊃I,1

From the translations of this section, we notice the following:

The justifications, i.e., the references to the lines of the premisses in the steps

of a linear derivation, are nothing but a codification of a two-dimensional

derivation tree.

Looking at the translation of example (c), we notice that the order in which

the hypotheses ¬A and ¬B were made in the linear derivation would

not make a difference in the translated derivation. The order in which the

hypotheses are treated could be chosen freely; for had we first assumed ¬B
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and derived ¬¬B , then the same with ¬A, the translation would have been

identical save for the numbers used as labels. Therefore we have:

Different linear derivations can correspond to one and the same tree derivation.

3.2 Gentzen’s rules of natural deduction

A translation of the rules of linear natural deduction into a tree form gives

the following rule system:

Table 3.2 Gentzen’s rules for &, ⊃, and ⊥

A B
A & B

&I
A & B

A
&E 1

A & B
B

&E 2

1
A....
B

A ⊃ B
⊃I,1

A ⊃ B A
B

⊃E
⊥
C

⊥E

In the schematic rule ⊃I , any number of occurrences of A can be closed. If

this number is 0, we have a vacuous discharge (or closing) of an assumption,

if more than 1, a multiple discharge. Otherwise a discharge is simple. Each

instance of rule ⊃I must have a fresh label, one that has not been used in

any other rule instance.

We add to the above system of introduction and elimination rules what

is sometimes called ‘the rule of assumption’:

Table 3.3 The rule of assumption

A

This rule just means that we are free to start a derivation branch with any

formula used as an assumption, temporary or permanent. The notation

does not distinguish between these two kinds of assumptions, and, indeed,

we need not decide, when starting a derivation, which assumptions will

be closed in the end. They can all be closed by applications of rule ⊃I , as

Gentzen did in his original work.

The assumptions in a derivation tree have a well-defined multiplicity: We

can count the number of times an assumption occurs. Take now any formula

C in a derivation and proceed up from it along all possible branches. Collect

the open assumptions, with their multiplicity recorded, and you have what
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is called the context of formula C in the derivation. These contexts are

denoted by capital Greek letters �, �, �, �, . . . .

Two derivations can be composed into one under a simple condition:

Given a derivation of A from � and of C from A and �, such that all labels

in the two derivations are distinct, they can be put together into a derivation

of C from � and �:

Table 3.4 Composition of two derivations

�....
A and

A �....
C compose into

�....
A �....

C

Should there be a label common to the two derivations, one of them can

be changed. Composition can be presented also through the derivabil-

ity relation: We have � � A and A, � � C and these are composed into

�, � � C .

The endformula of a derivation would often be concluded by an intro-

duction. An assumption, on the other hand, would typically be put into

use through an elimination. Therefore composition usually produces an

introduction followed by an elimination, i.e., a non-normality.

The translations into tree form in the previous section are examples of

derivations with Gentzen’s rules of natural deduction. Here is one more:

� (A & B ⊃ C ) ⊃ (A ⊃ (B ⊃ C ))

3
A & B ⊃ C

2
A

1
B

A & B
&I

C
⊃E

B ⊃ C
⊃I,1

A ⊃ (B ⊃ C )
⊃I,2

(A & B ⊃ C ) ⊃ (A ⊃ (B ⊃ C ))
⊃I,3

An introduction rule is followed by an elimination rule in the upper right

branch, but the major premiss of the elimination is not derived by an

introduction. Therefore the derivation is normal.

The construction of derivation trees has some awkward aspects: When

one starts the derivation, it is not clear where the assumptions should be

written and how parts of derivations fit together. Maybe the lines don’t

match when one comes to concluding formulas by rules that have two

premisses, maybe the premisses are in a wrong order from left to right, etc.

The same problem would be met if one had to draw a syntax tree for a
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for mula, as in S ec tion 1.5, but in a re versed order, star ting from the simple

for mulas. To see w here the y have to be placed, one would have to know

the w hole t ree. We conclude that G entzen’s t ree der ivation for m do es n ot

supp or t proof search in an op timal way. In pr ac tice, one w ill lear n anyway

to const r uc t t ree der ivations.

The dr aw backs in proof search are comp ensate d by a neat prop er t y of

the r ules that we mentioned above:

In a t ree der ivat ion, each for mula e xce p t the e ndfor mula is the pre miss of the

r ule above w hich it stands. E ach for mula exce pt an assumpt ion is the c onclusion

of the r ule under w hich it stands.

Thus, we do not need to use for mulas that stand hig her up in a der ivation,

nor do for mulas remain ‘unused’ after the y have b een concluded. T hese

advantages over the linear for m of der iv ation make it p ossible to g ive a

definition of a nor mal der ivation w ithout compromises:

Definit ion 3.1. Nor m al der iv at ion i n Gentzen’s natur a l deduct i on: A

der ivat ion in Ge ntze n’s natural deduct ion for &, ⊃, and ⊥ is nor mal if no

maj or pre miss of an E-r ule is der ived by an I-r ule.

In a linear der iv ation, a for mula can b e int ro duce d but a ‘cor responding

elimination’, as we w rote in Sec t ion 2.7, can come much later, for w hich

reason the descr iption of nor mal der ivations in that sec tion has to b e taken

in somewhat figur ative ter ms.

The main result about natur al deduc tion states that der ivations can be

t r ansfor med into a nor mal for m. The pro of, p ostp oned to Sec t ion 13.2, con-

sists in defining the transformations and in showing that their application

terminates in a derivation that is in a normal form. Corresponding to the

rules for the connectives & and ⊃, the non-normalities to be transformed

are the three I-E pairs, called detour convertibilities:

Table 3.5 Detour convertibilities on & and ⊃

....
A

....
B

A & B
&I

A
&E 1

....

....
A

....
B

A & B
&I

B
&E 2

....

1
A....
B

A ⊃ B
⊃I,1

....
A

B
⊃E

....
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These convertibilities are eliminated by transforming the derivations into:

....
A....

....
B....

....
A....
B....

The first one is obtained by taking the derivation of the first premiss of

&I and continuing through composition from the conclusion of &E 1, the

second analogously, and the third by taking the derivation of the minor

premiss A of ⊃E , continuing from A to B as in the derivation of the

premiss of ⊃I , then finishing by proceeding from B as in the conclusion of

⊃E .

Given a derivation of a conclusion C from the assumptions �, any con-

version of the derivation should produce a derivation in which there are

no new assumptions. This is obviously the case with the conversions we

have considered: At most some assumptions may disappear, say, those that

were used to derive B in the first detour conversion above. The result of

a conversion can thus be an improvement on the original derivation: the

same conclusion but possibly fewer assumptions.

What if the discharge of A in rule ⊃I was not simple? If it was an empty

discharge, there is a derivation of B without assumption A and the I-E pair

can be eliminated. If it was a multiple discharge, with n copies of A, the

conversion produces a more complicated result that we can depict as:
....
A n×. . .

....
A....

B....

Gentzen’s normalization proof is based on a measure of complexity of

derivations. Each conversion lowers that complexity, until a normal deriva-

tion is reached. With a multiple discharge in rule ⊃I , the derivation of the

minor premiss gets multiplied, and the difficulty is to find a complexity

measure such that a detour conversion on ⊃ compensates the increase in

complexity caused by the multiplication by n of the derivation of A.

The normal form theorem leads to the subformula property of nor-

mal derivations: All formulas in such derivations are parts of the open

assumptions or the conclusion. In propositional logic, it then follows that

the question of derivability is decidable: There is an algorithm of proof
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search that either produces a soug ht der iv ation of B from g iven assump-

tions A1, . . .  An or ter minates w ith a failed pro of search and under iv abilit y
as a result.

3.3 Der ivat ions w ith cases

It is time to add disjunction introduction and e limination to our system

of r ules for conjunc tion, implication, and negation. With this addition,

we h ave w h a t i s c a l l e d intuit ionist ic prop osit ional log ic. T he ter m has its

histor ical or ig ins in the intuitionistic mathematics of L. Brouwer, a version

of the const r uc t ive tendency in mathematics and de ve lop e d mainly in the

1920s. By the end of this era, a general logical structure was distilled from

intuitionistic mathematics, as explained in S ec tion 14.4. It is a remar kable

result that the natural rules of the logical connectives give intuitionistic logic

as a result, with no conditions that would force this to be so.

The pattern for the elimination rule for disjunction is different from the

previous elimination rules, which leads to a new type of simplification of

derivations, called permutative conversion.

(a) Rules for disjunction. The introduction rules for disjunction are:

Table 3.6 The introduction

rules for ∨

A
A ∨ B

∨I1
B

A ∨ B
∨I2

As with the two E -rules for &, we can leave unwritten the subscripts.

The elimination rule for disjunction was used in some way in example

argument 2.3. We had there two cases and a conclusion that followed inde-

pendently of which case happened to obtain. Thus, if we have a disjunction

A ∨ B , if C follows from A and if C follows from B , then C follows in any

case. The rule is written as:

Table 3.7 The elimination

rule for ∨

A ∨ B

1
A....
C

1
B....
C

C
∨E ,1
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The hypotheses A and B can occur any number of times in the two sub-

derivations of the minor premiss C , similarly to rule ⊃I , with vacuous,

simple, or multiple discharge in each.

Examples of derivations with cases:

a. A ∨ B � B ∨ A

A ∨ B

1
A

B ∨ A
∨I2

1
B

B ∨ A
∨I1

B ∨ A
∨E ,1

It depends only on the form of the premiss and conclusion which of the two

I -rules is applied: In ∨I1, the premiss becomes the left disjunct, in ∨I2, the

right disjunct.

b. (A ⊃ C ) & (B ⊃ C ) � A ∨ B ⊃ C

2
A ∨ B

(A ⊃ C ) & (B ⊃ C )
A ⊃ C

&E 1 1
A

C
⊃E

(A ⊃ C ) & (B ⊃ C )
B ⊃ C

&E 2 1
B

C
⊃E

C
∨E ,1

A ∨ B ⊃ C
⊃I,2

In the construction of derivations such as the above, it is best to start from

the cases A and B , to work towards some common consequence C , and

then to add the major premiss A ∨ B and its inference line.

Contrary to what one might expect, the converse to (b) does not use

disjunction elimination:

c. A ∨ B ⊃ C � (A ⊃ C ) & (B ⊃ C )

A ∨ B ⊃ C

1
A

A ∨ B
∨I1

C
⊃E

A ⊃ C
⊃I,1

A ∨ B ⊃ C

2
B

A ∨ B
∨I2

C
⊃E

B ⊃ C
⊃I,2

(A ⊃ C ) & (B ⊃ C )
&I

By derivations (b) and (c), we conclude that the formulas A ∨ B ⊃ C and

(A ⊃ C ) & (B ⊃ C ) are logically equivalent. That is hardly clear without

some reflection. However, if for C we take the formula ⊥, we obtain as a

special case the equivalence:

¬(A ∨ B) ⊃⊂ ¬A & ¬B
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Now we have a logical law the correctness of which can be immediately felt,

contrary to the more general form with an arbitrary consequence C of the

disjunction A ∨ B . The equivalence shows that cases (disjunctions) in the

antecedent of an implication are not genuine, because any such formula can

be replaced by one that does not have the cases.

The premisses of a logical rule must be in some intuitive sense at least

as strong as the conclusion. Clearly A & B is stronger than A, and A is

stronger than A ∨ B . How could one, then, have any use for the two rules

for introducing a disjunction? Why make the conclusion A ∨ B if you

already knew A? Consider the following argument: We are at the second

round of a presidential election, with candidates A. Bell and C. Davis left.

Bell is a liberal, Davis a female. The conclusion is that either a liberal or a

female is chosen as the next president. The formal derivation is as follows,

with the atomic formulas:

B is: Bell is chosen as president.

D is: Davis is chosen as president.

L is: A liberal is chosen as president.

F is: A female is chosen as president.

We agree that B ∨ D is correct because of the electoral arrangement,

and that B ⊃ L and D ⊃ F are correct conditional sentences. We want to

show:

B ∨ D, B ⊃ L , D ⊃ F � L ∨ F

Here is the formal derivation:

B ∨ D

B ⊃ L
1
B

L
⊃E

L ∨ F
∨I1

D ⊃ F
1
D

F
⊃E

L ∨ F
∨I2

L ∨ F
∨E ,1

The disjunction L ∨ F was introduced in two subderivations under the

added assumptions B and D, respectively, that are closed when the overall

conclusion is reached.

Let us look again at example (c). The conjunction A & B is clearly stronger

than the disjunction A ∨ B , so we can make the antecedent of the assump-

tion stronger by assuming A & B ⊃ C instead of A ∨ B ⊃ C . It happens

that (A ⊃ C ) & (B ⊃ C ) is no longer derivable. Thinking of it, A ∨ B ⊃ C

is stronger than A & B ⊃ C because it claims C to follow from a weaker

antecedent.
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(b) Conversion for disjunct ion. The a ddition of disjunc tion to our language

provokes some complications in the definition of a nor mal der ivation and

as a consequence also in the pro of of the nor malization of der iv ations.

An int roduc tion can b e separ ated from the cor responding elimination by

a step of disjunc tion elimination, in a situation know n as a p er mutat ion
conver t ibilit y . Here is an example of a par t of der iv ation w ith such a

co nve r t i b i l i t y :

Ta b l e 3 . 8 A p er mutat i on conver t i bilit y

....
A ∨ B

1
A....
C

....
D

C & D
& I

1
B....

C & D
C & D 

∨ E ,1

C
& E 1

....

The der ivation can be modified so that the last step of the par t show n, an

instance of rule &E , is permuted to above ∨E :

....
A ∨ B

1
A....
C

....
D

C & D
&I

C
&E 1

1
B....

C & D
C

&E 1

C
∨E ,1

....

Now there is a detour convertibility on C & B that can be eliminated as in

Sec t ion 3.2.

As with the previous connectives, there is also the possibility of a detour

convertibility with ∨, when a derivation has a part of the form:

....
A

A ∨ B
∨I1

1
A....
C

1
B....
C

C
∨E ,1

....
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The part is converted by composing parts of the original derivation after

the following pattern:
....
A....
C....

There is an analogous conversion if A ∨ B was concluded by rule ∨I2 from

B .

With the addition of disjunction, the notion of a normal derivation has

to be modified so that also permutative convertibilities are excluded:

Definition 3.2. Normal derivation with disjunctions included. A deriva-

tion in Gentzen’s natural deduction for &, ∨, ⊃, and ⊥ is normal if no major

premiss of an elimination rule is derived by an I-rule or rule ∨E .

As with the fragment without disjunction, the main result states that deriva-

tions convert to normal form.

3.4 A final modification

There is no known way of making disjunction behave in the same neat

way as conjunction and implication, with just detour conversions required

for the normalization of derivations. We shall, instead, make the rules for

the latter connectives as ‘bad’ as disjunction, which somewhat surprisingly

leads to some remarkable simplifications.

One characteristic of rule ∨E is that it has an arbitrary conclusion C ,

whereas the conclusions of rules &E and ⊃E were components of the major

premisses. If we look at the I -rules for disjunction they can be said to give

the sufficient grounds for introducing a disjunction. One ground is that

we have derived A, the other that we have derived B . We now stipulate:

The inversion principle. Whatever follows from the sufficient grounds for

introducing a formula, should follow from that formula.

With rule ∨I , anything that follows from A and B , taken separately because

of the two possibilities A and B in ∨I , should follow from A ∨ B . Similarly,

for &I , anything that follows from A and B , taken together as in rule

&I , should follow from A & B . Finally, anything that follows from the

derivability of B from the assumption A, should follow from A ⊃ B . The
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way to look at the der ivabilit y of B from A is that it can b e used for re ducing

ar bit r ar y consequences of B , call them C , into consequences of A. We have

thus the two elimination r ules that we cal l gener a l :

Ta b l e 3 . 9 Gener al e limination r ules

A & B

1
A,

1
B....

C
C

& E ,1
A ⊃ B A

1
B....
C

C
⊃ E ,1

In r u l e & E , we have first that C is a consequence of A and B to g e t h e r. B y

the r ule, it is then a consequence of A & B . Similarly, C is a consequence of

B and b ecomes by r ule ⊃ E a consequence of A ⊃ B and A.

Gentzen’s E -r ules are sp e cial cases of the gener al e limination r ules: If in

the first rule of Table 3.9 we set C ≡ A and then C ≡ B , and C ≡ B in the

second r ule, we get:

Ta b l e 3 . 1 0 Gentzen’s r ules as sp ecial cases of

gener al r ules

A & B
1
A

A
& E ,1

A & B
1
B

B
& E ,1

A ⊃ B A  
1
B

B
⊃ E ,1

The der ivations of the r ig ht most premiss are degener ate in each case and

can b e left unw r itten w hich g ives exac tly the Gentzen r ules. In the other

dire c t ion, the conclusions of the gener al r ules can b e der ived from their

premisses by Gentzen’s rules: Assume there to be derivations of C from

A, B as in the premiss of r ule & E of Ta ble 3 .9, a nd of C from B as in

the premiss of rule ⊃E in the same table. Then the conclusions of the

general rules are obtained from their premisses by Gentzen’s rules and

compositions:

A & B
A

&E 1
A & B

B
&E 2

....
C

A ⊃ B A
B

⊃E

....
C

The modified system with the general E -rules is equivalent to Gentzen’s

system as far as the derivability of formulas from given assumptions is

concerned.
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If the conclusion C of an elimination rule is the major premiss of another

elimination rule, the latter can now be permuted up in all the rules, not

just for ∨E as with Gentzen’s rules. There are three E -rules (plus ⊥E )

so that there are altogether nine possible combinations, &E and &E , &E

and ∨E , etc. Here is the first one together with the converted derivation

part:

....
A & B

1
A,

1
B....

C & D
C & D

&E ,1

2
C ,

2
D....

E
E

&E ,2

....

....
A & B

1
A,

1
B....

C & D

2
C ,

2
D....

E
E

&E ,2

E
&E ,1

....

With ⊥E , there is the possibility of its repeated application that is eliminated

as in the transformation:

⊥
⊥ ⊥E

C
⊥E

⊥
C

⊥E

We can give our final definition of a normal derivation, this time without

the exception on ∨E of Gentzen’s definition:

Definition 3.3. Normal derivation with general elimination rules. A

derivation with general elimination rules is normal if all major premisses

of E-rules are assumptions.

As an example of the general form of normal derivations, consider the

following example:

(A & B) & C
A & B

&E

A
&E

This derivation of A from the assumption (A & B) & C is normal in

Gentzen’s sense. It has, however, a major premiss of an E -rule that has

been derived, namely A & B . The derivation, considered as a special case of

a derivation with the general rules, is:

(A & B) & C
1

A & B
A & B

&E ,1 2
A

A
&E ,2
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Here we see that the lower instance of r ule & E is not nor mal in the gener al

sense. A p er mutative conversion moves the lower instance up, w ith a nor mal

der ivation as a result:

( A & B ) & C

1
A & B

2
A

A
& E ,2

A 
& E ,1

The m ost imp or tant prop er t y of nor mal der ivations is:

Su b f o r m u l a p r o p e r t y. Al l for mulas in a nor mal der ivat ion are subfor mulas

of ope n assumpt ions or of the e ndfor mula of the der ivat ion.

We shall see in the next chapter how the decidabilit y of der ivabilit y follows

from the subfor mula prop er t y.

Assume g iven a nor mal der ivation of a theorem, i.e., a der iv ation that

has no op en assumptions left. Were the last r ule an elimination, the major

premiss would be an assumption that has not been closed. T herefore we

have:

Prop er t y of direc t provabilit y. Proofs of theorems  convert to a form in which

the last r ule is an int ro duct ion.

An immediate consequence is that if A ∨ B is a theorem, the last r ule in a

nor mal der ivation must be ∨ I . T herefore one of A or B is a theorem:

Disjunc t ion p rop er t y. If A ∨ B is der ivable, one of A and B is der ivable.

The result fails, natur ally, if A ∨ B has b een der ived from assumptions that

contain essential disjunc tions.

A pro of of the nor malizabilit y of der iv ations is found in Sec t ion 13.2.

Dag Pr aw itz and Andres Ragg io had g iven proofs of nor malization that

were published, indep endently of each other, in 1965. We found a pro of

of nor malization by Gentzen in a h andw r itten early version of his thesis in

Fe br uar y 2005, published in Eng lish t r anslation in 2008. Gentzen’s pro of

was completed p er haps dur ing the first months of 1933, but for reasons that

w ill be explained later, he had no use for it in its or ig inal for m.

Gentzen’s pro of proceeds as follows: First any p ossible p er mutation con-

ver t ibilities are located. As in Table 3.8, there is a second occur rence of the

major premiss of the last elimination (C & D in Table 3.8), namely above

the inference line for ∨E . A derivation can be such that this succession of
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the same for mula rep eats itself over and over again. Howe ver, after a p er-

mutative conversion, there is just one o ccur rence of C & D in the example

of Table 3.8. In gener al, a p er mutative conversion diminishes the occur-

rence of the formula in succession by one, until there are no permutation

convertibilities left. Then detour conversions are applied. These can lead to

new convertibilities, but they are on shorter formulas. In the end, after a

bounded number of conversions, a normal derivation is reached.

3.5 The role of falsity and negation

(a) The rule of falsity elimination. We have not paid much attention to

falsity and its rule ⊥E . There is a familiar rule of logic that has the same

deductive strength as rule ⊥E . Consider the following derivation:

A ∨ B
1
A

¬B
1
B

⊥ ⊃E

A
⊥E

A
∨E ,1

The derivation shows that from A ∨ B and ¬B , the conclusion A can be

drawn. We could take it as a rule that is added to our system, called by its

mediæval name modus tollendo ponens (something like ‘mode of positing

by taking away’):

A ∨ B ¬B
A

mtp

Logicians have studied what happens if rule ⊥E is left out of the system

of natural deduction. What remains, i.e., the introduction and elimination

rules for the connectives &, ∨, and ⊃, is called minimal propositional logic.

It is known that the conclusion of rule mtp is not derivable from its premisses

if rule ⊥E is left out. Rule mtp has in fact the same deductive strength as

rule ⊥E : The above showed that the conclusion of mtp is derivable from its

premisses by rules ⊃E , ⊥E , and ∨E . In the other direction, assume there

to be a derivation of ⊥ from some given assumptions. The task is to show

that the conclusion of ⊥E , i.e., any formula C , is derivable by mtp:

....⊥
C ∨ ⊥ ∨I2

1
⊥

¬⊥ ⊃I,1

C
mtp
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Ru l e ⊃ I is used to der ive ¬⊥, i.e., ⊥ ⊃ ⊥. There might be sometimes

sp ecific for mal reasons for not using r ule ⊥ E , but other p ossible objec tions

to the r ule, if any, should apply as well to r ule mt p.

Finally, we note that e ven in minimal log ic, any negative for mula can b e

infer red from ⊥:

⊥
¬C

⊃ I

This is an instance of r ule ⊃ I in w hich the assumption C was in fact not

used.

(b) Der ivable and admissible r ules. By the der ivation that b eg an this

sec t ion, mt p is a der iv able r ule in natur al deduc tion. In gener al:

Definit ion 3.4. Der ivable r ules. A rule is der iv able in a g ive n sy ste m of r ules

if its c onclusion is der ivable from its pre miss es in the sy ste m.

There is a weaker but in fact more important notion, called admissibilit y:

Definit ion 3.5. Admissible r ules. A rule is admissible in a g ive n sy ste m of

r ules if its conclusion is der ivable in the sy ste m w he ne ver its pre miss es are.

A der iv able r ule is admissible, but not necessar ily the other way around.

Proofs of admissibilit y proceed by consider ing the way or ways in which

the premisses can have been der ive d. A good example of an admissible

r ule in natur al deduc tion is the composition of two der ivations, as in

Table 3.4: Whene ver there is a der iv ation of A from the assumptions �

and a der ivation of C from the assumptions A, �, it is permitted to con-

clude C from the assumptions �, �.

It is not unusual to mix the notions of admissibility and derivability, even

in textbooks on logic. The argument goes like this:

Assume that if A is der ivable, als o B is. The n A ⊃ B is der ivable. This step is

a plain log ical fal lacy to w hich we shal l re tur n in Sec t ion 3.7.

(c) Negation as a primitive notion. It is possible to use a primitive notion

of negation, instead of the one defined through implication and the special

formula ⊥. The rules of primitive negation are two, an introduction and an

elimination:
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Table 3.11 Rules for primitive

negation

1
A....
B

1
A....

¬B
¬A

¬I,1
A ¬A

B
¬E

Assumption A would in many cases appear only above one of the premisses

of the I -rule.

The negation rules are equivalent to ones with negation defined through

⊥. We show first that the conclusions of the new rules follow from their

premisses by the earlier rules: For rule ¬I , assume there to be derivations

of its premisses, then apply ⊃E to conclude ⊥, next ⊃I to conclude ¬A.

For the second rule, apply ⊃E to conclude ⊥, next ⊥E to conclude B .

The other direction goes so that occurrences of ⊥ in derivations are

replaced by contradictions of the form P & ¬P : If A is an assumption with

a part of the form ⊃ ⊥, replace ⊥ by P & ¬P with P , say, the first atom of

A. Whenever a rule other than one of ⊃I , ⊃E , or ⊥E is applied, nothing

more need be done. If the last step in a derivation is ⊃I , the derivation and

its transformation are:

1
A....⊥

¬A
⊃I,1

1
A....

P & ¬P
P

&E

1
A....

P & ¬P
¬P

&E

¬A
¬I,1

Here P can be chosen from A as before. The transformations for the other

remaining rules are similar.

In Gentzen’s thesis, the rules of natural deduction are given so that nega-

tion can be taken either as defined or as primitive, but later the defined

notion is used. The latter choice gives a greater uniformity to the transfor-

mation of derivations into normal form. With primitive negation, we have

the possibility of repeated instances of ¬I , and of ¬I followed by ¬E :

2
C....
A

1
A ,

2
C....

B

1
A ,

2
C....¬B

¬A
¬I,1

¬C
¬I,2

....
A

1
A....
B

1
A....¬B

¬A
¬I,1

C
¬E
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These two situations can b e conver ted into for ms that are obv iously

simpler :

2
C....

A ,
2

C....
B

2
C....

A ,
2

C....¬ B
¬C

¬ I,2

....
A....
B

....
A....¬ B

C
¬ E

One negation and one r ule instance has disapp eared from each der iva-

tion, but there is no fur ther systematic sense in which these conversions

would g ive simpler der ivations as results. If the unconver ted der ivations

are t r anslated into the standard calculus w ith a defined negation, it is

instead seen that b oth of the successions of r ules ¬ I, ¬ I and ¬ I, ¬ E

contain a detour conver tibilit y. Moreover, the simplified der ivations cor re-

spond exac tly to the results of detour conversions. The details are left as an

exercise.

3.6 Axiomat ic log ic

Before Gentzen’s r ule-based proof systems were de ve lop e d in the early 1930s,

log ic had a fift y-year axiomat ic t r adition. It beg an w ith Fre ge, as explained

in Sec t ion 14.3, and par alleled similar de ve lopments in mathematics. One

of the main impulses here was the invention of non-Euclidean geomet r ies,

and esp ecially the question of the indep endence of the par allel postulate.

The question of w hat can be proved is meaning ful only if the pr inciples of

proof have b een explicitly laid dow n.

(a) The axiomat izat ion of log ic. By the 1920s, log ic was axiomatized

in the st y le of geomet r y, so that each of its basic notions had a sepa-

r ate g roup of axioms. D ifferent but e quiv alent systems of axiomatization

were prop osed, each of them ine v itably mixing a bit the basic notions,

for example, each axiom requires an implication or a negation. A pure

for mulation w ith no such mixing became possible only w ith the inven-

tion of natural deduction. The following collection of axioms is similar

to that of Hilber t and Ber nays (cf. S ec tion 14.4), except for the negation

axioms.
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Table 3.12 Axiomatic logic

I Axioms for implication
1. A ⊃ (B ⊃ A)

2. (A ⊃ (A ⊃ B)) ⊃ (A ⊃ B)

3. (A ⊃ B) ⊃ ((B ⊃ C) ⊃ (A ⊃ C))

II Axioms for conjunction
4. A ⊃ (B ⊃ A & B)

5. A & B ⊃ A, A & B ⊃ B

III Axioms for disjunction
6. A ⊃ A ∨ B , B ⊃ A ∨ B

7. (A ⊃ C) ⊃ ((B ⊃ C) ⊃ (A ∨ B ⊃ C))

IV Axioms for negation
8. (A ⊃ B) ⊃ (A ⊃ ¬B) ⊃ ¬A

9. A ⊃ (¬A ⊃ C)

The only rule of inference is ⊃E . Any instances of the axioms as well as

previously proved theorems can be used as premisses in the rule.

Derivations in axiomatic logic are notoriously hard to find. All rules are

instances of ⊃E so that from an endformula C , the theorem proved, a left-

most branch passes always through major premisses to a topformula that is

an axiom instance. It has the form A1 ⊃ (A2 ⊃ . . . ⊃ (An ⊃ C ) . . .). The

minor premisses are, from the root, An, An−1, . . . , A1. Each of them has

the same structure, a leftmost branch that ends with an axiom instance.

Derivations consist in chopping off from axioms, all of them implications,

the antecedents until the endformula is reached. There is no way of trans-

forming a derivation, but it is a completely static object.

What are the advantages of putting on proofs such a one-rule straitjacket

as in axiomatic logic, with the ensuing enormous difficulty of finding the

right axiom instances? One reason may be historical: In the axiomatic studies

of geometry from the latter part of the nineteenth century on, there was

a tendency to minimize the number of basic concepts and the number of

axioms about them. Another reason is that it is sometimes very easy to prove

properties of a logical calculus if it is put in the axiomatic form. If all the

axioms have some property of interest, if rule ⊃E maintains that property,

then also all theorems have the property.

We have met most of the above axioms as examples of theorems in

intuitionistic logic, and also the remaining ones are easily proved. Therefore

we can define:
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Translation from axiomatic logic to natural deduction. Given a derivation

in axiomatic logic, it is translated into natural deduction by substituting the

instances of axioms in the derivation by the derivation of these axioms in

natural deduction.

The result of such a translation produces a great number of non-normalities:

Each axiom is an implication, often put into use as the major premiss of

rule ⊃E . A normal derivation of the axiom has rule ⊃I as a last rule, so

that a detour convertibility is produced.

The reverse translation from natural deduction to axiomatic logic is a lot

trickier. First of all, there is no notion of derivation from assumptions in

axiomatic logic as it was originally conceived. Frege and Russell took the

axioms to express logical truths, and each step of proof just produced a new

logical truth B from previous truths A ⊃ B and A. Later, when axiomatic

logic was applied to abstract axiom systems, this idea had to be changed.

The collection of assumptions in the following definition is a list of formulas

in which the order plays no role:

Definition 3.6. Derivations from assumptions in axiomatic logic. A for-

mula C is derivable from a collection of assumptions � in axiomatic logic in

the following cases:

1. C is an instance of an axiom.

2. C is one of the assumptions �.

3. There are derivations of A ⊃ C from the assumptions � and of A from the

assumptions � and � is the collection �, �.

We shall write rule ⊃E in derivations in axiomatic logic with assumptions

in the form:

� � A ⊃ C � � A
�, � � C

⊃E

The assumptions are put together in the conclusion of the rule, into a

collection �, �.

If a premiss comes from clause 1 of the above definition, it has the form

� � C in which the collection of assumptions � can be chosen freely, or

left empty if needed. Similarly for clause 2, it can be written as � � C with

just the condition that C be one of the formulas in �. It is essential that all

assumptions are counted in �, also multiple occurrences.

(b) The deduction theorem. In the translation of derivations in natural

deduction to axiomatic logic, a pattern repeats itself in which rule ⊃I is
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applied in natur al deduc t ion. Its image under the t r anslation to b e defined

is know n as ‘the deduc tion theorem’:

Lemma 3.7. The deduct ion theorem for axiomat ic log ic. If A, � � C ,

the n � � A ⊃ C .

Pro o f . We go throug h the thre e cases of definition 3.6 and show that the

deduc t ion theorem applies in the base cases 1 and 2, and that its applicabilit y

is maintained under r ule ⊃ E :

1. Formula C is an instance of an axiom. We take an instance of axiom I.1

in Table 3.12 as a first premiss, choose � as the col lec t ion of assumptions in

a second premiss, and have the derivation:

� C ⊃ (A ⊃ C ) � � C
� � A ⊃ C

⊃E

2. Formula C is one of the assumptions. If it is in �, the same derivation as

in 1 gives the result. If C ≡ A, the derivation is, with instances of axioms

I.2 and I.1, respectively:

� (A ⊃ (A ⊃ A)) ⊃ (A ⊃ A) � � A ⊃ (A ⊃ A)
� � A ⊃ A

⊃E

We have now shown that with the starting points of derivations in axiomatic

logic with assumptions, namely clauses 1 and 2, a formula can be lifted from

the assumptions to the other side of the turnstile, into the antecedent of an

implication. The final task is to show that the rule of inference maintains

this property, i.e., that whenever its premisses obey the deduction theorem,

also the conclusion does:

3. A, � � C has been derived by rule ⊃E from two premisses, either A, �′ �
B ⊃ C and �′′ � B , or �′ � B ⊃ C and A, �′′ � B , with � ≡ �′, �′′. The

first case is:

....
A, �′ � B ⊃ C

....
�′′ � B

A, �′, �′′ � C
⊃E

Application of the deduction theorem to the first premiss of rule ⊃E gives

�′ � A ⊃ (B ⊃ C ). The next step is to derive the formula:

(A ⊃ (B ⊃ C )) ⊃ (B ⊃ (A ⊃ C ))
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This is left as an exercise. Then we have the derivation, in which DT indicates

an application of the deduction theorem to the premiss A, �′ � B ⊃ C :

� (A ⊃ (B ⊃ C )) ⊃ (B ⊃ (A ⊃ C ))

....
A, �′ � B ⊃ C

�′ � A ⊃ (B ⊃ C )
DT

�′ � B ⊃ (A ⊃ C )
⊃E

....
�′′ � B

�′, �′′ � A ⊃ C
⊃E

The second case is that A is in the second premiss A, �′′ � B . The derivation

is:
....

�′ � B ⊃ C

....
A, �′′ � B

A, �′, �′′ � C
⊃E

Analogously to the first case, we apply DT to the second premiss, and then

use an instance of axiom I.3:

� (A ⊃ B) ⊃ ((B ⊃ C ) ⊃ (A ⊃ C ))

....
A, �′′ � B

�′′ � A ⊃ B
DT

�′′ � (B ⊃ C ) ⊃ (A ⊃ C )
⊃E

....
�′ � B ⊃ C

�′, �′′ � A ⊃ C
⊃E

QED.

The deduction theorem in the above form will take care of the translation of

such implication introductions in which exactly one occurrence of an open

assumption is closed. Our next task is to deal with vacuous and multiple

discharge.

Lemma 3.8. Vacuous deduction theorem. If � � C, then even � � A ⊃ C.

Proof. The following derivation gives a proof, with the major premiss an

instance of axiom I.1:

� C ⊃ (A ⊃ C ) � � C
� � A ⊃ C

⊃E
QED.

Lemma 3.9. Multiple deduction theorem. If Am, � � C, then � � A ⊃ C.

Proof. We assume first that m = 2 and show how to move the two copies

of formula A from the antecedent into one in the succedent. Note that

by lemma 3.7, repeated application of DT to the premiss A, A, � � C is

justified. The following derivation gives a proof, with the major premiss an
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instance of axiom I.2:

� ( A ⊃ ( A ⊃ C )) ⊃ ( A ⊃ C )

A, A, � � C
A, � � A ⊃ C 

DT

� � A ⊃ ( A ⊃ C ) 
DT

� � A ⊃ C 
⊃ E

With more than two copies of A, the procedure is rep eate d. QED.

Applications of the deduc tion theorem can be represente d as instances of

rule DT:

A, � � C
� � A ⊃ C 

DT

The pro of of the deduc tion theorem shows how instances of r ule DT can b e

eliminated from der ivations in axiomatic log ic. It is therefore an a dmissible

r ule in axiomatic log ic w ith assumptions, a notion defined in S ec tion 3.5(b).

The deduction theorem has a couple of useful corollaries, the first of

which tells us that derivations in axiomatic logic with assumptions are

closed under composition.

Corollary 3.10. Closure under composition in axiomatic logic. If � � A

and A, � � C, then �, � � C.

Proof. By the derivation

A, � � C
� � A ⊃ C

DT
� � A

�, � � C
⊃E

QED.

As with the deduction theorem, composition can be given as an admissible

rule:

� � A A, � � C
�, � � C

Comp

A further corollary shows that rule DT is invertible in the sense of the

following ‘inverse rule of detachment’:

Corollary 3.11. Inverse deduction theorem. If � � A ⊃ C, then A, � �C.

Proof. By the derivation

� � A ⊃ C A � A
A, � � C

⊃E
QED.

An example will show how the composition of derivations works in

axiomatic logic. Here are two derivations that are composed, with the com-
position formula A & B . To make the compositions fit a page, we write
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conjunctions in the style of AB :

� (AB)C ⊃ AB (AB)C � (AB)C
(AB)C � AB

⊃E
� (AB) ⊃ A AB � AB

AB � A
⊃E

(AB)C � A
Comp

Rule Comp is eliminated as in the proof of corollary 3.10:

� AB ⊃ A AB � AB
AB � A

⊃E

� AB ⊃ A
DT

� (AB)C ⊃ AB (AB)C � (AB)C
(AB)C � AB

⊃E

(AB)C � A
⊃E

The final step is to eliminate DT . Looking at the proof of the deduction

theorem, we notice that the formula that is moved in DT comes from the

right premiss in the instance of rule ⊃E that is used to derive the premiss

of DT . Therefore the procedure of elimination is as in the second case of 3

in the proof of lemma 3.7. The deduction theorem is applied to the second

premiss, followed by an instance of axiom I.3 and two instances of ⊃E . We

cannot write the whole of the above derivation thus transformed, because

it is too broad, but write just the subderivation of the left premiss, the one

concluded by DT:

� (AB ⊃ AB) ⊃ ((AB ⊃ A) ⊃ (AB ⊃ A))
AB � AB

� AB ⊃ AB
DT

� (AB ⊃ A) ⊃ (AB ⊃ A)
⊃E � AB ⊃ A

� AB ⊃ A
⊃E

The remaining instance of DT is eliminated as in the proof of the deduction

theorem, case 2, but the derivation becomes again too broad.

The result of the above transformation has lots of redundancies in the

form of loops. When these are eliminated, a printable derivation is obtained:

� AB ⊃ A
� (AB)C ⊃ AB (AB)C � (AB)C

(AB)C � AB
⊃E

(AB)C � A
⊃E

The next question is to translate derivations from axiomatic logic with

assumptions into derivations without assumptions, and to show that if a

formula C is derivable in the former from no assumptions, it is derivable

also in the latter. We leave these tasks as advanced exercises and turn instead

to the next topic.

(c) Translation from natural deduction to axiomatic logic. A derivation in

natural deduction is translated into axiomatic logic in two stages: First each

formula C in the derivation is replaced by � � C in which � is the collection
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of open assumptions, multiplicity counted, on which the occurrence of C

depends. In a second stage, the result is transformed rule by rule:

Conjunction rules. With &I , we have after stage 1:

....
� � A

....
� � B

�, � � A & B
&I

....

Axiom II.4 is used in stage 2:

� A ⊃ (B ⊃ A & B)

....
� � A

� � B ⊃ A & B
⊃E

....
� � B

�, � � A & B
⊃E

....

Rule &E is translated similarly, with the two stages and axiom II.5 in the

latter:
....

� � A & B
� � A

&E

....

� A & B ⊃ A

....
� � A & B

� � A
⊃E

....

The second elimination rule is entirely similar.

Disjunction rules. Rule ∨I is translated in the two stages, with axiom III.6

in the latter:
....

� � A
� � A ∨ B

∨I
....

� A ⊃ A ∨ B

....
� � A

� � A ∨ B
⊃E

....

The second introduction rule is entirely similar.

With ∨E , we have after stage 1:

....
� � A ∨ B

....
Am, � � C

....
Bn, � � C

�, �, � � C
∨E

....
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The minor premisses are first transformed by the deduction theorem, and
then axiom III.7 is used:

�(A ⊃ C) ⊃ ((B ⊃ C) ⊃ (A ∨ B ⊃ C))

....
Am, � �C
� �A ⊃ C

DT

� �(B ⊃ C) ⊃ (A ∨ B ⊃ C)
⊃E

....
Bn, � �C
� �B ⊃ C

DT

�,� �A ∨ B ⊃ C
⊃E

....
� �A ∨ B

�,�,� � C
⊃E

....

Implication rules. Rule ⊃I is covered by the deduction theorem and rule

⊃E is maintained as it is.

Negation rules. We shall translate the rules of natural deduction with a

pr imitive neg ation, as in Table 3.11, because that is the way neg ation is

usually treated in axiomatic logic.

For rule ¬I , the first stage gives:

....
Am, � � B

....
An, � � ¬B

�, � � ¬A
¬I

....

We apply the deduction theorem to the premisses together with an instance

of axiom IV.8:

� (A ⊃ B) ⊃ ((A ⊃ ¬B) ⊃ ¬A)

....
Am, � � B
� � A ⊃ B

DT

� � (A ⊃ ¬B) ⊃ ¬A
⊃E

....
An, � � ¬B
� � A ⊃ ¬B

DT

�, � � ¬A
⊃E

....

For rule ¬E , we have the two stages and axiom IV.9 in the latter:

....
� � A

....
� � ¬A

�, � � C
¬E

....

� A ⊃ (¬A ⊃ C )

....
� � A

� � ¬A ⊃ C
⊃E

....
� � ¬A

�, � � C
⊃E

....
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The axioms in the b eg inning of this sec t ion were chosen so that the t r ans-

lations went throug h smoothly.

3.7 Pro ofs of unprovabilit y

The st r uc ture of nor mal der ivations makes it possible to show that some

for mulas are not der iv able in our system of natur al deduc t ion. For example,

a cont r adic tion is not der iv able, the law of excluded midd le, A ∨ ¬A, is

not der ivable, and no equivalence that would show one connec t ive to b e

definable by the others is der iv able.

(a) Consistency and excluded middle. By the nor malizabilit y of der iv ations

in natur al deduc tion, ⊥ is not derivable. If it were, it  would have a normal

der ivation and nor mal der ivations must end w ith an int ro duc t ion. By the

subfor mu la prop er t y, there wo uld a pp ear a connec t ive in the endfor mu la,

the one of the last I -r ule, w h ich is not the case. Therefore the system is of

natur al deduc tion consistent.
If a cont r adict ion A & ¬ A were der ivable, both ¬ A and A wo u l d b e

der ivable by r ule & E , so we would have by r ule ⊃ E a derivation of ⊥,

against the consistency of the system. Therefore A & ¬ A is not der iv able.

On the other hand, if ⊥ were der iv a b l e , A & ¬ A wo u l d b e d e r iv a b l e by

rule ⊥ E . T hus, consistency in the sense of under iv abilit y of ⊥ and freedom

of cont r a dic t ion in the sense of under iv ability of A & ¬ A are e quiv alent

prop er ties.

Consider next what is known as the law of excluded middle that is the

char ac ter istic mar k of classical prop osit ional log ic: A ∨ ¬A. Assume it to

be der ivable. This means, as explained in S ec tion 2.6, that there is a schematic

der ivation w ith A ∨ ¬A as the endfor mula. Substitute for A some atomic

for mula P and you get a der ivation of P ∨ ¬P . By the disjunc tion prop er t y,

P or ¬ P is der ivable. No I -r ule can have the for mer as a conclusion, so it

is not der iv able. T herefore ¬ P must be der ivable. The last r ule in a nor mal

der ivation is ⊃ I so that ⊥ must be der ivable from P . T he for mulas that

can app ear in a nor mal der ivation are P and ⊥, but no E -rule applies to

P , and I -rules would introduce a connective. Therefore the law of excluded

middle is not derivable.

Consider next the law of double negation: ¬¬A ⊃ A. If it is deriv-

able, the instance with A ∨ ¬A in place of A, i.e., ¬¬(A ∨ ¬A) ⊃
A ∨ ¬A, is in par ticular der ivable. By example (b) in S ec tion 4.1 b elow,
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¬¬( A ∨ ¬A) is derivable, so that  A ∨ ¬A is der ivable. This cannot b e,

because we just showed that the law of excluded midd le is not der ivable.

Therefore the law of double neg ation is not der ivable.

The above argument showed that if ¬¬ A ⊃ A is der ivable in intuition-

istic log ic, also A ∨ ¬A is. T hus, that step constitutes an admissible r ule.

As mentioned at the end of S ec tion 3.5(b), it is a log ical fallacy to conclude

from such admissibility that the implication (¬¬A ⊃ A) ⊃ (A ∨ ¬A) is

derivable. The next chapter gives a systematic means for demonstrating

such fallacies, in the form of underivability results.

(b) Independence of the connectives. We have seen that there are connec-

tions between the connectives, such as the derivable implications A & B ⊃
¬(¬A ∨ ¬B), A ∨ B ⊃ ¬(¬A & ¬B), and (A ⊃ B) ⊃ ¬(A & ¬B). It can

be shown that none of the converse implications is derivable in intuitionistic

logic. Further similar results show the following:

Independence of the connectives in intuitionistic logic. None of the con-

nectives can be expressed equivalently by the remaining ones.

It may seem strange that, say, A ∨ B is not equivalent to ¬(¬A & ¬B).

We shall gain a deeper insight into this matter towards the end of the next

chapter.

(c) The point of intuitionistic logic. Why is ¬¬A not equivalent to A? The

former can be read as: ¬A will eventually turn out impossible. We have here

a negative or indirect claim, not a positive, direct one. A specific example

could be: Take some property of natural numbers, designated P (n) and

read as natural number n has the property P. Consider the claim there is a

natural number with the property P. A direct argument for this claim consists

in showing a specific natural number and a proof that it has the property P .

An indirect argument, instead, would run as follows: Assume for the sake of

the argument the contrary, there is no natural number with the property P,

and let this assumption turn out impossible. Thus, it is not the case that there

is no natural number with the property P. The proof of this double negation

can be such that it in no way shows what number could have the property

P . If it is not the case that there is no natural number with the property P,

we can start running though the natural numbers, 0, 1, 2, . . . and check

for the property P. It is impossible that a number with the property would

not eventually turn up, but this knowledge need not help in determining

how far we have to proceed. Herein lies the difference between the direct
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statement and its double negation. The phenomenon is gener al, not tied to

examples such as the sequence of natur al numbers.

Gentzen’s system of natur al deduc t ion, and its slig ht modification as in

Sec t ion 3.4, g ives a system of intuitionistic propositional log ic. As men-

tioned, the term comes from the philosophy of mathematics of L. Brouwer

and goes back to the philosophy of Immanuel Kant in the eighteenth century.

Brouwer was the first one, exactly one hundred years before this writing,

so in 1907, to locate the logical source of the difficulty with indirect exis-
tence proofs, as in the above example about natural numbers. The difficulty

comes from the law of excluded middle. Moreover, that law leads easily to

the related law of double negation: Assume A ∨ ¬A. If ¬¬A, then A follows

by rule mtp that is derivable in intuitionistic logic.

The law of excluded middle of classical logic can be interpreted in terms

of truth: For any sentence A, either A is true or ¬A is true. If instead

of truth we read it in terms of what we can prove, we obtain: For any

sentence A, either we can prove A or we can prove ¬A. If this were the

case, we could in principle decide any claim, but what reason is there for so

believing?

There is a practical reason for the use of intuitionistic logic that has noth-

ing to do with possible philosophical motivations. Proofs based on intu-

itionistic logic are constructive: A proof in general shows that a conclusion

C follows from some given assumptions A1, . . . , An. A constructive proof

has an additional property: If the assumptions have been verified, which

is by its nature a finitary task, the conclusion can be similarly verified. For

example, let the assumptions be mathematical claims with a numerical con-

tent. In a specific situation, the correctness of the numerical content can

be verified by a finite calculation. Whatever consequences the assumptions

have, they can be similarly verified by a finite calculation. In a suggestive lan-

guage, proofs that are not constructive can lead to claims that are infinitely

difficult to resolve, even if the assumptions were resolved. In sum, we

have:

Constructive proof maintains the property of computability.

We shall see in the next chapter that this vital property of proofs does not

hold in systems in which laws such as those of excluded third or double

negation are derivable.

Intuitionistic or constructive logic is today a standard instrument in com-

puter science. Its use in program construction guarantees that the running

of programs terminates instead of possibly going on indefinitely.
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3.8 Meaning explanat ions

The philosopher Ar thur Pr ior, k now n for his cont r ibutions to tem p or a l
log ic, fantasized the follow ing connec t ive he called ‘tonk’, denote d T in

what follows. The r ules are:

Ta b l e 3 . 1 3 The r ules of tonkinoise log ic

A
AT B T I 

B
AT B T I AT B

A
T E

AT B
B

T E

Here is an example der ivation by these r ules:

A
AT B T I

B
T E

Any thing can b e infer re d from an assumption by these r ules. The conclusion

is that the r ules of log ic cannot b e chosen in any way one pleases.

We deter mined in Sec t ion 3.4 gener al for ms of elimination r ules from the

cor responding int roduc tion r ules. Gentzen, and Pr aw itz follow ing him, had

come to the idea that the int roduc tion r ules g ive the meaning s of the log ical

op er ations in ter ms of pro of. More pre cisely, the y g ive sufficient g rounds for

asser t ing a sentence of a g iven for m. Their idea was that the e limination r ules

should g ive back these sufficient g rounds, so be inverses of the int ro duc t ion

r ules. The cor re c t ness of the r ules for a connec t ive can then be cont rolled

by checking if an int roduc tion fol lowed by an elimination real ly g ives back

the grounds for the introduction. All of this works well for conjunction.

In the more gener al inversion idea in the beg inning of Sec t ion 3.4, we

have changed the direct grounds for introducing a formula into arbitrary

consequences of such grounds. That change brings greater uniformity to the

treatment, because the elimination rules are actually determined, not just

justified as with Gentzen and Prawitz, from the introduction rules by the

general inversion principle. Thus, for example, Prior’s introduction rules

lead to the elimination rule for disjunction, with no justification for the

funny T E -rules.

Implication is a difficult connective in this connection. The introduction

rule requires the existence of a derivation of B from A, and the inversion

principle should correspondingly be formulated in terms of arbitrary con-

sequences of the existence of a derivation. This is possible, but not within

propositional logic. Nevertheless, the E -rule we have given for implication
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lets us define nor mal der ivabilit y as we ll as the nor malization pro cess in a

unified manner for all connec t ives.

The explanation of the meaning of the log ical connec t ives proceeds as

follows: First it is laid dow n w hat counts as a dire c t argument for a for mula

in our system of r ules, namely that it is der ive d by an int ro duc t ion r ule. Le t

us say that if there are no op en assumptions, we have a cate gor ical asser t ion

at hand. Its der ivation can be conver te d into a nor mal der ivation. T here are

no op en assumptions and therefore, by the t r ansparent st r uc ture that results

from the gener al elimination r ules, the last r ule has to b e an int ro duc t ion.

The for mula is consequently der ived from its direc t g rounds. Next this

explanation is extended to formulas C der ive d under assumptions. Le t us say

that we have a hy pothet ical asser t ion at hand if C is asser ted under the op en

assumptions A1, . . . ,  An . T he meaning of such an asser t ion is: Whene ver

A1, . . . ,  An tur n into cate gor ical asser t ions, a categor ical asser t ion of C

can b e made. Al l of it h ang s on the comp osabilit y of der ivations and on

their nor malizabilit y in a bounded number of steps of conversion. Without

these, there would be no non-circular explanation of the log ical connec t ives

in ter ms of pro of.

Notes and exerc ises to Chapter 3

Natur al deduc tion was discovere d by Ger hard Gentzen in 1932 and for med

par t of his thesis Un t e r s u c h u n g e n über das log ische Schliessen (Investigations

into log ical inference) that he finished in May 1933 under the sup er v ision

of Paul Ber nays. The thesis was published in two par ts in 1934 and 1935,

and an Eng lish t r anslation can be found in Gentzen’s Co l l e c t e d Pa p e r s . The

proof of nor malization is from the same time, but it was not published

and remained unknow n to log icians w ho in the meanw hile produced new

proofs of the result. An Eng lish t r anslation of Gentzen’s proof is published

in his ‘ The nor malization of der ivations’ (2008).

Sec t ion 3.5(b) presented the log ical fal lacy by w hich the der ivabilit y

of A ⊃ B is claimed to follow, if the der ivabilit y of B fol lows from the

der ivabilit y of A. A discussion, w ith examples of this er ror in var ious guises

dr aw n from ar t icles and books in log ic, is found in Hakli and Ne g r i (2012).

1. Tr anslate the linear der ivation of ( A ⊃ ( A ⊃ B )) ⊃ ( A ⊃ B ) in

Sec t ion 2.4 into t ree for m.

2. Tr anslate some of the linear der ivations of exercise 3 in Chapter 2 into

tree form.
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3. Give t ree der ivations of the fol low ing:

a. A ∨ A � A, A � A ∨ A

b. A ∨ B � ¬(¬ A & ¬ B )

c. ¬ A ∨ B � A ⊃ B

d. � ¬( A & ¬ A)

e. � ¬¬( A ∨ ¬A)

4. Conjunc tive and disjunc tive conditions:

a. Why is ( A ⊃ C ) & (B ⊃ C ) not derivable from  A & B ⊃ C ?

b. S h o w ( A ∨ B ⊃ C ) ⊃ ( A & B ⊃ C ).

5. Wor k out the second detour conversion for disjunc tion.

6. Give a der iv ation of the for mula A ∨ ¬B ⊃ ( B ⊃ A). By example 3.3(c),

A ∨ B ⊃ C � A ⊃ C and A ∨ B ⊃ C � B ⊃ C . Apply these der iv abil-

ity relations to the formula.

7. Complete the translation from negation as a primitive into negation as

a defined notion of S ec tion 3.5(c). Tr anslate the der ivations at the end

of the section, with repeated instances of ¬I, ¬E , so that they use the

defined notion of negation. Make the detour conversions that appear in

translation. Check that the simplified derivations that end the section

translate into the converted derivations.

8. Try to show that the following implications are not derivable in intu-

itionistic logic:

a. ¬(¬A ∨ ¬B) ⊃ A & B

b. ¬(¬A & ¬B) ⊃ A ∨ B

c. ¬(A & ¬B) ⊃ (A ⊃ B)

9. Define a translation from tree derivations to linear derivations.
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The const r uc t ion of der iv ations in Gentzen’s t re e for m is awkward: One

would have to know, more or less, how the final t ree has to look b efore one

can star t. S o one looks at the assumptions, and one looks at the conclusion,

and one t r ies to figure a way from the for mer to the latter. T he good asp e c ts of

the t re e for m include that once you have the t ree, its st r uc ture is t r ansparent.

We shall modify a bit natur al deduc t ion, to get a log ical calculus that

suppor ts proof search b etter. The star t ing p oint is the change in S ec tion 3.4

in which all E -rules were written with an arbitrary conclusion. Consider

any formula C in a derivation tree. The assumptions it depends on can

be listed, and let them be A1, . . . , An. If you take the part of the tree that

is determined by the chosen formula C , you get a subderivation of the

original derivation. To be precise, to get a correct derivation tree you have

to delete the labels from above those assumptions that have not been closed

at the stage in which formula C is concluded. The subderivation establishes

a derivability relation, namely A1, . . . , An � C .

It will be convenient to have a name for the thing a derivability relation

establishes: Expressions of the form A1, . . . , An � C are called sequents.

The name stems from the arrangement of formulas in a sequence in the

antecedent, left part of a sequent. The right part of a sequent is its succe-
dent. The codification of logical rules in this notation is called sequent
calculus, the second of Gentzen’s great discoveries in pure logic. We shall

see that the notation lends perfect support for the construction of deriva-

tions: Given that we have to establish a derivability relation A1, . . . , An � C ,

we can apply the logical rules to write a premiss or premisses from which

A1, . . . , An � C can be concluded, then to repeat this procedure, until this

root-first proof search terminates. A powerful method results once we

have established termination, after which derivations as well as proofs of

underivability through failed proof search are easy to find.

4.1 Naturally growing trees

In general, if our task is to establish a derivability relation � � C , with � a

list of assumptions, we can keep proof search local by a suitable notation

for derivations. If the conclusion under the assumptions � is a conjunction64
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A & B , it is sufficient to establish � � A and � � B . If it is an implication

A ⊃ B , it is sufficient to establish A, � � B . If it is a disjunc tion A ∨ B , it

is sufficient to establish one of � � A or � � B .

Instead of analysing the conclusion, we can wor k on the assumption side.

If one assumption is a conjunc tion A & B and the der ivabilit y re lation to

be established A & B, � � C , it is sufficient to establish A, B, � � C . If

an assumption is a disjunc tion and the der ivabilit y re lation A ∨ B, � � C ,

it is sufficient to establish A, � � C and B, � � C . With an implication,

to establish A ⊃ B, � � C , it is sufficient to establish A ⊃ B, � � A and

B, � � C . Finally, if we have to establish ⊥, � � C , it is already done, and

the same if we have to establish A, � � A.

Le t us encode the above as a system of r ules. We w r ite the names of

the r ules so that it is seen if the y are r ules of natur al deduc tion or of

sequent calculus for ro ot-first pro of search. Instead of w r iting I and E

for int ro duc tion and e limination, we w r ite R and L . T he for mer g ive a s a

conclusion a sequent w ith the pr incipal for mula, i.e., the for mula w ith the

connec t ive of the r ule, at r ig ht of the der ivabilit y relation, the latter w ith the

pr incipal for mula at left. T he components of the pr incipal for mula in the

premisses are the active formulas of a rule.

Table 4.1 Rules for root-first proof search

� � A � � B
� � A & B

R&
� � A

� � A ∨ B
R∨1

� � B
� � A ∨ B

R∨2
A, � � B

� � A ⊃ B
R⊃

A, B, � � C
A & B, � � C

L&
A, � � C B, � � C

A ∨ B, � � C
L∨

A ⊃ B, � � A B, � � C
A ⊃ B, � � C

L⊃

These rules are closely related to the rules of natural deduction of

Sec t ion 3.4. We say that we const r uc t der ivations w ith them, and that a

sequent � � C is derivable if it is the last line of a derivation constructed

by the rules. This derivability is of a higher level as compared to derivability

in the sense of the derivability relation for which the symbol � is used. The

terminology of sequents avoids the double meaning of derivability. The last

sequent in a derivation is the endsequent of the derivation.

The R-rules for conjunction and implication are invertible: Whenever

a sequent of the form � � A & B is derivable, the sequents � � A and

� � B are derivable. Note that the last rule in the derivation of � � A & B

need not be R&. By invertibility, however, � � A & B can be concluded

by R&. Similarly, whenever a sequent � � A ⊃ B is derivable, the sequent

A, � � B is derivable. Rules R∨1 and R∨2 are not invertible. On the

antecedent side, rules L& and L∨ are invertible. With rule L⊃, if a sequent
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of the form A ⊃ B, � � C is derivable, the sequent B, � � C that matches

the second premiss of the rule is derivable, but the sequent A ⊃ B, � � A

need not be derivable.

It may seem strange that the principal formula of rule L⊃ is repeated

in the first premiss. The repetition can be justified, though not motivated,

as follows: If in an endsequent it is allowed to assume A ⊃ B , the same

assumption must be allowed anywhere.

To show that a sequent is derivable, we start decomposing formulas in

it in the root-first direction. It is best to decompose first formulas that

correspond to invertible rules, first those that have one premiss. Successive

decomposition amounts to the root-first construction of branches in a

derivation tree. A branch ends when we reach an initial sequent, either one

that has the same formula as an assumption and conclusion, or one that has

⊥ as an assumption.

Table 4.2 Initial sequents

A, � � A ⊥, � � C

A sequent of the form A, � � A corresponds to the making of an assump-

tion in derivations of Gentzen’s tree form. A sequent of the form ⊥, � � C

corresponds to rule ⊥E . That is why it is sometimes written as a limiting

case of a rule when the number of premisses is 0.

Some examples will show how the calculus of sequents works. It must be

kept in mind that the derivations are best read the way they are constructed,

i.e., starting from the root.

a. (A ⊃ B) & (B ⊃ C ) � A ⊃ C

A ⊃ B, B ⊃ C, A � A
B, B ⊃ C, A � B C, B, A � C

B, B ⊃ C, A � C
L⊃

A ⊃ B, B ⊃ C, A � C
L⊃

(A ⊃ B) & (B ⊃ C ), A � C
L&

(A ⊃ B) & (B ⊃ C ) � A ⊃ C
R⊃

b. ¬¬(A ∨ ¬A)

¬(A ∨ ¬A), A � A
¬(A ∨ ¬A), A � A ∨ ¬A

R∨1 ⊥, A � ⊥
¬(A ∨ ¬A), A � ⊥ L⊃

¬(A ∨ ¬A) � ¬A
R⊃

¬(A ∨ ¬A) � A ∨ ¬A
R∨2 ⊥ � ⊥

¬(A ∨ ¬A) � ⊥ L⊃

� ¬¬(A ∨ ¬A)
R⊃
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This second example goes through smoothly, but the same cannot be

said of the corresponding derivation in Gentzen’s natural deduction, as in

exercise 3(e) of the previous chapter.

The first, i.e. downmost, rule in example (b) has to be R⊃, the second

L⊃. At this point, we notice that if the principal formula ¬(A ∨ ¬A) had

not been repeated in the left premiss, that premiss would be � A ∨ ¬A

which is underivable in intuitionistic logic. There were no choices up to

that point, so that without repetition the calculus would not derive what it

should derive. The first choice in the proof search was when we came to the

said left premiss. Had we tried again rule L⊃, the part of derivation would

have become:

¬(A ∨ ¬A) � A ∨ ¬A ⊥ � A ∨ ¬A
¬(A ∨ ¬A) � A ∨ ¬A

L⊃

The left premiss is identical to the conclusion, so nothing was gained by the

step, but only a loop produced. Therefore:

No derivation branch must contain the same sequent twice.

The rules of the calculus of sequents are local, and therefore loops can be

eliminated by deleting the part of derivation between the two occurrences.

In this case, the second premiss ⊥ � A ∨ ¬A and its (degenerate) derivation

would have fallen off the derivation tree.

With loops forbidden, the only choice for the third rule root first is R∨1

or R∨2. Then, if we try R∨1, the premiss is ¬(A ∨ ¬A) � A and the only

applicable rule, namely L ⊃, will again give a loop:

¬(A ∨ ¬A) � A ∨ ¬A ⊥ � A
¬(A ∨ ¬A) � A

L⊃

¬(A ∨ ¬A) � A ∨ ¬A
R∨1

The identical sequents are separated by two steps. The loop is deleted by

continuing from the left premiss of L⊃ in the way the original derivation

continues from the conclusion of R∨1. A whole derivation branch falls off,

as above.

With loops forbidden, the only rule applicable above the two last ones

in the derivation is R∨2. If to the premiss ¬(A ∨ ¬A) � ¬A rule L⊃ is

applied, a loop is again produced. Therefore the rule to be applied is R⊃
and the premiss is ¬(A ∨ ¬A), A � A ∨ ¬A. At this point, it is seen that

rule R∨1 gives an initial sequent as a premiss.
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If instead of R∨1 as an upp er most r ule we t r y R∨2 , we get the sequent

¬( A ∨ ¬A), A � ¬A to w h i c h R⊃ has to b e applied lest a loop b e pro-

duce d. The result is ¬( A ∨ ¬A), A, A � ⊥. Now rule  L⊃ gives as the first

premiss ¬( A ∨ ¬A), A, A � A ∨ ¬A, and it is the only applicable r ule. We

get a sequent that is just like an earlier one, except for the duplicat ion of the

for mula A in the antecedent par t. O bv iously nothing is g ained by the dupli-

cation, but we note that proof search can fail for the reason that the search

can go on pro ducing multiplications fore ver. To avoid the phenomenon, we

show that no r ule instances are needed in which a sequent is pro duce d that

is exac tly like some pre v ious sequent in the same br anch, save for possible

duplications.

4.2 Inver t ibilit y

The application of inver t ible r ules w il l not lead proof search to a dead end, if

the sequent to be derived really is derivable. We prove next the invertibilities

mentioned in the previous section. The proof uses a principle of structural

induc t ion on der ivations, explained in S ec tion 13.1.

Inversion lemma.

(i) If � � A & B, then � � A and � � B.

(ii) If A & B, � � C, then A, B, � � C.

(iii) If A ∨ B, � � C, then A, � � C and B, � � C.

(iv) If � � A ⊃ B, then A, � � B.

(v) If A ⊃ B, � � C, then B, � � C.

Proof. The proof is by induction on the height (greatest number of succes-

sive rules) in a derivation.

(i) Inversion of � � A & B .

Base case: If � � A & B is an initial sequent, either A & B is in � or ⊥ is

in �. In the latter case � � A and � � B are initial sequents and therefore

derivable. In the former case, � ≡ A & B, �′ and � � A and � � B are

derivable:

A, B, �′ � A
A & B, �′ � A

L&
A, B, �′ � B

A & B, �′ � B
L&

Inductive case: If A & B is principal in the last rule of the derivation of

� � A & B , the premisses give the inversions. Otherwise it is not principal.
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Apply the inductive hypothesis to the premisses of the last rule, then the last

rule.

(ii) Inversion of A & B, � � C .

Base case: If A & B, � � C is an initial sequent, either C is in � or ⊥
is in � and also A, B, � � C is an initial sequent. Else C ≡ A & B and

A, B, � � A & B is derived by:

A, B, � � A A, B, � � B
A, B, � � A & B

R&

Inductive case: As in (i).

(iii) Inversion of A ∨ B, � � C . This goes through in a way similar to (ii).

(iv) Inversion of � � A ⊃ B . This goes through in a way similar to (i).

(v) Inversion of A ⊃ B, � � C .

Base case: As in (ii) except when C ≡ A ⊃ B . Then B, � � A ⊃ B is derived

by:

A, B, � � B
B, � � A ⊃ B

R⊃

Inductive case: As in (ii). QED.

Contrary to invertible rules, the root-first application of non-invertible

rules can lead proof search to a dead end. In the simplest case, A � A ∨ B is

derivable, but the application of rule R∨2 gives A � B that is not derivable,

and similarly for B � A ∨ B and rule R∨1. For the case of rule L⊃, the

sequent A ⊃ B � A ⊃ B gives an example of failure of invertibility: It is an

initial sequent and therefore derivable. Application of rule L⊃ gives:

A ⊃ B � A B � A ⊃ B
A ⊃ B � A ⊃ B

L⊃

The only rule that can be applied to the left premiss is again L⊃ but it gives

a loop. Therefore A ⊃ B � A is not derivable and rule L⊃ not invertible

with respect to its first premiss.

Looking at the invertible rules, we notice that each premiss has a number

of connectives that is at least one less the number of connectives in the

conclusion. Invertible rules thus simplify the task of finding a derivation.

We shall see in the next chapter how classical propositional logic improves
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the situation e ven fur ther : Each r ule is inver t ible, each premiss is simpler

than the conclusion, and proof search ter minates ir resp e c t ive of the order

of application of the r ules.

4.3 Tr anslat ion to sequent calculus

We shall now define a t r anslation from natur al deduc t ion to sequent calcu-

lus. We star t from the r ules of Sec tion 3.4, those that had an ar bit r ar y

conclusion in the E -rules. Looking at the rules of sequent calculus of

Table 4.1, we notice that the principal formulas in  L -rules, so on the left

side, are always among the assumptions. The corresponding property for

natural derivations is that the major premisses of E -rules are assumptions,

which means that a derivation is normal. Consequently, the translation we

define relates the logical rules of sequent calculus to normal instances of the

natural rules.

In those rules of natural deduction that have two or three premisses,

derivations of these premisses are combined together to yield the conclusion.

We have, say, derivations of the premisses � � A and � � B and rule R&

gives the conclusion �, � � A & B . The collections of open assumptions

or contexts of A and B , respectively, are independent and put together

to form the collection of assumptions �, � of the conclusion. In sequent

calculus, rules that are applied root first have instead shared contexts: All

open assumptions of a conclusion A & B of rule R& are repeated in both

premisses, and similarly for the other logical rules.

The possibility of vacuous and multiple discharge in natural deduction

calls for some adjustments in the translation. If rule R⊃ is applied, the

derivability relation that is established is of the form � � A ⊃ B with �

the collection of open assumptions. The premiss is, with a multiple, simple,

and vacuous discharge, respectively:

A, . . . , A, � � B A, � � B � � B

There are two ways of handling the situation with vacuous and multiple

discharge. In the translation, the multiple occurrence of A in the antecedent

of the former can be contracted into one occurrence. With a vacuous

discharge, the missing occurrence of A in the antecedent can be fixed in

the translation by weakening the antecedent � into A, �. Multiple and

vacuous closing of assumptions in the E -rules presents a similar situation
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and is exemplified by :

Am, B n, � � C
A & B, � � C

L &

A for mally cor rec t way to deal w ith weakening and cont r a c t ion is to a dd

explicit structural rules to sequent calculus:

� � C
A, � � C 

Wk
A, A, � � C

A, � � C
Ct r

A second, alter native way to deal w ith the t r anslation of vacuous and mul-

tiple discharge is to allow an ar bit r ar y number of ac tive for mulas in the

ante ce dents of sequent r ules.

With these prepar ations, we can now g ive the t r anslation manual from

nor mal der ivations in natur al deduc t ion to ones in sequent calculus:

Ta b l e 4 . 3 Tr anslation pro ce dure into sequent calculus

1. Collect the ope n assumpt ions A1, . . .  An of the e ndfor mula C into a s e que nt

A1, . . . ,  An � C and draw the infe re nce line w ith the r ule sy mbol above it.

2. If the last r ule was an I -r ule, re p eat 1 above the infe re nce line for the pre miss

or pre miss es. With more than one pre miss, make the c ontex ts equal by suitably

adding for mulas.

3. If the last r ule was an E -r ule, re p eat 1 for the minor pre miss es. With L⊃, add

its maj or pre miss in the antecede nt of the s eque nt that for ms the le ft pre miss.

4. With r ules that c los e assumpt ions, cont ract mult iple occur re nces of the assump-

t ion for mula into one occur re nce. With missing assumpt ion for mulas, w eake n

by adding one occur re nce.

Le t us take as an example the first one from Sec t ion 3.1, namely :

( A ⊃ B ) & (B ⊃ C ) � A ⊃ C

Its derivation in Section 3.1 is normal in the sense of Gentzen’s origi-

nal calculus, but it is not nor mal in the final sense of the word, as in

Sec t ion 3.4, b ecause there are two instances of r ule L⊃ in w hich the major

premiss has been derived. We shall therefore first give a normal derivation

with the general E -rules:

(A ⊃ B) & (B ⊃ C )

3
B ⊃ C

3
A ⊃ B

4
A

1
B

B
⊃E ,1 2

C
C

⊃E ,2

C
&E ,3

A ⊃ C
⊃I,4
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The root-first translation gives as a last step R⊃:

(A ⊃ B) & (B ⊃ C ) � A ⊃ C
R⊃

On the line above, C is concluded by rule &E and assumption A has become

open, so it has to be added to the list in the antecedent:

(A ⊃ B) & (B ⊃ C ), A � C
L&

Next we have the derivation of the minor premiss C from the assumptions

A ⊃ B, B ⊃ C , and A:

A ⊃ B, B ⊃ C, A � C
L⊃

This is an L -rule with the two minor premisses B and C in the natural

derivation and we get two sequents, with the major premiss B ⊃ C added

in the antecedent of the first:

B ⊃ C, A ⊃ B, A � B
L⊃

and C, A ⊃ B, A � C

The final step gives the premisses of L⊃:

B ⊃ C, A ⊃ B, A � A and B, B ⊃ C, A � B

Putting it all together, we have:

B ⊃ C, A ⊃ B, A � A B, B ⊃ C, A � B
B ⊃ C, A ⊃ B, A � B

L⊃
C, A ⊃ B, A � C

A ⊃ B, B ⊃ C, A � C
L⊃

(A ⊃ B) & (B ⊃ C ), A � C
L&

(A ⊃ B) & (B ⊃ C ) � A ⊃ C
R⊃

All discharges were simple.

Let us take examples in which clause (4) of the translation manual is put

into use:

4
A ⊃ (A ⊃ B)

3
A

2
A ⊃ B

3
A

1
B

B
⊃E ,1

B
⊃E ,2

A ⊃ B
⊃I,3

(A ⊃ (A ⊃ B)) ⊃ (A ⊃ B)
⊃I,4

The translation gives first:

A, A, A ⊃ (A ⊃ B) � B
A ⊃ (A ⊃ B) � A ⊃ B

R⊃

� (A ⊃ (A ⊃ B)) ⊃ (A ⊃ B)
R⊃
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The duplication of A in the premiss must be first cont r a c ted by clause (4),

after w hich the t r anslation continues:

A, A ⊃ ( A ⊃ B ) � A
A ⊃ B, A � A B, A � B

A ⊃ B, A � B
L⊃

A, A ⊃ ( A ⊃ B ) � B 
L⊃

Weakening of the ante ce dent is put into use in the t r anslation of:

1
A

B ⊃ A 
⊃ I

( A ⊃ ( B ⊃ A) 
⊃ I,1

The t r anslation g ives:

A, B � A
A � B ⊃ A 

R⊃

� A ⊃ ( B ⊃ A) 
R⊃

One o ccur rence of B has b een a dded in the topsequent, because B was

vacuously discharged in the natur al der ivation.

The t r anslation defined by Table 4.3 is st r aig htfor ward. T here is no diffi-

cult y in defining a t r anslation in the other direc tion, from sequent calculus

to natur al deduc tion:

Ta b l e 4 . 4 Tr anslation from sequent calculus to natur al deduc tion

1. Wr ite the r ig ht side of the e nds eque nt as the e ndfor mula and above it the

infe re nce line and r ule.

2. For r ules othe r than R⊃ and the L -r ules, cont inue from the pre miss es.

3. Fo r R⊃ w ith conclusion A ⊃ B , add a label above A in the s eque nt that for ms

the pre miss. Add similar ly labels for the L -r ules and w r ite out the ir maj or

pre miss es, the n cont inue from the minor pre miss es. Labelled for mulas kee p the ir

labels in each occur re nce.

4. Whe n you c ome to an init ial s eque nt ⊥, � � C , w r ite an instance of r ule ⊥ E .

In the othe r cas e of an init ial s eque nt, the for m w ill be A, � � A or
n
A, � � A.

Write A and
n
A, respectively.

We conclude that there cannot be any fundamental difference between nor-

mal der ivations in natur al deduc t ion w ith the modified E -r ules of Sec t ion

3.4 and der ivations in the sequent calculus. In fac t, as seen from the t r ans-

lations, we have:

Isomorphism of natural and sequent derivations. The order of application

of the logical rules is preserved in the translations between normal natural
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der ivat ions w ith ge neral E-r ules and s eque nt der ivat ions w ith log ical r ules and

weake ning and c ont ract ion.

The interest in Gentzen’s t ree for m for natur al deduc tion lies in the ease

w ith w hich non-nor malities can b e e liminate d by detour and p er mutation

conversions, as seen in Sec t ions 3.2 and 3.3. It is possible to gener alize the

sequent calculus of this chapter so that w hat cor responds to non-nor malities

is seen in sequent calculus der ivations, as in Sec t ion 13.4. It then happ ens

that formulas in premisses are not necessarily found in the conclusion. If we

instead use only nor mal instances, as in the r ules of Table 4.1, we see at once

that in the translation to sequent calculus, each formula in the premisses of a

rule is also a formula in the conclusion. Therefore the subformula property

is immediate:

Subformula property for sequent calculus. Each formula in a derivation

with the logical rules of sequent calculus is a subformula in the endsequent.

4.4 Unprovability through failed proof search

Sequent calculus offers a good possibility for exhaustive proof search in

propositional logic: We can check through all the possibilities for making a

derivation. If none of them worked, i.e., if each had at least one branch in

which no rule applied and no initial sequent was reached, the given sequent

is underivable. The symbol � is used for underivability.

Examples of exhaustive proof search:

a. � A

No rule can be applied.

b. � ⊥
No rule can be applied, so that sequent calculus is consistent.

c. � A ∨ ¬A

Rule R∨1 gives example (a), rule R∨2 gives � ¬A, so by R⊃, the sequent

to be derived is A � ⊥, and now no rule applies.

d. � ¬¬A ⊃ A

Rule R⊃ gives ¬¬A � A. Next rule L⊃ gives ¬¬A � ¬A and ⊥ � ⊥.

There are two possibilities for ¬¬A � ¬A and we can without limitation



Pro of s e a rc h 75

apply r ule R⊃ because it is inver t ible, to get ¬¬ A, A � ⊥. Rule  L⊃ gives the

premisses ¬¬ A, A � ¬A and ⊥, A � ⊥. Now  R⊃ gives ¬¬ A, A, A � ⊥,

w ith a duplication of A in an ante ce dent. Fur ther rep etition of the pro ce dure

just ke eps multiply ing the number of o ccur rences of A in the antecedent,

w ith no end.

e. � ¬(¬ A & ¬ B ) ⊃ A ∨ B

An exhaustive pro of search would involve a lot of w r iting . We show how

a left most br anch in w hat is the only reasonable line of attack leads to a

multiplication of the same for mula in an ante ce dent:

....
¬(¬ A & ¬ B ), A, A � ⊥
¬(¬ A & ¬ B ), A � ¬A

R⊃
. . .

¬(¬ A & ¬ B ), A � ¬A & ¬ B
R &

. . .

¬(¬ A & ¬ B ), A � ⊥ L⊃

¬(¬ A & ¬ B ) � ¬A
R⊃

. . .

¬(¬ A & ¬ B ) � ¬A & ¬ B
R & ⊥ �  A ∨ B

¬(¬ A & ¬ B ) � A ∨ B 
L⊃

� ¬(¬ A & ¬ B ) ⊃ A ∨ B
R⊃

With R &, the third-to-last step, the r ule is inver t ible and b oth br anches

have to lead to initial sequents, so we to ok the left one. T he only real choice

in the pro of search was w ith the second-to-last r ule that could have been

∨ R . With the next step, al l t r a ces of this choice would have disapp eare d, as

in:

¬(¬ A & ¬ B ) � ¬A & ¬ B ⊥ �  A
¬(¬ A & ¬ B ) � A

L⊃

¬(¬ A & ¬ B ) � A ∨ B
R∨1

� ¬(¬ A & ¬ B ) ⊃ A ∨ B
R⊃

The left premiss is found also in the first attempt.

The under ivabilit y of connec t ions between the connec t ives &, ∨, and ⊃,

mentioned in S ec tion 3.7(b), and not st r aig htfor ward to argue for in natur al

deduc t ion by exercise 8 of Chapter 3, can now b e car r ied throug h w ithout

great difficulties and is left as an exercise.

Let a sequent � � A contain 50 connectives in an arrangement in which

each applicable rule has two premisses. Up to 50 applications of rules are

possible along each branch of a derivation, so that the number of leaves of

the derivation tree is at most 250. There is not enough paper or computer

memory to write down such derivations. Let us assume further that � � A.
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Ever y attempt at a der ivation w il l lead to at least one br anch that ends in

an unanalysable sequent that is not an initial sequent or e lse the br anch

go es on fore ver. G iven an under iv able sequent, is there a fast me tho d for

show ing that at least one br anch leads to a failure of proof search? Sim-

ilarly, g iven a der iv able sequent, is there a fast method for show ing that

some der ivation t ree has only initial sequents as leaves? T here are p osi-

tive answers to limited classes of for mulas, but the gener al answer to this

‘ P = N P -question’ is unknow n. Most researchers tend to think that there is

no gener al method for sp eeding up pro of search in prop ositional log ic from

the exponential g row th that is the worst case if w hole proof t re es have to be

const r uc ted.

4.5 Ter minat ion of proof search

Apar t from the pr ac tical impossibilit y of const r uc t ing der ivations w ith a

g reat number of atomic for mulas and connec t ives, there is the question of

pr inciple of ter mination of proof search. Lo oking at the r ules in Table 4.1,

we notice that al l for mulas in premisses are subfor mulas of for mulas that

are also found in the conclusion. T hus, no new for mulas can sur face in a

ro ot-first pro of search and the number of distinc t for mulas that can occur

in proof search is b ounded: Possible non-ter mination can o ccur only as a

result of multiplication of for mulas in the ante ce dents of premisses.

The premisses are simpler than the conclusion in all the r ules except

possibly in the left premiss of r ule L⊃. T hat is the only source of non-

ter mination. Rules other than L⊃ can pro duce duplication, if an ac tive

for mula had another occur rence in the ante ce dent. This source of duplica-

tion comes to an end.

There are at least two solutions to the problem of non-ter mination. One

is to show that if a sequent w ith a duplication is der ivable, as in A, A, � � C ,

then also A, � � C is der ivable:

Theorem. Admissibilit y of cont r act ion. Whe ne ver a s eque nt of the for m

A, A, � � C is der ivable, als o A, � � C is der ivable.

Proof. The proof is by induction on the length of the contraction formula,

with a subinduction on the height of derivation of the derivable sequent

w ith a duplication. It is based on the inversion lemma of Sec t ion 4.2.

Base case (contraction with a simple formula): The derivable sequent is

P , P , � � C with P a simple formula.
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Subinduction on height of derivation: If P , P , � � C is an initial sequent,

also P , � � C is. Since P is not principal in any rule, the inductive case on

height of derivation for a simple formula goes through as in the inversion

lemma.

Inductive case (contraction with a compound formula): There are three

forms of compound formulas:

(i) Conjunction: Let the sequent be A & B, A & B, � � C . Base case of

subinduction on height of derivation as above. Inductive case: If A & B is

not principal, apply the inductive hypothesis to the premisses of the last rule

for the derivability of A & B, � � C . If instead A & B is principal, the last

rule is L& and the premiss A, B, A & B, � � C . By the inversion lemma,

A, B, A, B, � � C is derivable. Now apply contraction to the shorter for-

mulas A and B to conclude the derivability of A, B, � � C . Finally, rule

L& gives A & B, � � C .

(ii) Disjunction: Let the sequent be A ∨ B, A ∨ B, � � C . This goes

through analogously to (i).

(iii) Implication: Let the sequent be A ⊃ B, A ⊃ B, � � C . Things go

through as before except when A ⊃ B is principal. Then the last step is:

A ⊃ B, A ⊃ B, � � A B, A ⊃ B, � � C
A ⊃ B, A ⊃ B, � � C

L⊃

Apply the inductive hypothesis to the left premiss for the derivability of

A ⊃ B, � � A. Apply the inversion lemma to the right premiss for the

derivability of B, B, � � C , then the inductive hypothesis for the derivabil-

ity of B, � � C . Now rule L ⊃ gives:

A ⊃ B, � � A B, � � C
A ⊃ B, � � C

L⊃

By the above, any formula in an antecedent of a sequent can be contracted

with derivability of the sequent maintained. QED.

As noted above, root-first proof search in our sequent calculus for propo-

sitional logic produces sequents in which all formulas are known from the

endsequent. Therefore the number of distinct formulas in a derivation is

bounded and possible non-termination can occur only through the dupli-

cation of formulas. Let now A, A, � � C be derivable. By the admissibility

of contraction, also A, � � C is derivable. Take a derivation of the latter
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and you obtain a derivation of A, A, � � C by adding one copy of A to

each antecedent of each sequent in the derivation. We can therefore make

the following:

Important observation. If A, A, � � C is derivable, it has a derivation in

which one copy of A is never active in the derivation.

Duplications are useless in proof search because one never needs to use

more than one of the copies of a duplicated formula. We can therefore put a

‘ban’ on rule instances that give as a premiss a sequent that is just like some

previous sequent below, except for a duplication. Note that this restriction

on proof search does not eliminate all duplications: For example, rule L&

can be applied root-first to the sequent A & A � A.

With a bounded number of distinct formulas, it can happen that each

branch in a proof search for a sequent � � C terminates with an initial

sequent. If this is so, � � C is derivable. Otherwise there are branches that

terminate in sequents that have only simple formulas but are not initial

sequents, or in sequents that give loops, possibly after some duplications

have been contracted. If this is so, � � C is not derivable. Therefore we

have:

Decidability of derivability in intuitionistic propositional logic. The deriv-

ability of a formula C from given assumptions A1, . . . , An in intuitionistic

propositional logic is decidable.

Notes and exercises to Chapter 4

The sing le-succe dent sequent calculus of proof search of Table 4.1 is a

relatively recent invention: Building on the work of Albert Dragalin (1978)

on the invertibility of logical rules in sequent calculi, Anne Troelstra worked

out the details of the proof theory of this ‘contraction-free’ calculus in the

book Basic Proof Theory (2000).

The calculus of this chapter can be so modified that the same sequents are

derivable as before, but that proof search terminates in a predictable number

of steps without possible looping along branches. The only changes are, as

can be expected, with rule L⊃. The modified rule is divided into four parts,

according to the form of the principal formula, for which see Structural

Proof Theory, section 5.5.

1. Give root-first derivations of the following:

a. (A ⊃ B) ⊃ (¬B ⊃ ¬A)

b. A ∨ B ⊃ ¬(¬A & ¬B)
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c. ¬( A ⊃ B ) ⊃ ¬¬A & ¬ B

d. ¬ A ∨ B ⊃ ( A ⊃ B )

e. ¬¬( A & B ) ⊃ ¬¬A & ¬¬ B

2. Show the fol low ing in intuitionistic log ic:

a. � ¬(¬ A ∨ ¬B ) ⊃ A & B

b. � ¬( A & ¬ B ) ⊃ ( A ⊃ B )

3. Show that ( A ∨ B ) & ¬ B ⊃ A is under ivable in minimal log ic.

4. Show that the fol low ing are not der ivable in intuitionistic log ic:

a. (¬¬ A ⊃ A) ⊃ ( A ∨ ¬A)

b. (¬ A ∨ ¬¬A) ⊃ ( A ∨ ¬A)

5. In dep endence of the intuit ionist ic connect ives. Wi t h P and Q atomic

for mulas a nd C &-free, show �  P & Q ⊃⊂  C . Show �  ( P ⊃ Q ) ⊃⊂  C

if C contains no ⊃ and � P ∨ Q ⊃⊂ C if C contains no ∨. Warning:

the last requires the use of Harrop’s theorem for which see Structural

Proof Theor y, sec tion 2.5.
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5.1 Indirec t pro of

We showed in Sec t ion 3.7(a) that the law of double neg ation, ¬¬ A ⊃ A, is

not der iv able in intuitionistic log ic. The pro of of under iv abilit y was done

w ith for mal detail in Sec t ion 4.4, example (d). The difference b etwe en A and

¬¬ A was explained in Sec t ion 3.7(c): The for mer is a dire c t proposition, the

latter expresses the impossibilit y of something neg ative, the b est example

being direc t existence against the impossibilit y of non-existence. The for mer

can b e established by show ing an objec t w ith a re quired prop er t y, the latter

by showing that it is impossible that no object has the property.

One reason for the natur al tendency to accept the law of double negation,

or the related law of excluded midd le, is as fol lows. If there is only a finite

number of alter natives, the question of A or ¬ A can b e decided by going

throug h al l of these. Say, if we claim, for natur al numbers less than 100, that

there are thre e and only thre e successive odd numbers that are al l pr ime, we

can go throug h all p ossible cases and find that 3, 5, and 7 are pre cisely those

thre e numbers. More gener ally, the const r uc t ive inter pretation of A ∨ ¬A

is that it expresses the decidabilit y of A.

The laws of excluded midd le and of double negation are char a c ter istic

of classical log ic. Their sp e cial nature was first realize d in a gener al way by

L. Brouwer in his thesis in 1907. By 1930, classical and intuitionistic log ic

were clearly delimited in the axiomatic tradition of logic: The former was

obtained from the latter by the addition of the law of double negation or of

excluded middle. Correspondingly, we can add to the list of axioms I.1–IV.9

of Sec t ion 3.6(a) the fol low ing:

IV Classical double negation axiom

10. ¬¬A ⊃ A

(a) The rule of indirect proof. Gentzen’s natural deduction covered intu-

itionistic logic. He tried various ways in which one could obtain a system

of natural deduction for classical logic NK from the one for intuitionistic

logic NI, such as the addition of a rule of double negation by which one80
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could conclude A from ¬¬A. In the axiomatic logical tradition, the corre-

sponding step had been taken by the addition of the law of double negation.

Later, since Prawitz’ book of 1965, it has been customary to add a rule of
indirect proof to the introduction and elimination rules of intuitionistic

natural deduction:

Table 5.1 The rule of

indirect proof

1
¬A....
⊥
A

DN,1

Sometimes the nomenclature RAA is used; it stands for reductio ad absur-

dum, the mediæval Latin name of the principle. Given the derivation of the

premiss ⊥ from ¬A, rule ⊃I would give the conclusion ¬¬A, so that the

law of double negation gives the conclusion of rule DN when its premiss

has been derived. In the other direction, we can derive ¬¬A ⊃ A by rule

DN as follows:
2

¬¬A
1

¬A
⊥ ⊃E

A
DN,1

¬¬A ⊃ A
⊃I,2

The rule and the axiom have the same deductive strength.

It is quite common to mix genuine indirect proofs with proofs of negative

assertions, even in books on logic. A typical example from mathematics

concerns proofs of irrationality of a real number: The contrary is assumed,

i.e., it is assumed that a given real number c is rational. By deriving a

contradiction from this assumption, irrationality of c can be concluded. To

see the error in the claim that this is an indirect proof, consider the property

c is an irrational number. It means, by definition, that there do not exist

integers n, m such that c = n
m . Thus, to prove that c is irrational, assume

that there are two such integers. If a contradiction follows, a direct proof of

the negative claim that c is irrational has been found, not an indirect one.

If the conclusion in DN is a negation ¬A, the inference is of the form:

1
¬¬A....⊥
¬A

DN,1
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If instead of DN rule ⊃I is applied, the conclusion is ¬¬¬A. Two nega-

tions can be dropped, for as we have seen, ¬¬¬A ⊃ ¬A is a theorem of

intuitionistic logic. Then ¬A follows even without indirect inference and

we have:

The form of genuine indirect proof in propositional logic. A genuine indi-

rect proof in propositional logic ends with a positive conclusion.

The relation between the laws of double negation and excluded middle is

somewhat complicated and often misunderstood, sometimes also in the log-

ical literature. One reason is perhaps that if classical reasoning is allowed,

both are theorems, and all theorems are trivially equivalent. Therefore,

we consider the relation of these laws by the standards of intuitionistic

logic: Given A ∨ ¬A, if ¬¬A is assumed, A follows, and therefore the

implication ¬¬A ⊃ A follows from A ∨ ¬A. An easy proof search in intu-

itionistic sequent calculus gives a formal derivation for:

A ∨ ¬A ⊃ (¬¬A ⊃ A)

A similar proof search for the converse fails, for there is no derivation of:

(¬¬A ⊃ A) ⊃ A ∨ ¬A

Even if this formula is intuitionistically underivable, the law of excluded

middle is derivable by the rule of indirect proof:

2
¬(A ∨ ¬A)

2
¬(A ∨ ¬A)

1
A

A ∨ ¬A
∨I

⊥ ⊃E

¬A
⊃I,1

A ∨ ¬A ∨I

⊥ ⊃E

A ∨ ¬A
DN,2

As noted, rule DN and the law of double negation are equivalent, and

we have another way to see that the law of excluded middle follows from

DN: We have shown earlier that ¬¬(A ∨ ¬A) is a theorem in intuitionistic

logic. Therefore the negation of excluded middle, ¬(A ∨ ¬A) gives at once

a contradiction and the rule of indirect proof the conclusion A ∨ ¬A.

The overall situation is that if � ¬¬A ⊃ A, then � A ∨ ¬A, but not
� (¬¬A ⊃ A) ⊃ (A ∨ ¬A). More generally:
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Le t B be der ivable w he ne ver A is, i.e., le t � B w he ne ver � A. It is a log ical

fallacy to c onclude � A ⊃ B .

For another example, consider the disjunc tion prop er t y of intuitionistic

log ic: If � A ∨ B then � A or � B . Stil l, n either of � A ∨ B ⊃ A and

� A ∨ B ⊃ B holds. In the pro of of the disjunc tion prop er t y, it is assumed

that � A ∨ B . Next it is obser ve d that the last r ule must be R∨, by which

the disjunc tion prop er t y follows. For the der ivabilit y of an implication as

in the example A ∨ B ⊃ A, a der ivation of A from the assumption A ∨ B

would b e require d, i.e., a der ivation of A ∨ B � A.

There i s t hus a difference b e tween the assumpt ion A and the assumpt ion

that A is der ivable that can b e expressed by :

Whe n we assume A, we assume that there is a hy pothe t ical der ivat ion of A.

Whe n we assume � A, we assume that there is an actual der ivat ion of A.

The explanation of A ⊃ B in  terms of proof was that by a proof of  A ⊃ B ,

any proof of A can be turned into some proof of B . With � A, instead, it is

claimed that there is some proof of A.

When A is assumed, it must be possible to compose a derivation of A

and any derivation from the assumption A. This matter is discussed further

in Sec t ion 13.4.

Classical logic is in many ways simpler than intuitionistic logic, because

it does not make the distinction between a proposition and its double nega-

tion. We show, as further examples of classical derivations, that implication

and falsity suffice for defining the rest of the connectives.

Examples of classical derivations:

a. � A & B ⊃⊂ ¬(A ⊃ ¬B). The implication from left to right is deriv-

able in intuitionistic logic, so we do the genuinely classical part of the

result:

3
¬(A ⊃ ¬B)

3
¬(A & B)

2
A

1
B

A & B
&I

⊥ ⊃E

¬B
⊃I,1

A ⊃ ¬B
⊃I,2

⊥ ⊃E

A & B
DN ,3

¬(A ⊃ ¬B) ⊃ A & B
⊃I,3
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b. � A ∨ B ⊃⊂  (¬ A ⊃ B ). We show the implication from r ig ht to left, the

other direc tion being der ivable in intuitionistic log ic:

2
¬( A ∨ B )

3
¬ A ⊃ B

2
¬( A ∨ B )

1
A

A ∨ B 
∨ I

⊥ ⊃ E

¬ A 
⊃ I,1

B 
⊃ E

A ∨ B 
∨ I

⊥ ⊃ E

A ∨ B
D N,2

(¬ A ⊃ B ) ⊃ A ∨ B
⊃ I,3

If i n p l a ce o f A we h ave ¬ A and if one double negation is delete d, the

equivalence b ecomes ¬ A ∨ B ⊃⊂  ( A ⊃ B ). Other purely classical laws

include A ∨ B ⊃⊂ ¬(¬ A & ¬ B ).

(b) Ne g at ion as a pr imit ive not ion in classical log ic. As w ith intuitionistic

log ic in S ec tion 3.5(c), we shal l have a lo ok at a for mulation of natur al

deduc t ion for classical log ic in w hich neg ation is a pr imitive notion. Ne g a-

tion and any one of &, ∨, or ⊃ can then b e used as the connec t ive w ith

which the others are definable in classical log ic.

The r ules for negation are two, the first the same as in the intuitionistic

calculus w ith pr imitive neg ation of Table 3.11:

Ta b l e 5 . 2 Classical r ules for negation

1
A....
B

1
A....

¬ B
¬ A

¬ I,1

1
¬ A....
B

1
¬ A....
¬ B

A
DN,1

It often happ ens that the number of closed assumptions is 0 in one of the

der ivations of the premisses. The second r ule is a ⊥ -fre e var iant of the r ule

of indire c t proof of Table 5.1. What cor responds to falsit y e limination, or

rule ¬ E of Table 3.11, is a sp e cial case of r ule DN when the assumption ¬ A

has been used 0 times. On the other hand, with B identical to ¬A, we have
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the instance:

1
¬ A ¬¬ A

A
DN,1

Thus, the r ule of double negation e limination becomes a sp ecial case of r ule

DN for pr imitive neg ation.

5.2 Nor mal der ivat ions and the subfor mu la prop er t y

With r ule DN, t he subfor mula prop er t y can b e lost, e ven if a der iv at ion

has none of the conver tibilities of intuitionistic natur al deduc tion. It can

happ en that the conclusion of DN is the major premiss of an e limination,

as in:

2
¬( A ∨ ¬A)

2
¬( A ∨ ¬A)

1
A

A ∨ ¬A 
∨ I

⊥ ⊃ E

¬ A 
⊃ I,1

A ∨ ¬A 
∨ I

⊥ ⊃ E

A ∨ ¬A 
DN,2

4
A

¬¬ A ⊃ A 
⊃ I

3
¬¬ A

4
¬ A

⊥ ⊃ E

A 
⊥ E

¬¬ A ⊃ A 
⊃ I,3

¬¬ A ⊃ A 
∨ E ,4

No t r ace is left of the conclusion A ∨ ¬A of DN, whereas, had  DN been

fol lowed by an int roduc tion r ule, the only thing lost would have been a

negation in front of the premiss of the introduction rule. It turns out that

the definition of a nor mal der ivation of intuitionistic log ic of S ec tion 3.4

is sufficient to guarantee the crucial subformula property also for classical

natural deduction:

Definition 5.1. Normal derivation in classical logic. A derivation in NK is

normal if all major premisses of E -rules are assumptions.

The process of normalization contains steps in which instances of DN are

permuted down whenever their conclusions are major premisses in E -rules.

The case of ∨E with a major premiss derived by DN, as in the above example,
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is transformed in the following way:

1
¬(A ∨ B)....⊥

A ∨ B
DN,1

2
A....
C

2
B....
C

C
∨E ,2

3
¬C

2
A ∨ B

1
A....
C

1
B....
C

C
∨E ,1

⊥ ⊃E

¬(A ∨ B)
⊃I,2

....⊥
C

DN,3

Rule DN is permuted down to give the conclusion C of ∨E in the given

derivation. These permutations work in the same way for the other elimi-

nation rules and are left as exercises. They work also when the premiss of

an introduction rule of propositional logic has ben derived by DN, the first

case being &I as in:

1
¬A....⊥

A
DN,1

....
B

A & B
&I

3
¬(A & B)

1
A

....
B

A & B
&I

⊥ ⊃E

¬A
⊃I,1

....⊥
A & B

DN,2

The second case is ∨I :

1
¬A....⊥

A
DN,1

A ∨ B
∨I

2
¬(A ∨ B)

1
A

A ∨ B
∨I

⊥ ⊃E

¬A
⊃I,1

....⊥
A ∨ B

DN,2

Finally, we have ⊃I :

1
¬B ,

2
A....⊥

B
DN,1

A ⊃ B
⊃I,2

2
¬(A ⊃ B)

1
B

A ⊃ B
⊃I

⊥ ⊃E

¬B
⊃I,1

....⊥
A ⊃ B

DN,2
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It can also happen that, permuting down DN, another instance of DN is

met. Then the conclusion of the first is the premiss of the second, so the

latter has to be the formula ⊥ and we have the situation:

2
¬A,

1
¬⊥....⊥

⊥ DN,1

A
DN,2

The first closed assumption ¬⊥ is provable, and the derivation is trans-

formed into one that has a single instance of DN:

2
¬A,

1
⊥

¬⊥ ⊃I,1

....⊥
A

DN,2

Collecting all the permutability results, we have:

Theorem 5.2. Normal form for classical propositional logic. Derivations in

NK can be so transformed that the major premisses of E-rules are assumptions.

Rule DN can be permuted down so that there is at most one instance of rule

DN as a last rule.

Corollary 5.3. Subformula property for normal derivations in NK. All

formulas in a normal derivation of A from the open assumptions � in NK are

subformulas or negations of subformulas of A, �.

As observed above, instances of rule DN with a negative conclusion can be

replaced by intuitionistic steps. In particular, by the normal form, we get:

Corollary 5.4. Glivenko’s theorem. If ¬A is derivable from the assumptions

� classically, it is derivable intuitionistically.

The result holds also for the formula ⊥, and therefore the consistency of

intuitionistic propositional logic guarantees also the consistency of classical

propositional logic with its indirect inferences.

Assume that A is classically derivable. Then also ¬¬A is classically deriv-

able, so that by Glivenko’s theorem, ¬¬A is intuitionistically derivable.

The converse to Glivenko’s theorem is trivially true: Each intuitionistic

derivation is a classical derivation, and especially a derivation of a negation,

because intuitionistic natural deduction is a subsystem of classical natural
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deduction. On the other hand, not every classical derivation is an intuition-

istic derivation, so that the class of classical logical laws is larger than the

class of intuitionistic logical laws. This greater deductive strength of classi-

cal logic over intuitionistic logic is only apparent: There is for each formula

A a classically equivalent formula A∗ such that if A is classically derivable,

then A∗ is intuitionistically derivable. We can say that classical logic has less

expressive power because it fails to make a distinction into directly provable

and only indirectly provable logical laws. In the case of propositional logic,

it is sufficient to take for A∗ the double-negated formula ¬¬A.

Notes and exercises to Chapter 5

Classical natural deduction without disjunction and with the rule of indirect

proof restricted to atoms was invented by Prawitz (1965). The restriction

prevents the use of conclusions of indirect proof as major premisses of

elimination rules. The idea on which the present treatment is based, namely

the use of the normal form of general elimination rules, has a similar effect.

It was first carried through in von Plato and Siders (2012).

1. Give derivations in NK for the following:

a. ((A ⊃ B) ⊃ A) ⊃ A

b. (A ⊃ B) ∨ (B ⊃ A)

c. (A ⊃ B ∨ C ) ⊃ (A ⊃ B) ∨ (A ⊃ C )

2. We showed above how rule DN is permuted down if it has been used for

the derivation of a major premiss of rule ∨E . Work out the analogous

permutations when the latter rule is &E and ⊃ E .
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6.1 Assumptions and cases

We shall give a sequent calculus for classical logic, originally suggested

by Gentzen in 1933. In it, the derivability relation is generalized in a

surprising way. The derivability relation in the earlier chapters was writ-

ten A1, . . . , An � B . Repeated application of rule L& gives, omitting the

parentheses, A1 & . . . & An � B . We get � A1 & . . . & An ⊃ B by rule

R⊃. On the other hand, by the invertibility of rules R⊃ and L&, if

� A1 & . . . & An ⊃ B is a derivable sequent, also A1, . . . , An � B is. Con-

sider next the sequent in which there is in place of B a disjunction

B1 ∨ . . . ∨ Bm, namely:

� A1& . . . & An ⊃ B1 ∨ . . . ∨ Bm

By the invertibility of rules R⊃ and L&, if this sequent is derivable, also

A1, . . . , An � B1 ∨ . . . ∨ Bm is.

Disjunction in general is used for expressing cases, as is clearly seen from

the disjunction elimination rule of natural deduction. Thus, the sequent

A1, . . . , An � B1 ∨ . . . ∨ Bm expresses that the disjunction B1 ∨ . . . ∨ Bm

gives the cases B1, . . . , Bm that are derivable from the assumptions

A1, . . . , An. It remains to adopt to sequents the notation for a list of cases
B1, . . . , Bm:

Table 6.1 The general

form of classical sequents

A1, . . . , An � B1, . . . , Bm

The derivability relation has now been generalized from one conclusion

under given assumptions into a number of possible cases under given

assumptions. Lists of assumptions and cases are denoted by Greek capi-

tal letters, as in � � �. Here the assumptions � form the antecedent of the 89
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sequent and the cases � its succedent. Sequents with more than one for-

mula in the succedent are called multisuccedent sequents. Gentzen called

them often symmetric sequents.

The ‘comma at left’ of the derivability relation corresponds, by rule L&

and its invertibility, to a conjunctive use of assumptions. The ‘comma at

right’ can be treated in an analogous way, by changing the right rules for

disjunction: There is just one rule that gives the conclusion � � �, A ∨ B

from the premiss � � �, A, B . It will turn out to be invertible.

The cases B1, . . . , Bm in a sequent A1, . . . , An � B1, . . . , Bm are essen-
tially classical in the sense that the sequent can be derivable, but none of

the m sequents with a single case, i.e., an ordinary conclusion, need be

derivable:

A1, . . . , An � B1 A1, . . . , An � B2 . . . A1, . . . , An � Bm

The same holds especially when the antecedent is empty, as in the law of

excluded middle � A ∨ ¬A that is derivable: By the invertibility of rule R ∨,

� A, ¬A is derivable, but neither of � A and � ¬A need be derivable.

6.2 An invertible classical calculus

Negation was treated differently from the other connectives in natural

deduction. In the sequent calculus for classical logic, negation can be treated

in exactly the same way as the other connectives, i.e., with a left and a right

rule. Consider a sequent such as � � �, A. If we add to the list of assump-

tions ¬A, then its contrary A cannot occur as a possible case but must

be deleted. Similarly, if in a given sequent A, � � � we add to the list of

possible cases at right ¬A, then A on the assumption side must be deleted.

Formally, we have the two rules of negation:

Table 6.2 The rules of negation

in classical sequent calculus

� � �, A
¬A, � � �

L¬
A, � � �

� � �,¬A
R¬

These rules are invertible. We can see it by considering first the conclusion

of the left rule, namely ¬A, � � �. If to the succedent A is added, ¬A must

be deleted from the antecedent, so that the premiss of rule L¬ is reached.

The right rule is seen to be similarly invertible.
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The two negation rules contain the essence of classical propositional logic

in a sequent calculus formulation:

In classical logic, an assumption A can be turned into a case ¬A and the other

way around, and a case A can be turned into an assumption ¬A and the other

way around.

For more insight into the matter, consider the classically provable logical

law

(A ⊃ B) ⊃⊂ ¬A ∨ B

In terms of sequent calculus, A ⊃ B is provable if and only if the sequent

A � B is derivable. On the other hand, ¬A ∨ B is provable if and only if the

sequent � ¬A, B is derivable. This latter sequent follows from A � B by

rule R¬. Thus, the classical equivalence of A ⊃ B and ¬A ∨ B is essentially

a consequence of rule R¬ and its invertibility.

The rest of the rules of classical sequent calculus are reformulations of

the intuitionistic rules with multisuccedent sequents:

Table 6.3 Rules for &, ∨, and ⊃ in classical

sequent calculus

A, B, � � �

A & B, � � �
L&

� � �, A � � �, B
� � �, A & B

R&

A, � � � B, � � �

A ∨ B, � � �
L∨

� � �, A, B
� � �, A ∨ B

R∨

� � �, A B, � � �

A ⊃ B, � � �
L⊃

A, � � �, B
� � �, A ⊃ B

R⊃

The rules for conjunction and disjunction display a symmetry: Like the

two rules of negation, they are left–right mirror images of each other. Rule

R∨ is just like rule L& with the antecedent and succedent and ∨ and &

interchanged, and similarly for the pair L∨ and R&. Note finally that rule

L⊃ has no repetition of the principal formula in the antecedent of the first

premiss.

Negation is treated as the other connectives. Therefore there is no need

for a special formula ⊥ and the only sequents that begin a derivation branch

are initial sequents of the form:

Table 6.4 Initial sequents in

classical sequent calculus

A, � � �, A
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Looking at the rules, we notice that each premiss has at least one connective

less than the conclusion. Therefore the termination of root-first proof search

follows in a very simple way: No derivation branch can contain more steps

of inference than the number of connectives in the endsequent.

We shall first give some examples of classical derivations, then show that

all of the classical rules are invertible.

Examples of classical derivations:

a. � A ∨ ¬A

A � A
� A, ¬A

R¬

� A ∨ ¬A
R∨

The mir ror-like dualit y of & a nd ∨, seen in the r ules of Table 6.3, suggests

the following derivation:

A � A
A, ¬A � L¬

A & ¬A � L&

The impossibility of a contradiction such as A & ¬A is shown by a derivation

that has a sequent with an empty succedent. It plays the role of the formula

⊥ of the intuitionistic calculus.

b. � ¬¬A ⊃ A
A � A

� A, ¬A
R¬

¬¬A � A
L¬

� ¬¬A ⊃ A
R⊃

A derivation dual to the two uppermost steps gives the sequent A � ¬¬A

from which the reverse implication � A ⊃ ¬¬A follows.

c. � ¬(¬A & ¬B) ⊃ A ∨ B

A � A, B
� A, B, ¬A

R¬ B � A, B
� A, B, ¬B

R¬

� A, B, ¬A & ¬B
R&

¬(¬A & ¬B) � A, B
L¬

¬(¬A & ¬B) � A ∨ B
R∨

� ¬(¬A & ¬B) ⊃ A ∨ B
R⊃

This derivation is best read in the root-first direction. The reverse of the

implication is derivable already in intuitionistic logic, so that ¬(¬A & ¬B)



Pro of search in classical log ic 93

is equivalent to A ∨ B in classical log ic. This result can be inter pre te d as

fol lows:

There is no inde p e nde nt not ion of disjunct ion in classical log ic, but it can be

de fined in ter ms of conjunct ion and ne g at ion.

Note, howe ver, that conjunc tion is not more ‘pr iv ileged’ than disjunc tion,

because conjunc tion can b e e qually we ll defined by disjunc tion and nega-

tion, throug h the e quiv alence of A & B and ¬(¬ A ∨ ¬B ) that is provable

in classical log ic.

d. � ( A ⊃ B ) ⊃ ¬A ∨ B

A � A B � B
A, A ⊃ B � B

L⊃

A ⊃ B � ¬A, B
L¬

A ⊃ B � ¬A ∨ B
R∨

� ( A ⊃ B ) ⊃ ¬A ∨ B
R⊃

The re verse implication is again der ivable is intuitionistic log ic, so that

implication is definable by disjunc tion and negation. In fac t, negation and

any one of &, ∨, or ⊃ can b e used to define the remaining two connec t ives.

The above der ivations are remar kably easy to const r uc t, in compar ison to

those of classical natur al deduc t ion of the pre v ious chapter. The explanation

lies in the fol low ing:

Theorem 6.1. Inver t ibilit y of the classical r ules. Whe ne ver a s eque nt that

matches the conclusion of a log ical r ule is der ivable, the cor responding pre miss es

of the logical rule are derivable.

Proof. The proof of invertibility of L& and L∨ goes through as before,

with an arbitrary context � in place of the arbitrary formula C in the proof

of the inversion lemma of Sec t ion 4.2.

For rule L⊃, the base case is that a sequent that matches its conclusion

is an initial sequent. If in A ⊃ B, � � � the implication A ⊃ B is not a

formula in �, the corresponding premisses of L⊃, namely � � �, A and

B, � � �, are also initial sequents. Otherwise we have the case that � ≡
�′, A ⊃ B and the initial sequent is A ⊃ B, � � �′, A ⊃ B . The sequents

� � �′, A ⊃ B, A and B, � � �′, A ⊃ B that correspond to the premisses

of rule L⊃ with A ⊃ B principal are derived by:

A, � � �′, B, A
� � �′, A ⊃ B, A

R⊃ A, B, � � �′, B
B, � � �′, A ⊃ B

R⊃
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If A ⊃ B, � � � has b een der ived by L⊃ w ith A ⊃ B as the pr incipal

for mula, the premisses are der ivable. Other w ise it is der ived by L⊃ on

some other antecedent for mula. Apply now the induc t ive hy p othesis to the

premisses of that r ule, and then the r ule, as in the proof of inver tibilit y of

Sec t ion 4.2.

For a proof of inver tibilit y of the negation r ules, consider the situation in

which an initial sequent is of the for m ¬ A, � � �, ¬ A, the other cases of

initial sequents b eing hand led as above. T hen the premiss of R¬, namely

A, ¬ A, � � �, is derived by:

A, � � �,  A
A, ¬ A, � � � 

L¬

With r ule L¬, inver tibilit y of an initial sequent is proved similarly by a step

of r u le R¬. If ¬ A, � � � has b een der ived by a log ical r ule and the show n

occur rence of ¬ A was not pr incipal, proceed as above.

For the r ig ht r ules, the proofs of inver t ibilit y go throug h in an entire ly

analogous fashion. QED.

We could go on to show the admissibility of contraction at right, in analogy

to the a dmissibilit y of cont r a c t ion at left as in S ec tion 4.5, but the result is of

no use because the premisses are always simpler than the conclusion when

root-first proof search is applied in classical propositional logic.

If the order of two consecutive rules can be changed, the result of root-

first decomposition is the same, a property that is verified by going through

all the cases. Consider rules R& and L∨ as an example:

A, � � �, C A, � � �, D
A, � � �, C & D

R&
B, � � �, C B, � � �, D

B, � � �, C & D
R&

A ∨ B, � � �, C & D
L∨

Decomposition of the endsequent in reversed order gives:

A, � � �, C B, � � �, C
A ∨ B, � � �, C

L∨ A, � � �, D B, � � �, D
A ∨ B, � � �, D

L∨

A ∨ B, � � �, C & D
R&

Exactly the same four premisses were reached. The rest of the cases of

permutability of two consecutive rules goes through similarly and is left as

an exercise. The overall result is:

Terminating proof search in classical propositional logic. Given a sequent

� � �, if it is decomposed in any order whatsoever and if all topsequents are

initial sequents, � � � is derivable, otherwise it is underivable.
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As with intuitionistic logic, the termination of proof search is an in-principle

property. Application of, say, 50 two-premiss rules in a root-first order can

produce a derivation with up to 250 initial sequents. The question therefore

is: Given that � � � is underivable, is there a feasible method for finding

at least one topsequent that is not an initial sequent?

Notes and exercises to Chapter 6

The invertible propositional sequent calculus of this chapter was invented by

the Finnish logician Oiva Ketonen (1944) who had studied with Gentzen in

Göttingen in 1938–9. The calculus became well known through the review

Bernays (1945). It was used in Kleene’s influential book Introduction to

Metamathematics (1952) and formed the basis of Beth’s ‘tableau system’

(1955), which for the propositional part is just another way of writing

Ketonen’s rules.

1. Give derivations in classical sequent calculus for the following:

a. ((A ⊃ B) ⊃ A) ⊃ A

b. (A ⊃ B) ∨ (B ⊃ A)

c. (A ⊃ B ∨ C ) ⊃ (A ⊃ B) ∨ (A ⊃ C )

2. Show that if the order of two given consecutive rule instances in a

derivation in classical sequent calculus are permuted, the same premisses

are found.
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The explanation of the notion of a prop osition in S ec tion 1.3 require d that

such prop ositions be complete declar ative sentences that state a possible

state of affairs. The notion of log ical t r uth t r ies to capture the re lation

between such sentences and states of affairs, and to b e for mulate d rela-

tive to classical and intuitionistic ways of reasoning , resp ec tive ly. We star t

w ith the for mer b ecause it is simpler, then explain the Kr ipke semantics

of intuitionistic prop ositional log ic. In the final sec t ion, a completeness

proof is given for classical propositional logic that ties closely together the

proof system of Chapter 6 and the standard ‘t r uth-table’ semantics of this

chapter.

7.1 Logical truth

The semantics of classical propositional logic is based on a notion of absolute

truth, whatever that may be. Specifically, each atomic proposition will be

either true or false. The concept of truth in classical propositional logic is

built on such an assumption:

Basic assumption about truth. The truth and falsity of atomic propositions

in specific circumstances is determined in itself.

How this determination takes place, whether truth and falsity can be actu-

ally determined and known, etc., are questions from which this notion of

truth abstracts away: The different possible states of affairs are represented

abstractly so that to each of any given atomic formulas P1, . . . , Pn is assigned

a truth value, either the value true that is abbreviated as t or the value false
that is abbreviated as f. The different assignments themselves are denoted

by v, v1, v2, . . . and the truth values under a specific assignment, say v, by

v(P ) = t, v(Q) = f , etc., as the case may be. We collect these things in a

definition:
96
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Definition 7.1. A valuation v over the atomic formulas P1, . . . , Pn is an

assignment of one of the two truth values v(Pi ) = t and v(Pi ) = f to each of

the formulas Pi .

The truth values assigned to compound formulas under a valuation are

determined from the truth values of their immediate components, thus,

in the end, from the truth values of the atomic formulas. These truth
conditions are quite natural for conjunction, disjunction, and negation: A

conjunction shall be assigned the value t if and only if both of the conjuncts

have been assigned the value t, a disjunction shall be assigned the value t if

and only if at least one of the disjuncts has been assigned the value t, and a

negation shall be assigned the value t if and only if the unnegated formula

has been assigned the value f.
For an implication, it is clear that v(A ⊃ B) = f if v(A) = t and v(B) =

f . For the remaining three cases, we can use the classical equivalence of

A ⊃ B and ¬(A & ¬B): If v(¬(A & ¬B)) = t, then v(A & ¬B) = f by

what was said about the value of a negation. Then either v(A) = f or

v(¬B) = f . In the latter case, v(B) = t. Thus, an implication A ⊃ B has

the value t under a given valuation if either A has the value f or B has the

value t, otherwise A ⊃ B has the value f.
If the false formula ⊥ is taken into use, it has the value f for all valuations.

The falsity of a condition in a conditional sentence will make the truth

value of the sentence be true in classical logic. Consider the sentence If Italy is

in the polar region, there is snow in Hagalund in the winter. Under the present

geographical circumstances, the condition Italy is in the polar region is false.

Therefore, under these same circumstances, the said conditional sentence

is true. This is certainly a counterintuitive notion of truth: One would

normally expect that if an implication A ⊃ B is true, B has something to

do with A, which need not be the case according to the concept of truth in

classical propositional logic. If we take into use the equivalence of A ⊃ B

and ¬A ∨ B of classical logic, our example sentence becomes: Either it is

not the case that Italy is in the polar region, or there is snow in Hagalund in

the winter. This is a perfectly sensible and clearly true sentence under the

present geographical conditions: The left disjunct is true and it need not

even be known if there is snow in Hagalund in winter or where such a place

can be found.

Let us summarize the ways in which the truth values of compound

formulas under a given valuation v are determined from the truth values of

the components:
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Ta b l e 7 . 1 Tr uth v alues of compound for mulas

v ( A) v ( B ) v ( A & B ) v ( A ∨ B ) v ( A ⊃ B ) v (¬ A)

t t  t  t  t  f
t f  f  t  f  f
f t  f  t  t  t
f f  f  f  t  t

If a for mula contains just one atomic for mula, there are two valuations, one

in w hich the atomic for mula is assig ned the value t, and another in w hich

it is assig ned the value f. If there is a second atomic for mula, it can have

the v alue t and the first atomic for mula can have two values. If the second

for mula has the value f, the first can likew ise have two values. T herefore

there are alto gether four possible valuations. With thre e atomic for mulas,

say P , Q , and  R , we have:

Ta b l e 7 . 2 Va l u a t i o n s o v e r

thre e a tomic for mulas

v ( P ) v ( Q ) v ( R )

t t  t
t f  t
f t  t
f f  t
t t  f
t f  f
f t  f
f f  f

The first four lines for P and Q are just like the four lines for A and B in

Table 7.1. In the valuations of these lines, R is assig ned the value t. Next the

first four lines are rep eated for P and Q , but  R is changed to have the value

f, so that all eight lines are different. If a fourth atom  S is added, we have

first the eig ht lines of Table 7.2 w ith S w ith the v alue t, then another eight

lines with S with the value f. Now it is seen that each new atom doubles the

number of lines that corresponds to the number of possible valuations. In

general:

The number of valuations. If there are n atomic formulas, there are 2n

different possible valuations.
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It is impor tant to keep in mind the notion of a t r uth value under a valuation,

that is, under some g iven state of affairs, and t r uth ir resp ec tive of such. T he

latter cor responds to the classical notion of t r uth:

Definit ion 7.2. Log ical t r uth. If A is assig ned the value t under all valuat ions,

it is log ical ly t r ue or a tautolog y.

If a sentence has the value f in all valuations, it is log ical ly false. In the rest

of the cases, A is cont ingent: It dep ends on the circumstances w hether it

tur ns out t r ue or false.

It follows from the exponential g row th of the number of valuations that

tautolog y checking by t r uth tables c an b e done feasibly only if the numb er

of atoms in a for mula is low. There a re, h owe ver, c ases in w h ich it c an

be done fast, but it is unknow n if such alter native fast tautolog y checking

methods can be found to replace in all cases the exponentially g row ing

number of valuations.

It is easily seen that the computation of the t r uth value of a for mula

A is fast when one valuation is g iven: The number of steps taken in the

computation is the same as the number of connec t ives. Let us take as an

example the for mula:

( P & Q ⊃ R ) ⊃ ( P ⊃ R ) ∨ ( Q ⊃ R )

Le t v ( P ) = t, v ( Q ) = f , and v ( R ) = t. We then have v ( P & Q ) = f and

v(P & Q ⊃ R) = t for the antecedent of the whole implication. The valu-

ation gives v(P ⊃ R) = t and v(Q ⊃ R) = t for the disjuncts in the con-

sequent, so that v((P ⊃ R) ∨ (Q ⊃ R)) = t. Therefore the value of the

whole formula is:

v((P & Q ⊃ R) ⊃ (P ⊃ R) ∨ (Q ⊃ R)) = t

To go through all possible valuations, the latter are tabulated as in

Tables 7.1 and 7.2, w ith al l the subfor mulas of the g iven for mula w r itten

out. For example, we have for (P ⊃ Q) ∨ (Q ⊃ P ) the table:

v(P ) v(Q) v(P ⊃ Q) v(Q ⊃ P ) v((P ⊃ Q) ∨ (Q ⊃ P ))
t t t t t
t f f t t
f t t f t
f f t t t
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Thus, the for mula ( P ⊃ Q ) ∨ ( Q ⊃ P ) is a tautolog y, often cal led by the

name Dummett’s law. It is at the same time a purely classical log ical law : We

can show by the methods of Chapter 4 that it is under ivable in intuitionistic

logic. It is also a classical disjunction neither disjunct of which is classically

derivable as seen by the methods of the previous chapter. Consider as an

instance of Dummett’s law the sentence The infinity of twin primes implies

the continuum hypothesis or the continuum hypothesis implies the infinity of

twin primes. Any mathematician believes that a simple conjecture in number

theory cannot have anything to do with the still unresolved great problem

of axiomatic set theory. Thus, one’s natural reaction to the above claim

is: That can’t be true! Those two things are not related in any way to each

other.

It is not always necessary to draw a whole truth table with lots of lines

to make a tautology check. Whole classes of formulas are not tautologies,

for example, all formulas that do not contain a negation or an implication.

There is a systematic method by which one can try to falsify a formula: One

assumes the formula to have the value f and then sees if this leads to an

impossibility. As an example, consider the truth value assignment:

v((P & Q ⊃ R) ⊃ (P ⊃ R) ∨ (Q ⊃ R)) = f

The values of the components of the implication are determined: We

have v(P & Q ⊃ R) = t and v((P ⊃ R) ∨ (Q ⊃ R)) = f . The latter gives

v(P ⊃ R) = f , so v(P ) = t and v(R) = f , as well as v(Q ⊃ R) = f , so

v(Q) = t. With these, v(P & Q ⊃ R) = f , so the whole implication has the

value t. Therefore the original truth value assignment was impossible and

the formula a tautology.

The previous example is again a purely classical logical law, and in fact a

counterintuitive one: Consider as atomic formulas order relations between

real numbers, written a < b. Such order relations are transitive: If a < b

and b < c , then a < c . By what was just shown to be a tautology through a

failed attempt at falsification, the following is generally true:

(a < b & b < c ⊃ a < c) ⊃ (a < b ⊃ a < c) ∨ (b < c ⊃ a < c)

Again, one’s natural reaction is that both of a < b and b < c are needed to

conclude a < c , and that neither of a < b or b < c alone is sufficient. There

is some truth to this, because, in fact, neither of the following is a tautology:

(a < b & b < c ⊃ a < c) ⊃ (a < b ⊃ a < c)

(a < b & b < c ⊃ a < c) ⊃ (b < c ⊃ a < c)
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For a simpler example, take:

P : I am in my fourth year of study,

Q : I p ass all ex ams of this year,

R : I graduate this year.

Fro m :

If I am in my four th year of study and I pass all e x ams of this year, the n I

g raduate this year,

something that would be t r ue at many schools, fol lows that:

If I am in my four th year of study, the n I g raduate this year, or if I pass all

ex ams of this year, the n I g raduate this year.

7.2 The semant ics of intuit ionist ic prop osit ional log ic

Consider two atoms P , Q in classical logic. By the semantics given in

Sec t ion 7.1, there are four different situations, or ‘p ossible worlds’ that

we denote by w1, w2, w3, w4:

w1: P , Q

w2: P , ¬Q

w3: ¬P , Q

w4: ¬P , ¬Q

These worlds are static, but we may have come to any one of them by first

knowing or having verified nothing about them, then one of P and ¬P ,

and next one of Q and ¬Q:

P,Q P,¬Q ¬P,Q ¬P,¬Q
◦◦◦◦

◦ P ¬◦ P

◦

We have first a world in which no truth values are given, then a value is

given to P , and next to Q.
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Saul Kripke invented in the early 1960s, on the basis of his earlier work on

the semantics of modal logic, a semantics for intuitionistic logic that makes

systematic the idea of a successive verification of truth values of atomic

formulas. What are known as Kripke models for intuitionistic logic consist

of a domain W of possible worlds w, o, r, . . ., a two-place accessibility
relation w � o between such worlds, and a forcing relation w � P between

worlds and atoms. The last one tells which atoms hold or are ‘forced’ at what

worlds. It is not determined at this stage which negations of atoms are forced

in a world.

The accessibility relation comes from modal logic in which the static

picture of classical propositional logic does not work well. Consider a

situation w in which you hold that P is possible, so that you cannot

be committed to either of P and ¬P . Say, if in some later situation o

that is accessible from w you find P to be the case, P must have been

possible at w so that ¬P at w is excluded. Similarly, what is possible

can turn out later actually not to be the case, so that P at w is likewise

excluded.

The accessibility relation is assumed to have the following properties:

Table 7.3 Properties of the accessibility relation

1. There is an initial world w0 such that w0 � w for any w in W .

2. The accessibility relation is reflexive: w � w for any w in W .

3. The accessibility relation is transitive: If w � o and o � r , then w � r for

any w, o, r in W .

The accessibility relation is a special case of a partial order, a reflexive and

transitive two-place relation. (Some pedantics call these ‘preorders’.) It is

moreover a tree with a root w0, with the property that any two worlds

w, o have a greatest common predecessor r in the ordering: A common

predecessor to w and o is an r such that r � w and r � o. It is the greatest

such predecessor if for any l such that l � w and l � o, there obtains l � r .

Intuitively, if you climb down from two points in the tree, you come to a

first common point.

Each world is assumed to force some given finite collection of atoms,

possibly none. The forcing relation for formulas with logical structure is

defined inductively:
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Table 7.4 Definition of the forcing relation

1. w � A & B whenever w � A and w � B .

2. w � A ∨ B whenever w � A or w � B .

3. w � A ⊃ B whenever from w � o and o � A follows o � B .

4. w � ¬A whenever from w � o and o � A follows o � C for any C .

5. w � C for any C whenever w � A and w � ¬A for some A.

This definition will work for intuitionistic logic with a primitive notion

of negation. With a defined notion of negation, clause 5 is often put as:

no world forces ⊥, and clause 4 is left out. It then happens that proofs of

the properties of the forcing relation have to rely on somewhat awkward

meta-level reasonings that use classical logic. For example, to prove clause

4, one reasons: By 3, w � A ⊃ ⊥ whenever from w � o and o � A follows

o � ⊥. The latter is not the case, so that with w � o, o � A is impossible for

any o. For w � ⊥ ⊃ C , one needs: From w � o and o � ⊥ follows o � C .

This is the case because o � ⊥ is false.

We have chosen, after a suggestion by Sara Negri and Alberto Naibo, the

above definition by which the forcing relation for a world w becomes trivial,
in the sense that it forces all formulas, whenever w � A and w � ¬A for

some A. We shall from now on pose the requirement:

Nontriviality. No world must force all formulas.

To finish the definition of a Kripke model, we add the requirement:

Monotonicity. If w � P and w � o, then o � P .

This property holds for arbitrary formulas A:

Lemma 7.3. Monotonicity for arbitrary formulas. If w � A and w � o,

then o � A.

Proof. The proof is by induction on the length of formula A:

If A is atomic, the property holds by monotonicity.

If A ≡ B & C and w � B & C , we have w � B and w � C by definition

and apply monotonicity to shorter formulas to conclude o � B and o � C .

Now o � B & C follows by definition.
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If A ≡ B ∨ C , the proof goes through similarly.

If A ≡ B ⊃ C , let w � o. To show o � B ⊃ C , assume o � r and r � B .

By transitivity, w � r so w � B ⊃ C and r � B give r � C . Therefore

o � B ⊃ C .

If A ≡ ¬B , let w � ¬B and show that if w � o, then o � ¬B . For the

latter, assume therefore o � r and r � B and show r � C . Transitivity gives

w � r , so by w � ¬B , from r � B follows r � C . Therefore by definition

o � ¬B . QED.

Intuitively, whatever holds in a given world, continues to hold in all worlds

accessible from that world.

Clause 4 gives as a special case, when A is atomic:

If no world accessible from w forces an atom P , then w forces ¬P .

This property is a bit strange: The original idea of Kripke was that worlds

are unfolded in time, by finding out new atomic facts. The reasoning about

a Kripke model, instead, takes it as a finished structure in which the forcing

of formulas in a world w can be decided on the basis of what happens in all

the possible future courses of events that start from w. From one point of

view, the future is full of possibilities that can become realized, from another

point of view, this realization just cuts off alternative histories.

Definition 7.4. Intuitionistic validity. A formula A is valid in intuitionistic

propositional logic, notation � A, if it is forced in an arbitrary world.

It is not altogether practical to use this notion for actually proving validity,

by considering an arbitrary Kripke model and an arbitrary world in it. Here

are some examples:

Example proofs of intuitionistic validity:

a. � A ⊃ (B ⊃ A & B)

Let w be arbitrary and assume w � o and o � A. For o � B ⊃ A & B ,

assume o � r and r � B . By monotonicity, r � A, so by definition,

r � A & B . Therefore o � B ⊃ A & B , and finally w � A ⊃ (B ⊃ A & B).

b. � A & B ⊃ A

Let w be arbitrary and assume w � o and o � A & B . By definition, o � A.

Therefore w � A & B ⊃ A.
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c. �  ( A ⊃ C ) ⊃ (( B ⊃ C ) ⊃ ( A ∨ B ⊃ C ))

Le t w be ar bit r ar y and assume w �  o and o �  A ⊃ C . T he task is to show

o �  ( B ⊃ C ) ⊃ ( A ∨ B ⊃ C ), so assume o �  r and r �  B ⊃ C . To show

r �  A ∨ B ⊃ C , assume r �  l and l �  A ∨ B . Then l �  A or l �  B by

definition. In the first case, we have to show l �  C . We get o �  l by t r a n -

sitiv it y, so o �  A ⊃ C gives l �  C . Then by definition r �  A ∨ B ⊃ C ,

and consequently o �  ( B ⊃ C ) ⊃ ( A ∨ B ⊃ C ) and finally the soug ht

re s u l t w �  ( A ∨ B ⊃ C ) ⊃ ( A ⊃ C ) & (B ⊃ C ) for an ar bit r ar y w . The

proof in the second case, l �  B , is similar.

It is seen that intuitive reasoning by the clauses that define forcing for

compound for mulas goes par allel to purely syntac t ic steps of pro of in natu-

r al deduc tion. Conjunc tion int roduc tion cor responds to the first clause of

Table 7.4 from r ig ht to left and conjunc tion elimination to the other direc-

tion. D isjunc tion int roduc tion cor responds to the second clause from left to

r ig ht, and the other direc tion has the two cases that cor respond to disjunc-

tion elimination. The clause for implication from r ig ht to left lets us con-

clu d e w �  A ⊃ B if o �  B fol lows from o �  A for any o such that w �  o .

In the other dire c t ion, if w �  A ⊃ B , we get in par t icular by w � w that

w �  B fol lows from w �  A, i.e., that the forcing re lation resp ec ts implica-

tion elimination.

In the lig ht of the above, it is not sur pr ising that intuitionistic propo-

sitional log ic tur ns out to b e sound and co m p l e te in re lation to Kr ipke

semantics: All theorems are valid and all valid for mulas are theorems. We

shall prove the former here, the most straightforward way being to show that

all the axioms of intuitionistic prop ositional log ic are valid and that r ule ⊃ E

preser ves validit y. The axioms are found in Sec t ion 3.6(a) and some were

shown valid in the above three examples. That rule ⊃E preserves validity

was also noted. Therefore axiomatic intuitionistic logic is sound. To prove

the same for natural deduction, the notion of validity has to be extended to

validity under assumptions:

Definition 7.5. Validity under assumptions. The formula A is valid under
assumptions � if, whenever a world w forces all formulas in �, also w � A.

Theorem 7.6. Soundness of intuitionistic natural deduction. If A is deriv-

able from the assumptions �, then A is valid under the assumptions �.

Proof. The proof is by induction on the last rule applied in a derivation.

In the case of an assumption A, w � A gives w � A, so A is valid under

the assumption A. If the last rule is &I , assume the premisses A and B
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valid under the assumptions � and �, respectively. Then w � A & B is

by definition valid under the assumptions �, �. All other rules in which

assumptions are not closed are seen to preserve validity under assumptions

in the same way. For rule ⊃I , assume B to be valid under the assumptions

A, �, i.e., assume w � B whenever w � A and w forces all the formulas in

�. To show that w � A ⊃ B when w forces all the formulas in �, let w � o

and o � A. By monotonicity, o forces �, so by the inductive hypothesis,

o � B . Therefore w � A ⊃ B , and A ⊃ B is valid under the assumptions

�. The case of rule ∨E is handled similarly. QED.

The notion of validity under assumptions can be expressed also in terms

of sequents, by considering the above definition to define the validity of a

sequent � � A.

Kripke models are more interesting as a method for disproving intu-

itionistic validity than proving it. The method consists in finding a counter-
model, i.e., a world that does not force a formula. It is customary to depict

such models directly as trees, such as:

o � P
◦

◦
w

No atom is forced in w. Let’s check if P ∨ ¬P is forced in w. If so, one of

the disjuncts has to be forced and it is not P . If it is ¬P , we have o � ¬P by

monotonicity, and o � C for any C so that o is trivial. Therefore w � ¬P ,

so the law of excluded middle has an instance that is not intuitionistically

valid, and neither is the law for an arbitrary formula in place of P .

Consider next Dummett’s law instantiated for two atomic formulas,

(P ⊃ Q) ∨ (Q ⊃ P ). Let the Kripke model be:

o � rP � Q
◦◦

◦
w

Let us check if w � (P ⊃ Q) ∨ (Q ⊃ P ). By definition, the first case is

w � P ⊃ Q, so we need to have l � Q whenever w � l and l � P . We do

have w � o and o � P , but o � Q fails. Similarly, w cannot force Q ⊃ P ,

therefore neither (P ⊃ Q) ∨ (Q ⊃ P ).
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Let us take as a final example the classical tautology:

(P & Q ⊃ R) ⊃ (P ⊃ R) ∨ (Q ⊃ R)

How to construct a Kripke countermodel for it? We should have that each

time we have moved from the initial world so that both P and Q have

become forced, also R should be forced, whereas if only one of them has

been forced, a world remains accessible in which ¬R gets forced:

P, RQ, R
◦◦◦◦

◦ P ◦ Q

◦

There are two terminal worlds highest up that force ¬R. Therefore, the

forcing of P does not lead to the forcing of R, and similarly for Q, but

whenever both are forced, also R is.

We started the study of logical reasoning with rules that led to intuitionis-

tic logic. Classical logic came out as a special case in which more is assumed,

namely the applicability of the law of excluded middle or the principle of

indirect proof. It is the same with semantics, even if we described first the

semantics of classical propositional logic: The latter comes out as a special

case of Kripke semantics, when there is just one single possible world w.

The forcing relation determines which atoms hold at w and as we have seen,

since there are no new accessible worlds, it happens that if an atom P is not

forced in w, its negation is. We have therefore what corresponds to a single

valuation, or line in a truth table.

Let us finish with a verification of the law of excluded middle in the case

of a single possible world: All Kripke models have the structure:

w � P , . . . , Q
◦

We have pointed out that if an atom P is not forced at any world accessible

from w, its negation is forced in w. It follows that either w � P or w � ¬P

for any atom P , consequently w � P ∨ ¬P , for an arbitrary w. Therefore

� P ∨ ¬P , and from this follows next � A ∨ ¬A for arbitrary formulas.

The result is left as an exercise.
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7.3 Empt y tautolog ies?

Lo g ical t r uth, of w hich we saw the definition for the case of propositional

log ic in S ec tion 7.1, was the basic notion of a philosophy know n as log i-
cism. Its pioneers were Frege and Russell. The former had invented classical

predicate logic in 1879, and both had in turn tried to show that all of math-

ematics reduces in some way to logic. The concept of logical truth was the

cornerstone of the reduction; its specific aim was to show that mathematical

truth is a special case of the more general notion of logical truth. This latter

notion evolved in the 1920s under the influence of Ludwig Wittgenstein’s

book Tractatus Logico-Philosophicus into the following doctrine: The truths

of logic are those truths that hold irrespective of any circumstances. Thus,

they do not exclude any state of affairs in the world, therefore do not say

anything about the world. They are mere empty tautologies, devoid of con-

tent and always true purely on the basis of their form. Truth is found by

analysing the form of the sentences of logic until it is seen that the form is

empty.

In the next step, following the logicist thesis, mathematical truth was

to be shown a special case of logical truth. Frege tried to do this mainly

for the case of the concept of a natural number and arithmetic more

generally. A general attempt was made by Russell in cooperation with

Alfred Whitehead in a three-volume massive undertaking, Principia Math-

ematica, published in 1910–13. There were difficulties in the formal car-

rying through of the logicist programme, and it has been considered

a failure for a long time. That was not, however, the situation in the

1920s.

What does one know when one knows a mathematical truth? The answer

in the 1920s was that one knows nothing, because such truths are mere

tautologies. One should have thought that if that was the answer, then there

must have been something wrong in the assumptions that led to it, but no,

the empty theory of truth survived and even prospered, the reason perhaps

being the absence of viable alternatives. Eighty years of development in

foundational studies has provided some such.

First of all, knowledge of a mathematical truth comes from a proof, so

one knows a proof. It then depends on the proof what it is good for. Typical

truths in logic and mathematics are in the form of an implication A ⊃ B . If

the implication has been proved constructively, i.e., without the use of the

principles of classical logic, it provides an algorithm and the following is

the case:
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By a constructive proof of A ⊃ B, any constructive proof of A can be converted

into some constructive proof of B.

One of the common forms of a theorem in mathematics is that there is

a number of assumptions A1, . . . , An with some numerical content from

which follows a consequence B likewise with some numerical content. The

assumptions would be typically expressed with variables, as in: Let x1 be a

number such that A1, . . ., let xn be a number such that An, and the conclusion

could be: y is a number such that B. A proof of A1, . . . , An consists in

finding some specific values ai for the xi and in computations that verify for

these values the properties expressed by A1, . . . , An. The proof of B from

A1, . . . , An converts these numerical verifications, i.e., a constructive proof

as required above, into a number b in place of y and a verification that it

has the property expressed by B . The algorithm that makes the conversion

can be made into a computer program. When the data about A1, . . . , An

are fed in and the command to execute the program given, something very

specific is going to happen: An electromagnetic program-guided physical

process in the computer produces figures with numerical content on the

screen. If they were, say, about where a space shuttle is going to be found at a

given time when the numerical data concerned its launch and where it was

headed, the shuttle will be found there. If the data were about the positions

of the planets and the program computed solar eclipses backward a couple

of thousand years, some of these eclipses can be found in the records of

the ancient astronomers, with their day and duration corresponding to the

figures produced on our computer screen. Knowledge of a mathematical

truth can thus be the possession of something that can tell how parts of the

world work.

One might say that the above discussion is about something that can

be described as a process, as a step-by-step proof can, rather than a claim

with a direct content. A similar distinction is found in geometry: Part

of geometry consists in the proving of theorems, part in the solving of

geometric problems. What is the order of conceptual priority here? This

question was debated already in ancient times, but there is a Solomonic

solution by which they are two aspects of the same thing: A theorem can be

seen as a problem to construct a proof, and a problem as a theorem stating

that there is a solution to the problem.

The above discussions boil on the question of truth and proof. What is

the order of conceptual priority here? A proof expresses knowledge and one

can construct the notion of truth on the possibility, in principle, of giving
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a pro of. T his was the natur al order in w hich we proceeded in the first six

chapters. On the other hand, one can think that t r uth is the basic thing ,

absolute and deter mined in itself, and that knowledge is just a marg inal note

to t r uth. Tr uth is not affec ted by our knowledge of it. The deep question,

then, is: Can there be t r uths that are unknowable in pr inciple? The one

who const r uc ts t r uth on proof is the philosophical idealist w ho says that

there is no t r uth outside the world we have const r uc ted. T he philosophical

realist, instead, says about unknowable t r uth that it is possible, or that at

least we have so far not found any argument to the cont r ar y. Elementar y

log ic is a field in which some of these basic questions about knowledge can

be confronted in a ver y pre cisely defined setting .

Ele me ntar y log ic is e ve n e piste molog y in laborator y c ondit ions.

7.4 The completeness of classical prop osit ional log ic

It is time to tur n to more ear thly matters, namely the relation of der ivabilit y

to the notion of logical truth in classical propositional logic. We shall show

simultaneously that all theorems are tautologies, by which the sequent

calculus for classical propositional log ic of Chapter 6 is sound, and that all

tautologies are theorems, by which it is complete.

The following prescription will produce what is called the conjunctive
normal form of a formula. Let the formula be A, and decompose root first

the sequent � A by the rules of classical sequent calculus until there are no

connectives left anywhere. Each topsequent will have the form:

P1, . . . , Pm � Q1, . . . , Qn (1)

Now move the Pi to the right by rule ¬R, then replace the commas at right

by disjunctions through rule ∨R. It will be convenient not to write out the

parentheses. For uniqueness, one can agree that a formula with parentheses

left out, as in P ∨ Q ∨ R ∨ S, is an abbreviation for ((P ∨ Q) ∨ R) ∨ S,

etc. Now the form of the sequents (1) has become:

� ¬P1 ∨ . . . ∨ ¬Pm ∨ Q1 ∨ . . . ∨ Qn (2)

Let the sequents produced in this way be � A1 . . . � Ak . Now apply rule

R&, with a convention on parentheses analogous to that for disjunction, to
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form:

� A1 & . . . & Ak (3)

Formula A is derivable if and only if the topsequents (1) are initial sequents

and the same for formula A1 & . . . & Ak . It is clear by the construction that

a formula is classically equivalent to its conjunctive normal form:

� A ⊃⊂ A1 & . . . & Ak (4)

To prove that the sequent calculus for classical propositional logic is sound

and complete, we need to show that the property of being an initial sequent

is maintained if the decomposition of a sequent of the form B, � � �, B

is continued until no connectives remain:

Lemma 7.7. If a sequent of the form B, � � �, B is decomposed root first

until no connectives remain, only initial sequents are reached.

Proof. Take any decomposition as required by the lemma. There are five

cases according to the form of B :

If B is an atom, the decomposition of formulas in � and � will keep one

copy of B in the antecedent and another in the succedent, so that when no

connectives are left, initial sequents of the form B, �′ � �′, B are reached,

with �′, �′ consisting of only atoms.

If B is a compound formula, the decomposition can be done as when B was

an atom, so that in the end B is the only compound formula in the sequents

of the form B, �′ � �′, B . There are now four cases:

B is a conjunction C & D. It is decomposed as in:

C, D, �′ � �′, C C, D, �′ � �′, D
C, D, �′ � �′, C & D

R&

C & D, �′ � �′, C & D
L&

If B is a disjunction, the procedure is dual to the above.

If B is an implication C ⊃ D, the decomposition is:

C, �′ � �′, C D, �′ � �′, D
C ⊃ D, C, �′ � �′, D

L&

C ⊃ D, �′ � �′, C ⊃ D
R⊃
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Finally, if B is a neg ation ¬C , decomp osition by r ules ¬ L and ¬ R will turn

¬C, �′ � �′, ¬C into C, �′ � �′, C .

Rep etition of the above decompositions w il l in the end g ive initial

sequents in w h ich a l l for mulas a re atomic. QED.

Theorem 7.8. Soundness and completeness of classical prop osit ional
log ic. If a for mula is der ivable in the s eque nt calculus for c lassical propo-

sit ional log ic, it is a tautolog y. If a for mula is a tautolog y, it is der ivable in the

s eque nt calculus for c lassical proposit ional log ic.

Pro o f . Le t � A. Decompose ro ot first until initial sequents are reached. By

the lemma, this can b e continued until sequents w ith only atomic for mulas

are reached. Each of them has at least one identical atom P in the antecedent

and succe dent. When the sequent is tur ned into one of the for m (2), a par t

of it is, after possible change of order of the disjunc ts, P ∨ ¬P . T herefore

al l the for mulas A1, . . . ,  Ak in (3) are tautolog ies, and therefore for mu la A

itself is a tautolog y.

Assume, for the pro of of completeness, that A is a tautolog y. For m its

conjunc tive nor mal for m A1 & . . .  & Ak as descr ibed above. Each conjunc t

is a tautolog y of the disjunc tive for m ¬ P1 ∨ . . . ∨ ¬Pm ∨ Q 1 ∨ . . . ∨ Q n .

This can b e the case only if some Pi is identical to some Q j , but then decom-

position w ill result in initial sequents, by which A is der ivable. QED.

Notes and exerc ises to Chapter 7

The t r uth value semantics of classical propositional log ic is present already

in the wor k of B oole of about 1850, to be descr ibed in Sec t ion 14.2(a).

The same holds for Fre ge’s wor k, cf. S ec tion 14.3(a). T he semantics for

intuitionistic propositional logic was presented in Kripke (1965).

1. Show that forcing emulates the structural rules of sequent calculus:

a. If w � B , then w � A ⊃ B .

b. If w � A ⊃ (A ⊃ B), then w � A ⊃ B .

c. If w � A ⊃ B and w � B ⊃ C , then w � A ⊃ C .

2. Show that Peirce’s law, ((A ⊃ B) ⊃ B) ⊃ B , is strictly classical, by a

Kripke model that refutes it.



part ii

Logical reasoning with the quantifiers





8 The quantifiers

8.1 The grammar of predicate logic

Predicate logic starts from propositional logic and adds to it two things:

The atomic formulas receive an inner structure, and quantifiers are added,

one for expressing generality, another for expressing existence.

The structure of the atomic formulas is as follows: We have some given

collection of individuals, denoted as a whole by D and called the domain,

and individuals in the domain, called objects and denoted by a, b, c , . . .,

a1, a2, . . . etc. Each atomic formula gives a property of the objects in D, or

a relation between several such objects. The notation and reading of atomic

formulas is exemplified by the following:

P (a), object a has the property P (a)

Q(a, b), objects a and b stand in the relation Q(a, b) to each other

R(a, b, c), objects a, b, and c stand in the relation R(a, b, c) to each other

For a concrete example, let D consist of the natural numbers 0, 1, 2, . . .,

and let P be the property to be a prime number. We can form atomic

formulas by writing numbers in the argument place of P , say P (17) that is

the proposition 17 is a prime number. Let Q be the order relation < between

two natural numbers. Then Q(7, 5) is the proposition 7 is smaller than 5.

Let, for another example, D consist of geographical locations found in

some given atlas. Consider the relation location a is between locations b and

c . The relation would be clear when, say, one railway station is between two

others, or one location is to the north, the other to the south of a third

location, but how much deviation can there be? We need not answer such

possible questions, or define what relations in general are. It is sufficient for

the purposes of logic that there are clear-cut examples of relations and a

clear understanding of what it means for two given objects to stand in such

a clear-cut relation to each other.

When the structure of natural language is analysed with predicate logic,

there is some freedom in the choice of predicates and relations. It depends on

the context of a sentence what relations are meant by the user of a language. 115
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Consider the sentence He lsing fors is by the B alt ic Sea. The discourse could b e

about asp ec ts of the B altic S ea, or asp ec ts of He lsing fors, or more sp ecifical ly

about capitals of the count r ies that share co astline of the B altic S ea, e tc. If we

fix one such relation, say x lies by y, we can substitute He lsing fors for x to g e t

He lsing fors lies by y . T his can be considere d a one-place pre dicate. Similarly,

for each constant that c an b e substitute d for y , a one-place pre dicate is

obtained, as in x lies by the Thames.

The relativ it y of the choice of predicates is connected to the relativ it y

of the choice of a domain. A domain can be made sufficiently large to

accommodate all t y p es of objec ts encountered w ithin a discourse. T hen,

w ithin the domain, t y p es of objec ts can b e identified by predicates. S ay,

we can take as the domain the real numbers, then consider the r ationals as

reals w ith a cer tain prop er t y, the natur al numbers as reals w ith a fur ther

prop er t y, a nd so on.

There is clearly a limit to how many argument places there can b e in a

re lation that can app ear in a natur al discourse. It is cer tainly at least four : If

the domain consist of p ersons, the atomic for mula John’s feeling s towards his

father are like thos e of Oedipus’ to his father expresses a four-place re l a t i o n .

In g e n e r a l , a n n -place re lation is g iven by an atomic for mula S (a1, . . . , a n ).

Su ch re lations c an have uses for any numb er n . For an example, consider

the coordinates of a p oint in an n -dimensional space and the re lation: x is

the i -th c oordinate of the point ( x1, . . . ,  x n ).

As the ter minolog y of arguments suggests, prop er ties and relations can

be represente d as func tions. This idea was one of the cent r al ones when

Frege presented in 1879 the language of pre dicate log ic, in his little b ook

B e g r iffss c hr ift: Eine nach der ar ithmet is c he n nachgebilde te For melsprache des

re ine n D e nke ns (advance d lear ners w ho want to refer to the or ig inal should

notice and keep in mind the double-s in the t itle). The t r anslation of Fre ge’s

book title is something like ‘Conceptual notation: A formula language for

pure thought, built upon the model of arithmetic.’ Frege wanted to analyse

sentences into function and argument, instead of the analysis into subject

and predicate of traditional school grammar.

Frege’s idea can be made precise through a categorial grammar for pred-

icate logic, in which atomic formulas are values of functions. The notation

of func tional application, as in Sec t ion 1.6, shows how the thing goes:

Table 8.1 A one-place

predicate

P : D → F a : D
P (a) : F
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We have a function P from D to F , the latter the category of formulas,

and an argument a in D. The function value P (a) is in F . If we have two

arguments, the notation is:

Table 8.2 A two-place predicate

Q : D × D → F a : D b : D
Q(a, b) : F

The notationD × D indicates that the function takes two arguments, which

can be generalized to any number of arguments. What is sometimes called

the ‘arity of a predicate’, i.e., the n of an n-place relation, is usually read from

the notation, and we have unary, binary, n-ary, etc. predicates.

Next to the constants a, b, c . . . that name objects in a domain D, we

need variables x, y, z, . . . , x1, x2, . . . for the expression of generality and

existence. The universal quantifier is used for the former, the existential
quantifier for the latter. The notation follows the idea of suitably inverted

letters, here ∀ for All and ∃ for Exists. Below, a one-place atomic formula

has been quantified and possible readings of the formulas given:

Table 8.3 The quantifiers and some of their

readings

∀x P (x): for every x, P (x), all x have the property P (x)

∃x P (x): there is an x such that P (x), P (x) for some x

We say that the variable x occurs quantified in these formulas. If one asks

what variables are, the answer is that they are symbols used according to

certain rules. Constants, instead, are expressions that name specific objects.

There is no handy way of expressing generality and existence without the

use of variables. We could say in a single case something like ‘all objects

have the property P ’, and ‘there is an object with the property P ’. However,

when formulas grow complex, a way is needed for keeping track of which

quantifier quantifies what variable occurrences. Thus, we write in general:

∀x(A) and ∃x(A)

Now it is clear that formula A is quantified. It forms the scope of the

quantifiers ∀x and ∃x .

Definition 8.1. Free and bound variables. An occurrence of a variable x in a

formula A is free if it is not in the scope of any quantifier ∀x or ∃x. Otherwise

the occurrence is bound.
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To cut down the number of parentheses, we leave them out around atomic

formulas. We leave them out also if a quantifier is followed by another

quantifier, as in:

∀x∃y(P (x, y) ⊃ Q(x, y, z))

The scope of ∃y is the formula in parentheses after it, and the scope of ∀x

is what is left if ∀x is deleted. We can read the formula as: There exists for

every x a y such that if P (x, y), then Q(x, y, z). The formula has one two-

place predicate and one three-place predicate, and two bound occurrences

of each of x and y, and one free occurrence of z. (The x in ∀x and y in ∃y

are not counted.) We shall soon see what the point and meaning of such

free occurrences of variables is.

Predicate logic is a language that is used for expressing properties of

given individuals and relations among these individuals. One can say that

it contains a kind of ontology of the world, namely one of individuals and

their properties and relations.

Predicate logic puts no limit to how complicated quantificational struc-

tures can be. A sequence of quantifiers such as ∀x∃y∀z is quite natural.

There is for every person some problem on which every attempt will fail. The

three-place relation here is: person x fails on problem y in attempt z. This

example also illustrates the choice of a domain. In this case the domain

seems to contain, at least, persons, problems, and attempts. There is a three-

place relation that we can write as Fail(x, y, z), in which x is a person, y

a problem, and z an attempt. These have to go in the right places in the

relation. The usual way to do it is to introduce predicates such as Person(x),

Problem(y), and Attempt(z), and to write the formalization as in:

Person(x) & Problem(y) & Attempt(z) ⊃ Fail(x, y, z)

The condition for Fail(x, y, z) can be lifted only if x, y, z are appropriately

chosen.

For another, real-life, example, take There is for every convergent sequence

x1, x2, . . . of real numbers a number n such that for every m, if m > n, then

the difference between xm and xm+1 is less than 1/n.

Thinking of the quantifiers, some logical connections are obvious, as in

the following:

∀x A ⊃ ¬∃x¬A

∃x A ⊃ ¬∀x¬A

∀x A & ∀x B ⊃ ∀x(A & B)

∃x A ∨ ∃x B ⊃ ∃x(A ∨ B)
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If for all x A, then there is no x such that ¬A, . . . , If there is an x such that A

or an x such that B, then there is an x such that A ∨ B . These sound correct.

What, then, about:

∀x∃y A ⊃ ∃y∀x A

∃y∀x A ⊃ ∀x∃y A

It turns out that the former is not correct, but the latter is. In general, if

something is not logically correct, there should be a counterexample. The

Norwegian logician Thoralf Skolem showed in 1922, in a talk he gave in

Helsingfors, that if there is a counterexample for a formula in predicate

logic, there is one that talks about the natural numbers and their properties.

We take as the A of the first of the above formulas the two-place atomic

formula y > x . Now the whole formula states:

If for every number x there is a number y greater than x, then there is a number

y such that for every number x, y is greater than x.

The antecedent of this implication is a clearly true statement about nat-

ural numbers, the succedent instead, claiming the existence of a greatest

natural number, a clearly false statement. Therefore the first of the above

implications cannot be a logically correct one.

The quantifiers in the antecedent ∀x∃y y > x can be taken in the follow-

ing way: Whatever value is proposed for x , a value can be found for y such

that y > x . This is easy: just set y = x + 1. Then y > x is x + 1 > x which

is true whatever the value of x . With ∃y∀x y > x , one would first have to

fix a value for y, then show that in whatever way x is chosen, a formula

true about the natural numbers is obtained. However, with y fixed, if x is

chosen to be y + 1, the result is y > y + 1 which is a falsity whatever y was

chosen.

The pattern behind the above readings of the quantifiers is as follows: Let

Q1,Q2, . . . stand for ∀ or ∃:

A sequence of quantifiers Q1x, . . . ,Qnz before a formula A codes an order of

dependence between the variables x, . . . , z in A such that each occurrence of

an existentially quantified variable depends on the variables that stand before

it in the quantifier prefix Q1x, . . . ,Qnz.

This idea will suffice for seeing the logical correctness of:

∃y∀x A ⊃ ∀x∃y A



120 Logical reasoning with the quantifiers

The antecedent ∃y∀x A requires that y be chosen first, and that any later

choice of x will result in a correct claim A about some relation between

the chosen y and x . The consequent ∀x∃y A requires that whatever x was

chosen first, a y can be found such that A is correct. To meet this require-

ment, it is sufficient to make each time the same choice of y as in the

antecedent.

As we have seen, it is by no means immediately evident whether something

is a logically correct claim or logically correct argument when quantifiers

are used. Similarly to propositional logic, a few logical principles of proof in

predicate logic turn out to be sufficient for the representation of all logically

correct arguments. This is by no means an obvious property. It turns out

further that if a domain is finite, the quantifiers do not add anything essential

to propositional logic. If a domain is infinite, what guarantee is there, a priori,

that a finite system of rules is sufficient for the representation of all logically

correct arguments about the domain?

8.2 The meaning of the quantifiers

There are two main theories about the meaning of universal propositions.

To explain them, we need a precise notion of instances of such propositions.

This is easy in specific cases, as with the natural numbers and a universal

proposition such as All even numbers are sums of two prime numbers. The

instances are 2 is a sum of two prime numbers, 4 is a sum of two prime

numbers, . . . . Formally, we do the following. First, constants and variables

together are called terms and denoted by s , t, . . . . We use a special bracket

notation for the substitution of a term in a formula:

Substitution. Let A be a formula. Then A[t/x] is the formula that is obtained

from A when the free occurrences of x in A are replaced by the term t.

If A has no free occurrences of x , then A[t/x] is identical to A. Otherwise,

in the ‘normal’ case, it is some other formula. We say that t is free for x in

A if no variable in t becomes bound in the substitution.

Given a universal formula ∀x A, an instance of ∀x A is obtained through

the substitution of a term t for x in A, i.e., A[t/x] is an instance of ∀x A.

The first of the two theories about the meaning of universal propositions,

associated with the name of Alfred Tarski in the 1930s, goes as follows:
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Truth of universals: Tarski. Given a domain D of objects a1, a2, . . . and

relations P , Q, R, . . . in D, the formula ∀x A is true in D if the instance

A[ai/x] is true for each ai . ∀x A is logically true if it is true in any domain

D.

The idea is that, given a schematic formula A of predicate logic, it can be

‘interpreted’ as a concrete formula about some concrete objects in a given

domain and with some concrete relations in place of the schematic atomic

formulas. Thus, one says that formula A is logically true if it is true under

any interpretation.

Tarski’s definition is problematic in a couple of respects. First of all, it

refers to an arbitrary domain of objects and some theory would be needed

for stating what that means. The most common account relies on axiomatic

set theory. Secondly, the definition mainly replaces the for all in ∀x A by each

ai in A[ai/x]. From one point of view, the definition is obtained through

ellipsis: If a domain D is finite, we can list its elements, as in a1, . . . , an.

The different instances of ∀x A are A[a1/x], . . . , A[an/x]. Therefore ∀x A

is true in a finite domain D if each of the instances A[a1/x], . . . , A[an/x]

is true in D. These instances are true in D if and only if their conjunction

is true in D, so we have:

A universal formula ∀x A is true in a finite domain D of n objects a1, . . . , an

if A[a1/x] & . . . & A[an/x] is true in D.

Tarski’s meaning explanation of the universal quantifier follows if the restric-

tion to finiteness is lifted, as in:

∀x A is true in D if A[a1/x] & A[a2/x] & . . . is true in D.

Another, much earlier account of the meaning of universal propositions

stems from Frege in 1879. Gentzen formulated it in natural deduction as:

Provability of universals: Frege–Gentzen. The formula ∀x A is provable
from assumptions � if A[y/x] is provable for an arbitrary y.

The Frege–Gentzen account is syntactic and does not need any theory of

what domains of objects are in general. It is just assumed that there is an

unbounded supply of parameters a, b, c , . . . that represent constants, as well

as variables x, y, z, . . . . As to ‘arbitrary’ variables, there is nothing arbitrary
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about them. We shall make the notion precise through an introduction rule

for ∀ in natural deduction:

Table 8.4 The

introduction rule

for the universal

quantifier

�....
A[y/x]

∀x A
∀I

We have in the premiss a derivation of the formula A[y/x] from the open

assumptions �, and the conclusion is ∀x A. The following condition states

in what sense y is arbitrary:

Variable condition in rule ∀I . The variable y must not occur free in any of

the assumptions � the premiss A[y/x] of the rule depends on.

The idea is that nothing is assumed about y except that it is an object in

a domain D. Thus, any object in D can take its place in the derivation

of A[y/x] from �, say the object a . If every free occurrence of y in the

derivation is replaced by a , a derivation of A[a/x] from � is obtained. The

arbitrary variable in rule ∀I is called the eigenvariable of ∀I . In practice,

when an inference with an eigenvariable is planned, a variable is chosen as

eigenvariable that does not occur anywhere else. Such a variable is called a

fresh variable.

The condition of provability according to Frege–Gentzen is stronger than

the condition of truth according to Tarski: If we have a derivation of A[y/x]

from � for an arbitrary y, we can substitute in turn a1, a2, . . . for x in the

derivation, to get a derivation of A[a1/x] from �, then A[a2/x] from �, etc.

This is not an infinitistic explanation like the one of Tarski, because we have

a finitary prescription for how to produce a derivation of A[ai/x] from �

for any given object ai . The prescription is not unlike, say, the prescription

for doing the sum of two natural numbers that we do not need to explain

by actually showing the infinity of possible sums of two numbers.

Let the domain consist of the natural numbers 0, 1, 2, . . ., denoted N.

Let A be a formula of arithmetic with just x as a free variable. Each instance

A[n/x] of ∀x A states something specific about some number n. Let there

be reasons specific to n for why A[n/x] is true, and let these reasons be

such that they would not apply to any other number m. For all we know
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about ar ithmetic t r uth, there is nothing to exclude the p ossibilit y of a t r ue

universal for mula ∀ x A  such that each instance is t r ue for its ow n reasons,

so to say. If this is so, there is no finitar y way of seing that ∀ x A  is t r ue.

The Fre ge–Gentzen prov abilit y condition instead requires there to be a

justification for A that is unifor m , the same for each instance. We can ask

again, as in the last par agaph of S ec tion 7.3: Which comes first, t r uth or

provability?

The meaning of the existential quantifier in a sentence such as ∃x A is

explained in terms of truth by requiring that some instance A[ai/x] be true:

Truth for existence. Given a domain D of objects a1, a2, . . ., an existential

formula ∃x A is true in D if A[ai/x] is true for some ai . ∃x A is logically true
if it is true in any domain D.

If a domain is finite, truth reduces to the propositional case similarly to the

universal quantifier:

An existential formula ∃x A is true in a finite domainD of n objects a1, . . . , an

if A[a1/x] ∨ . . . ∨ A[an/x] is true in D.

There is a limiting case in which the number of objects is 0 and the domain

is empty. In this case we set:

Definition 8.2. Truth in an empty domain. Existential formulas are false in

an empty domain, universal formulas are true in an empty domain.

The thing is clear for an existential formula. With universal formulas, one

can think that they are true in an empty domain because there exist no

counterexamples.

The explanation of the existential quantifier in terms of provability is that

∃x A can be concluded if A[t/x] had been concluded for some term t:

Table 8.5 The

introduction rule

for the existential

quantifier

�....
A[t/x]

∃x A
∃I



124 Logical reasoning with the quantifiers

The reason for requiring a term, and not some constant as in the truth

condition for ∃x A, has to do with the way free and bound variables are

treated in a logical calculus. It has to be done so that what variable is chosen

as a bound variable makes no difference, i.e., so that the formulas ∀x A and

∃x A can be changed into ∀y A[y/x] and ∃y A[y/x], respectively, whenever

y is free for x in A. The change of bound variables goes under the name

of α-conversion. The way to include α-conversion in a logical calculus,

instead of just saying that bound variables can be changed, is to use terms

in a suitable way in rule ∃I and in the elimination rule for the universal

quantifier.

The standard elimination rule for the universal quantifier is to draw

arbitrary instances of a universally quantified formula:

Table 8.6 The

elimination rule

for the universal

quantifier

�....
∀x A

A[t/x]
∀E

If an introduction is followed by an elimination, the I-E pair can be deleted,

as with the following part of a derivation and its conversion:

Table 8.7 A detour conversion on ∀
....

A[y/x]

∀x A
∀I

A[t/x]
∀E

....

....
A[t/x]

....

In the converted derivation, the steps down to A[t/x] are obtained from the

derivation of the premiss A[y/x] in the unconverted derivation, through the

substitution of t for y for every free occurrence of y in the latter derivation.

This can be done and a correct derivation of A[t/x] obtained because y is

arbitrary.



The quantifiers 125

The following derivation shows how the change of a bound variable

in a universally quantified formula can be effected, whenever y is a fresh

variable:

Table 8.8 Change of a

universally bound

variable

∀x A
A[y/x]

∀E

∀y A[y/x]
∀I

The condition on y guarantees that it works as an eigenvariable.

The elimination rule for the existential quantifier requires some prepara-

tions. In the introduction rule, any instance A[t/x] can occur as a premiss,

so in particular any instance A[a/x] with a a constant in some domain

D. There is an analogy to disjunction: A ∨ B can be introduced whenever

one of A and B has been derived. In the elimination rule for disjunction,

a consequence C can be drawn if it follows from both of the cases that

correspond to the two ways in which the disjunction can have been intro-

duced. With existence, the cases are as many as there are members in the

domain. To show that C is a consequence of each of these cases, we can use

eigenvariables in a way similar to rule ∀I . Thus, if C follows from A[y/x]

in which y is an eigenvariable, it follows from ∃x A:

Table 8.9 The elimination

rule for the existential

quantifier

�....
∃x A

1

A[y/x],�....
C

C
∃E ,1

The assumption A[y/x] is closed at the inference, as indicated by the label.

Variable condition in rule ∃E . The variable y must not occur free in any of

the assumptions � that remain open in the derivation of the minor premiss C ,

nor in C.
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Similarly to the universal quantifier, an ∃I -∃E pair can be converted:

Table 8.10 A detour conversion on ∃
....

A[t/x]

∃x A
∃I

1

A[y/x]
....

C
C

∃E ,1

....

....
A[t/x]

....
C....

The converted derivation is obtained by taking the derivation of the premiss

A[t/x] of rule ∃I , combined with the derivation of C from A[t/x] with t

in place of the eigenvariable y in the latter derivation. Finally, the derivation

is continued from C as in the conclusion of rule ∃E in the unconverted

derivation.

Variables bound by existential quantifiers can be changed similarly to the

universal quantifier:

Table 8.11 Change of an

existentially bound variable

∃x A

1

A[y/x]

∃y A[y/x]
∃I

∃y A[y/x]
∃E ,1

To show that bound variables can be changed also inside compound for-

mulas is a matter that is best treated in a more advanced book.

The most typical error committed with the quantifier rules is: Assume

A[y/x]. The assumptions � that A[y/x] depends on are absent so that

y cannot occur free in them, so we can generalize by ∀I into ∀x A. The

simple error lies in forgetting that the assumption A[y/x] depends on

itself, thus, y occurs free in an assumption A[y/x] depends on. Similarly,

the eigenvariable in rule ∃E must not occur free in the conclusion. For

example, in the change of a bound existential variable, y has to be bound

before the conclusion is drawn. Without this condition, we could derive:

∃x A
1

A[y/x]
A[y/x]

∃E ,1

Now ∀x A could be inferred from the conclusion, because y is not free in

any assumption the conclusion depends on.
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The a ddition of the ab ove int ro duc tion and e limination r ules to the

r ules of natur al deduc t ion of S ec tion 3.2 g ives Gentzen’s or ig inal system

of natur al deduc tion for intuitionistic predicate log ic. His main theorem

states that der ivations in the system can b e conver ted to nor mal for m.

There are the two detour conversions w ith the pairs ∀ I -∀ E and ∃ I -∃ E .

There i s i n a ddit i on a p er mutat ive conversion w ith r u le ∃ E , in analogy to

the p er mutative conversion for disjunc tion in Sec t ion 3.3, w hene ver the

conclusion of rule ∃E is the major premiss of another E -rule. For example,

if also the latter rule is ∃E , we have a part of derivation and its conversion:

Table 8.12 A permutative conversion for rule ∃E

....
∃x A

1

A[y/x]
....

∃z B
∃z B

∃E ,1

2

B[v/z]
....

C
C

∃E ,2

....

....
∃x A

1

A[y/x]
....

∃z B

2

B[v/z]
....

C
C

∃E ,2

C
∃E ,1

....

If in the unconverted derivation the minor premiss ∃z B of the upper rule

was derived by rule ∃I , the derivation after the permutative conversion has

a detour convertibility on ∃z B .

By the normalizability of derivations, the subformula property of normal

derivations follows, however, with an important change as compared to

propositional logic; We have to admit as subformulas of quantified formulas

any of their instances:

Table 8.13 Subformulas of a formula in predicate logic

1. The subformulas of P , Q, R, . . ., A&B, A ∨ B, A ⊃ B without free vari-

ables, and of ⊥, are these formulas themselves as well as the subformulas of

A and B.

2. The subformulas of a formula A with a free variable x are A itself as well

as the subformulas of A[t/x] for any term t.

3. The subformulas of ∀x A and ∃x A are these formulas themselves as well as

the subformulas of A.

With an infinite domain, a quantified formula has an infinity of subformu-

las. Proof search cannot be limited in the way of propositional logic and the

decidability of the derivability relation is lost.
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No t e s t o C h a p t e r 8

Intuitive reasoning w ith the quantifiers is at least as old as mathematics. In

the latter par t of the ninete enth centur y, there was a movement towards more

r igorous for mulations of mathematical arguments, esp e cially arguments

about the convergence of infinite ser ies of r ational numbers. The t r a ditional

for m is that such a sequence a1, a 2, . . . co nve r g e s t o a l i m i t a if for al l n , an m

can b e found such that for all k , if k > m , then |ak − a| < 1/ n . Intuitive ly,

whate ver small b ound 1/ n is set, there is an e lement am in the ser ies such

that all of the successive elements ak w ith k > m are w ithin the b ound

1/ n from the limit value a . T hinking of it, we have here a for mula w ith a

quantifier prefix of the for m ∀ x∃ y∀ z .

The log ic of the quantifiers was figured out mainly by Fre ge in his Begr iffs-

s c hr ift, around the t ime of the above de velopments in mathematics. Frege

used classical logic and defined existence in terms of universality, in a

definition that is today written as ∃x A(x) ≡ ¬∀x¬A(x). Intuitionistic logic

has an independent notion of existence. Its axiomatic formulation stems

from He y t ing (cf. S ec tion 14.4(b)), and the r ules of natur al deduc t ion for

the two quantifiers from Gentzen.



9 Der ivations in pre dicate log ic

We shall present first the int ro duc t ion and elimination r ules for the quanti-

fiers in detail, w ith examples of der ivations in intuitionistic predicate log ic.

Next a sequent system for proof search is int ro duce d, in analog y to propo-

sitional log ic. Finally, natur al deduc tion and sequent calculus for classical

predicate log ic is presente d.

9.1 Natur al deduc t ion for pre dicate log ic

Some example der ivations w ill show how the system of natur al deduc-

tion for intuitionistic predicate log ic wor ks. Le t us make the notation for

substitution lig hter by the follow ing:

Convent i on ab out subst itut ion. The free var iables of a for mula A can b e

written as if the formula were atomic.

With this convention, we w r ite A( x ) for a for mula A that has a free var iable

x , and  A(t ) for the result A[t/ x ] of substituting t for x in A. With more

than one fre e var iable, we w r ite B ( x, y ), etc. The r ules of inference for the

quantifiers now read:

Ta b l e 9 . 1 Rules of natur al deduc t ion for the quantifiers

A( y )

∀ x A( x )
∀ I

∀ x A( x )

A(t )
∀ E

A(t )

∃ x A( x )
∃ I

∃ x A( x )

1

A( y )
....

C
C

∃ E ,1

Ru l e s ∀ I and ∃ E have the eigenvar iable y . A system of natur al deduc tion

for intuitionistic predicate log ic is obtained throug h the addition of these

quantifier r ules to the system of intuitionistic natur al deduc t ion for prop o-

sitional log ic of Chapter 3, and a system of classical pre dicate log ic throug h

an addition to the classical propositional r ules of Chapter 5. 129
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(a) Some example derivations. We shall show as a first example of deriva-

tions in natural deduction for predicate logic that the order of two ∀’s can

be changed, and the same for two ∃’s:

∀x∀y A(x, y)

∀y A(x, y)
∀E

A(x, y)
∀E

∀x A(x, y)
∀I

∀y∀x A(x, y)
∀I

∃x∃y A(x, y)

2
∃y A(x, y)

1
A(x, y)

∃x A(x, y)
∃I

∃y∃x A(x, y)
∃I

∃y∃x A(x, y)
∃E ,1

∃y∃x A(x, y)
∃E ,2

The variable condition is met in the left derivation, because there are no free

variables in the assumption. In both derivations, we have used x and y as

eigenvariables. This choice respects the variable conditions for the quantifier

rules.

Some of the simplest types of formulas in predicate logic belong to what

is known as monadic predicate logic, i.e., that special case of predicate logic

in which there are only one-place predicates. Such predicates can be used

for representing Aristotle’s theory of syllogistic inferences. These inferences

have two premisses and one conclusion, in the style of If every A is B and

every B is C, then every A is C, and If some A is B and every B is C, then some

A is C. These two examples can be written in the language of predicate logic

as:

∀x(A(x) ⊃ B(x)), ∀y(B(y) ⊃ C (y)) � ∀z(A(z) ⊃ C (z))

∃x(A(x) & B(x)), ∀y(B(y) ⊃ C (y)) � ∃z(A(z) & C (z))

In these, we have chosen distinct bound variables in the assumptions and the

conclusion. By the change of bound variables, exactly the same is expressed

if we write, say in the first:

∀x(A(x) ⊃ B(x)), ∀x(B(x) ⊃ C (x)) � ∀x(A(x) ⊃ C (x))

This syllogism is derived as in:

∀x(B(x) ⊃ C (x))
B(x) ⊃ C (x)

∀E

∀x(A(x) ⊃ B(x))
A(x) ⊃ B(x)

∀E 1
A(x)

B(x)
⊃E

C (x)
⊃E

A(x) ⊃ C (x)
⊃I,1

∀x(A(x) ⊃ C (x))
∀I

There are no free variables left in the open assumptions after the second-to-

last line has been concluded, so that x works as an eigenvariable in the last
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rule. Nothing in the eigenvariable conditions prevents the use of the bound

variable also as the eigenvariable.

The second example is derived by:

∃x(A(x) & B(x))

1
A(z) & B(z)

A(z)
&E

∀y(B(y) ⊃ C (y))

B(z) ⊃ C (z)
∀E

1
A(z) & B(z)

B(z)
&E

C (z)
⊃E

A(z) & C (z)
&I

∃z(A(z) & C (z))
∃I

∃z(A(z) & C (z))
∃E ,1

It is impossible to tell in advance where the major premiss ∃x(A(x) & B(x))

should be written. Therefore it is best just to take the instance A(z) & B(z)

with the eigenvariable, to work the way to the minor premiss of ∃E , and

then to add the major premiss and its inference line.

Note that what looks very similar to the second syllogism is not derivable:

∀x(A(x) ⊃ B(x)), ∃y(B(y) & C (y)) � ∃z(A(z) & C (z))

The failure can be seen semantically in classical logic as follows: Assume

given a domain in which A(t) is not true for any object. Then A(t) ⊃ B(t)

is true for any object, so that ∀x(A(x) ⊃ B(x)) is true. Assume further that

there is an object a in the domain such that B(a) is true and C (a) is true.

Then ∃y(B(y) & C (y)) is true, but ∃z(A(z) & C (z)) is false because ∃z A(z)

is false. Whatever fails classically fails also intuitionistically. With intu-

itionistic predicate logic, it can be shown through failed proof search that

∃z(A(z) & C (z)) is underivable from the assumptions ∀x(A(x) ⊃ B(x))

and ∃y(B(y) & C (y)).

Aristotle’s syllogistic contains a good number of modes of inference, 19

according to one count. It is remarkable that such modes of inference, and

any other similar ones, can be justified by the four quantifier rules and the

rules for the connectives.

More example derivations in predicate logic:

a. � ∀x A(x) ⊃ ¬∃x¬A(x)

2
∃x¬A(x)

1
¬A(y)

3
∀x A(x)

A(y)
∀E

⊥ ⊃E

⊥ ∃E ,1

¬∃x¬A(x)
⊃I,2

∀x A(x) ⊃ ¬∃x¬A(x)
⊃I,3
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b. � ∃x A( x ) ⊃ ¬∀x¬ A( x )

3
∃ x A( x )

2
∀ x¬ A( x )
¬ A( y )

∀ E 1
A( y )

⊥ ⊃ E

⊥ ∃ E ,1

¬∀ x¬ A( x ) 
⊃ I,2

∃ x A( x ) ⊃ ¬∀x¬ A( x ) 
⊃ I,3

The converses to (a) and (b) are under ivable in intuitionistic predicate log ic,

but the y are instead der ivable in classical pre dicate log ic. The standard inter-

pretation of the classically provable e quivalence ∃ x A( x ) ⊃⊂ ¬∀  x¬ A( x ) is

that there is no indep endent notion of existence in classical log ic.

c. � ∀x A( x ) & ∀ x B( x ) ⊃ ∀x ( A( x ) &  B ( x ))

1
∀ x A( x ) & ∀ x B( x )

∀ x A( x )
& E

A( y )
∀ E

1
∀ x A( x ) & ∀ x B( x )

∀ x B( x )
& E

B ( y )
∀ E

A( y ) &  B ( y )
& I

∀ x ( A( x ) &  B ( x )) 
∀ I

∀ x A( x ) & ∀ x B( x ) ⊃ ∀x ( A( x ) &  B ( x )) 
⊃ I,1

d. � ∃x ( A( x ) &  B ( x )) ⊃ ∃x A( x ) & ∃ x B( x )

2
∃ x ( A( x ) &  B ( x ))

1
A( y ) &  B ( y )

A( y )
& E

∃ x A( x ) 
∃ I

1
A( y ) &  B ( y )

B ( y )
& E

∃ x B( x ) 
∃ I

∃ x A( x ) & ∃ x B( x )
& I

∃ x A( x ) & ∃ x B( x ) 
∃ E ,1

∃ x ( A( x ) &  B ( x )) ⊃ ∃x A( x ) & ∃ x B( x ) 
⊃ I,2

In the semantic argument above, it was concluded that ∃ z ( A( z ) & C ( z )) is

false b ecause ∃ z A( z ) is false, w hich follows from (d).

Lo oking at the four example der ivations, we notice that the y are all nor mal

in the simple sense of not hav ing any detour or p er mutation conver t ibilities.

Howe ver, the y al l h ave for mulas such a s A( y ) that are not st r ic tly sp eaking

subformulas of the conclusion (there are no open assumptions in any of the

derivations). The definition of a subformula is adjusted so that any instances

of universal and existential formulas are to be counted as subformulas.

It follows from the normalization theorem for intuitionistic predicate

log ic, to be proved in Sec t ion 13.2, that nor mal der ivations have the subfor-

mula property. The result gives us an important corollary about the relations
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between the two log ical systems of propositional and pre dicate log ic, called

co n s e r v a t i v i t y :

Conser vat iv it y of pre dicate log ic over prop osit ional log ic. If a fo r mu l a A i s

der ivable from � in intuit ionist ic predicate log ic and if there are no quant ifiers

in A, �, the n A is der ivable in intuit ionist ic proposit ional log ic.

Conser v ativ it y in gener al is the requirement that if a language is extended

and new pr inciples of proof about the extension added, there should b e

nothing provable about the unextended language that was not provable

w ith the old pr inciples.

(b) Axiomat ic pre dicate log ic. Axiomatic propositional log ic was int ro-

duce d in S ec tion 3.6. Two axioms and two r ules of inference are added to

the propositional axioms in axiomatic predicate log ic:

Ta b l e 9 . 2 Axiomatic predicate

log ic

C ⊃ A( y )

C ⊃ ∀x A( x ) ∀ x A( x ) ⊃ A(t )

A(t ) ⊃ ∃x A( x )

A( y ) ⊃ C

∃ x A( x ) ⊃ C

The condition in the two r ules is that the eigenvar iable y must not o ccur

free in C . T he r ules are quite analogous to those of sequent calculus, save

that there is an implication in place of the tur nstile.

9 . 2 Pro o f s e a rch

The examples of the pre v ious sec t ion show again that der ivation t rees can

be aw kward to const r uc t in natur al deduc tion. We shall follow a path to

a sequent calculus formulation of the logical rules that supports root-first

proof search, similar to the one in S ec tion 3.4: The e limination r ule for ∀ is

changed so that it has an arbitrary consequence and normal derivability is

defined as in that same section. Now the rules can be translated into rules

of sequent calculus that are easy to use in the construction of derivations.

(a) A modification of universal elimination. The introduction rule for

∀ requires that there be a derivation of A(y) for an arbitrary y. Assume

there to be such a derivation at hand. The eigenvariable y in it can be



134 Log ical reas oning w ith the quant ifie r s

s u b s t i t u te d by a ny te r m t and a cor rec t der ivation of A(t ) results. To express

that something is the consequence of the existence of a der iv ation of A( y )

w ith y ar bit r ar y, we thus stipulate:

Whate ver follow s from any instance A(t ) of ∀ x A( x ), must follow from

∀ x A( x ).

The cor responding elimination r ule is now st r aig htfor ward:

Ta b l e 9 . 3 The gener al

elimination r ule for ∀

�....
∀ x A( x )

1

A(t ), �....
C

C
∀ E ,1

There can be any ter m t in the closed assumption A(t ). Gentzen’s r ule, as

in Table 9.1, fol lows when C is identical to A(t ). Per mutative conversions

wor k exac tly as w ith the existential quantifier, Table 8.10. Therefore we can

define:

Definition 9.1. Normality. A derivation in intuitionistic predicate logic with

general elimination rules is normal when all major premisses of elimination

rules are assumptions.

When constructing derivations, it is often practical to use the standard

elimination rules. The general rules are useful in the study of the structure of

derivations. For example, it follows from normalization, as in propositional

logic, that the last rule in a derivation that has no open assumptions is an I -

rule. In particular, in a normal derivation of a formula ∃x A(x) in which no

open assumptions are left, the last rule must be ∃I. Therefore the following

result is obtained:

Existence property. If ∃x A(x) is derivable in intuitionistic predicate logic,

then A(t) is derivable for some term t.

This is a very weak result: In fact, the premiss of rule ∃I is of the form

A(t), with no open assumptions, and nothing is assumed about t. It is just

a symbol that works as well as an eigenvariable, so we could have concluded

∀x A(x). To have a result with some content, let any number of atomic

assumptions about objects be given, such as P (a), Q(b, c), etc. If the last

rule in a normal derivation were an E -rule, its major premiss would be an
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assumption. However, it would have to be a compound formula, so that the

existence property is extended:

Existence property under atomic assumptions. If ∃x A(x) is derivable from

atomic assumptions � in intuitionistic predicate logic, then A(t) is derivable

from � for some term t.

The premiss of the last rule, ∃I , can very well be A(t) where t is some object

known from the atoms in �.

The existence property can be generalized to hold under any assumptions

that do not contain any essential existential quantifiers, in a way analogous to

the disjunction property of intuitionistic propositional logic. For example,

∃x A(x) ⊃ B is a formula with an existential quantifier that is only apparent,

by the equivalence of ∃x A(x) ⊃ B and ∀x(A(x) ⊃ B). The derivation in

one direction is:

2
∃x A(x) ⊃ B

1
A(x)

∃x A(x)
∃I

B
⊃E

A(x) ⊃ B
⊃I,1

∀x(A(x) ⊃ B)
∀I

(∃x A(x) ⊃ B) ⊃ ∀x(A(x) ⊃ B)
⊃I,2

The other direction is given by:

2
∃x A(x)

3
∀x(A(x)⊃ B)

A(y) ⊃ B
∀E 1

A(y)
B

⊃E

B
∃E ,1

∃x A(x) ⊃ B
⊃I,2

∀x(A(x) ⊃ B) ⊃ (∃x A(x) ⊃ B)
⊃I,3

It is assumed that x is not free in B . If it were, x could not work as an

eigenvariable in rule ∀I in the first derivation, because there is at that stage

still the assumption ∃x A(x) ⊃ B left open. Similarly, y could not work as

an eigenvariable in the second derivation.

The above result is a perfect analogy to the theorem of propositional logic

by which we have the equivalence (A ∨ B ⊃ C ) ⊃⊂ (A ⊃ C ) & (B ⊃ C ).

The equivalence of ∃x A(x) ⊃ B and ∀x(A(x) ⊃ B) formalizes a mode

of inference that has been used on intuitive grounds in mathematical proofs

from antiquity on. A theorem can be of the form:

For all x, y, and z, if A(x, y, z), then B.
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It can b e w r itten in predicate log ic as ∀ x∀ y∀ z ( A( x, y, z ) ⊃ B ). The pro of

t y pically pro ceeds throug h an assumption: Le t there be g ive n obj ects a , b , and

c such that A(a, b, c ). Here it is clearly assumed that there exist some three

objec ts a, b , and c that satisfy some requirement expressed by A(a, b, c ),

an assumption that is for malized in predicate log ic as ∃ x∃ y∃ z A( x, y, z ).

Ne x t B is proved from this assumption, by w hich ∃ x∃ y∃ z A( x, y, z ) ⊃ B

can b e concluded. By the above pre dicate-log ical equivalence, a pro of of

∀ x∀ y∀ z ( A( x, y, z ) ⊃ B ) is obtained.

The given objects a, . . . , c such that A(a, . . . , c ) in a theore m are the e ige n-

var iables in the eliminat ion of an ex iste nt ial assumpt ion∃ x . . . ∃ z A( x, . . . ,  z ).

Another way to look at the example is: T he task is to prove a theorem of the

for m ∀ x∀ y∀ z ( A( x, y, z ) ⊃ B ), so assume A( x, y, z ) for ar bit r ar y x, y, z .

Ne x t p r o v e B , by which  A( x, y, z ) ⊃ B can b e concluded. T his conclusion

can b e gener alized into ∀ x∀ y∀ z ( A( x, y, z ) ⊃ B ) b ecause x, y, z were a r bi -

t r ar y. The for mulation is slig htly different b ecause A( x, y, z ) is assumed

for ar bit r ar y x, y, z , w hereas in the first for mulation the assumption was

existential.

(b) Sequent calculus r ules for the quant ifiers. Assume n

into a sequent calculus der ivation exac tly as in Chapter 4. This is st r aig ht-

ext a nor mal

der ivation in intuitionistic natur al deduc tion to be g iven. We t r anslate it

for ward for the int ro duc t ion r ules: T he y tur n into cor responding r ules for

int roducing a for mula, ∀ x A( x ) or ∃ x A( x ), w h en sequents w ith a for mu la

A( y ) or  A(t ) in the succe dents h ave b een der ived. T he left r ule for ∃ is a

dire c t t r anslation of the cor responding natur al e limination r ule: T he pre-

miss has a der ivation of C from A( y ) and some fur ther assumptions, the

conclusion a der iv ation of C from ∃ x A( x ) and these same assumptions.

The left r ule for ∀ is similarly a dire c t t r anslation of the gener al e limina-

tion r ule of Table 9.3. Altogether, the r ules to be added to the intuitionistic

prop ositional ones of Chapter 4, Table 4.1, are four :

Ta b l e 9 . 4 Quantifier r ules for ro ot-first

proof search

A(t),∀x A(x), � � C

∀x A(x), � � C
L∀

� � A(y)

� � ∀x A(x)
R∀

A(y), � � C

∃x A(x), � � C
L∃

� � A(t)

� � ∃x A(x)
R∃
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In rule L∀, the principal formula ∀x A(x) is repeated in the premiss. The

reason can be seen as follows: In a natural derivation, it is possible to use a

premiss ∀x A(x) of rule ∀E several times, each time with an instance A(t),

A(s ), . . . that is appropriate for the continuation of the derivation, as in:

1
∀x A(x)

A(a)
∀E

1
∀x A(x)

A(b)
∀E

A(a) & A(b)
&I

∀x A(x) ⊃ A(a) & A(b)
⊃I,1

In a root-first proof search, once a particular instance has been taken, there

would not be any possibility of further instances if the universal formula had

been left behind somewhere down in the derivation. Consider the sequent

∀x A(x) � A(a) & A(b). If rule L∀ is instantiated by a without repetition,

the result is A(a) � A(a) & A(b) that is underivable. With ∀x A(x) repeated

in the antecedent of rule L∀, a second instance of L∀ can be taken that gives

A(a), A(b), ∀x A(x) � A(a) & A(b), and now rule R& gives two initial

sequents:

A(a), A(b), ∀x A(x) � A(a) A(a), A(b), ∀x A(x) � A(b)
A(a), A(b), ∀x A(x) � A(a) & A(b)

R&

A(a), ∀x A(x) � A(a) & A(b)
L∀

∀x A(x) � A(a) & A(b)
L∀

Rules R∀ and L∃ correspond to the two natural quantifier rules with eigen-

variables. In the sequent formulation, the eigenvariable condition can be

expressed as:

Eigenvariable condition. The eigenvariables of rules R∀, L∃ must not occur

free in the conclusions of the rules.

Some example derivations will show how root-first proof search in predicate

logic works.

Examples of root-first derivations in predicate logic:

a. � ∀x A(x) ⊃ ¬∃x¬A(x)

A(y), ∀x A(x), ¬A(y) � A(y)

∀x A(x), ¬A(y) � A(y)
L∀ ⊥, ∀x A(x) � ⊥

∀x A(x), ¬A(y) � ⊥ L⊃

∀x A(x), ∃x¬A(x) � ⊥ L∃

∀x A(x) � ¬∃x¬A(x)
R⊃

� ∀x A(x) ⊃ ¬∃x¬A(x)
R⊃
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b. ∀ x ( A( x ) ⊃ B ( x )), ∀ y ( B ( y ) ⊃ C ( y )) � ∀z ( A( z ) ⊃ C ( z )). This is the

first of the Ar istotelian syllog isms. The der ivation g rows to o bro ad to be

pr inte d conveniently, so some abbre v iations are needed. Whene ver a list of

assumptions in a premiss s tar ts to rep eat for mulas in the conclusion, we

use dots . . .  to indicate them. Also, the rep etition of the pr incipal for mula

in r ule ∀ L is not needed so we leave it unw r itten:

A( z ), . . . � A( z )

B ( z ), B ( z ) ⊃ C ( z ), . . . � B ( z ) C ( z ), . . . � C ( z )
B ( z ), B ( z ) ⊃ C ( z ), . . . � C ( z ) 

L⊃

B ( z ), ∀ y ( B ( y ) ⊃ C ( y )) � C ( z ) 
L∀

A( z ), A( z ) ⊃ B ( z ), ∀ y ( B ( y ) ⊃ C ( y )) � C ( z )
L⊃

A( z ), ∀ x ( A( x ) ⊃ B ( x )), ∀ y ( B ( y ) ⊃ C ( y )) � C ( z ) 
L∀

∀ x ( A( x ) ⊃ B ( x )), ∀ y ( B ( y ) ⊃ C ( y )) � A( z ) ⊃ C ( z ) 
R⊃

∀ x ( A( x ) ⊃ B ( x )), ∀ y ( B ( y ) ⊃ C ( y )) � ∀z ( A( z ) ⊃ C ( z )) 
R∀

c. ∃ x ( A( x ) &  B ( x )), ∀ y ( B ( y ) ⊃ C ( y )) � ∃z ( A( z ) & C ( z )). This second

syllog ism is der ived as follows:

A(v ), B (v ), . . . � B (v )

C (v ), A(v ), . . . � A(v ) C (v ), A(v ), . . . � C (v )
C (v ), A(v ), B (v ), . . . � A(v ) & C (v )

R &

C (v ), A(v ), B (v ), . . . � ∃z ( A( z ) & C ( z )) 
R∃

A(v ), B (v ), B (v ) ⊃ C (v ), ∀ y ( B ( y ) ⊃ C ( y )) � ∃z ( A( z ) & C ( z ))
L⊃

A(v ), B (v ), ∀ y ( B ( y ) ⊃ C ( y )) � ∃z ( A( z ) & C ( z ))
L∀

A(v ) &  B (v ), ∀ y ( B ( y ) ⊃ C ( y )) � ∃z ( A( z ) & C ( z )) 
L &

∃ x ( A( x ) &  B ( x )), ∀ y ( B ( y ) ⊃ C ( y )) � ∃z ( A( z ) & C ( z )) 
L∃

Easy to const r uc t, but hard to read at times, that is a pr ice.

It can b e exp ec te d that the quantifier r ules behave in ways analogous to

those for conjunction and disjunction in propositional logic: Rules R∀ and

∃E , those with the eigenvariables, are invertible. Rule R∃ is not invertible

and can be the source of failed proof search. Rule L∀ is invertible for the

trivial reason that the principal formula is repeated in the premiss:

Lemma 9.2. Inversion lemma for the quantifier rules.

(i) If � � ∀x A(x) is derivable and v a fresh variable, then � � A(v) is

derivable.

(ii) If ∃x A(x), � � C is derivable and v a fresh variable, then A(v), � � C

is derivable.

Proof. The proof is similar to the inversion lemma for the connectives in

Sec t ion 3.5 and pro ceeds by induc tion on the heig ht (g reatest number of

successive steps) in a der ivation.
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(i) Inversion of � � ∀x A(x).

Base case: If � � ∀x A(x) is an initial sequent, its form is ∀x A(x), �′ �
∀x A(x) and ∀x A(x), �′ � A(v) is derived by:

A(v), ∀x A(x), �′ � A(v)
∀x A(x), �′ � A(v)

L∀

If ⊥ is in �, then � � A(v) is derivable.

Inductive case: If ∀x A(x) is principal in the last rule of the derivation of

� � ∀x A(x), the derivable premiss is � � A(y) for some eigenvariable y.

This can be substituted by v. Otherwise it is not principal. Apply then the

inductive hypothesis to the premisses of the last rule, then the last rule.

(ii) Inversion of ∃x A(x), � � C .

Base case: If ∃x A(x), � � C is an initial sequent and C or ⊥ is in �, also

A(v), � � C is an initial sequent. Otherwise C ≡ ∃x A(x) and the sequent

A(v), � � ∃x A(x) is derived by:

A(v), � � A(v)
A(v), � � ∃x A(x)

R∃

Inductive case: As in (i). QED.

In the case of the invertible propositional rules, the premisses were uniquely

determined once the principal formula was fixed. In two quantifier rules, a

fresh eigenvariable is chosen, but the actual choice of the symbol makes no

difference so that also here the premisses are uniquely determined.

As mentioned, also rule L∀ is invertible, but for a reason that is dif-

ferent, namely the repetition of the principal formula in the premiss. The

invertibility follows from a more general result by which the antecedent of

a derivable sequent can be weakened by the addition of any formula A,

provided that it does not contain variables that clash with the eigenvariables

of the derivation:

Theorem 9.3. Admissibility of weakening. If � � C is derivable, then for

any formula A that respects the variable condition, also A, � � C is derivable.

Proof. The proof is by induction on the height of derivation. If � � C is

an initial sequent, also A, � � C is. If � � C is concluded by a logical rule,

its premisses with formula A added to each are derivable by the inductive

hypothesis. The logical rule now gives the conclusion A, � � C . QED.
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By this result, if the sequent ∀ x A( x ), � � C is der ivable, if fol lows that

also A(t ), ∀ x A( x ), � � C is der ivable for any ter m t , so that rule  L∀ is

inver t ible. Cont r ar y to the other inver tible quantifier r ules, the choice of

the ter m t is cr ucial in ro ot-first pro of search.

Si m i l a r l y to r u l e L∀, we can t r y to instantiate r ule R∃ in a root-first proof

search by any ter m. If the sequent is � � ∃x P ( x ), we get � � P (t ) as a

possible premiss. The choice can result in an under ivable sequent, e ven if the

g iven sequent was der iv able: For an example, the sequent P (a ) � ∃x P ( x )

can b e der ived from P (a ) � P (a ) by rule  R∃. If any constant b distinc t

from a is ch osen in the succe dent, an under iv able sequent P (a ) � P (b ) is

obtained. T herefore r ule R∃ is not inver tible.

The r ule of cont r ac tion is likew ise admissible:

Theorem 9.4. Admissibility of contraction. If A, A, � � C is derivable, also

A, � � C is derivable.

Proof. The proof is a continuation of the corresponding proof for the

propositional par t in S ec tion 4.5. It goes by induc t ion on the length of the

contraction formula, with a subinduction on the height of derivation of the

derivable sequent with a duplication.

Contraction of ∀x A(x), ∀x A(x): If ∀x A(x), ∀x A(x), � � C is an initial

sequent, also ∀x A(x), � � C is. Otherwise consider the last rule in the

derivation. If ∀x A(x) is not principal in the last rule, apply contraction

to the premisses. If ∀x A(x) is principal, the premiss is given by a sequent

A(t), ∀x A(x), ∀x A(x), � � C for some term t. Apply the rule of contrac-

tion to get A(t), ∀x A(x), � � C , then rule L∀ to conclude ∀x A(x), � � C .

Contraction of ∃x A(x), ∃x A(x): Apply the inversion lemma to conclude

that if ∃x A(x), ∃x A(x), � � C is derivable, also A(y), ∃x A(x), � � C

is derivable, with y a fresh variable, then the inversion lemma again to

conclude that A(y), A(z), � � C is derivable, with z a fresh variable. Now

substitute y for z to get a derivation of A(y), A(y), � � C , then contraction

on the shorter formula A(y) to get A(y), � � C . Rule L∃ gives now the con-

tracted conclusion ∃x A(x), � � C . QED.

As with propositional logic, sequents can be considered the same if they

contain the same formulas, irrespective of multiplicity:

If in root-first proof search a sequent with a duplication is found, say, the

sequent A, A, � � C, and if the sequent A, � � C already appeared further
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down in the search, the rule that produced the duplication need not be applied,

i.e., proof search from that rule on failed.

Predicate logic, in contrast to propositional logic, does not have the property

of termination of proof search. Proof search will of course terminate in

many cases, with derivability or underivability as a result, but not always.

The origin of nontermination lies in the two quantifier rules L∀ and R∃:

If a sequent is derivable, the correct instances of these rules are there to

be found, but it cannot be said in advance for how long one has to try.

If a sequent is underivable, ever new instances can be produced and the

search need not terminate. In example (a) below, an easy pattern emerges:

A formula A(t) is added to the antecedent of a sequent, always with a new

instance, and this keeps repeating. However, there is no way of telling in

advance what the pattern to look for might be, neither is there any bound

on how complicated it can be.

(c) Underivability results. We can now show underivability results in

intuitionistic predicate logic:

a. � ¬∀x¬A(x) ⊃ ∃x A(x)

A(y), A(z), ¬∀x¬A(x) � ⊥
A(y), ¬∀x¬A(x) � ¬A(z)

R⊃

A(y), ¬∀x¬A(x) � ∀x¬A(x)
R∀ ⊥, A(y) � ⊥

A(y), ¬∀x¬A(x) � ⊥ L⊃

¬∀x¬A(x) � ¬A(y)
R⊃

¬∀x¬A(x) � ∀x¬A(x)
R∀ ⊥ � ∃x A(x)

¬∀x¬A(x) � ∃x A(x)
L⊃

� ¬∀x¬A(x) ⊃ ∃x A(x)
R⊃

The next-to-last step could have been R∃, because both of the two applicable

rules are noninvertible. Had that rule been chosen, the one above it would

have been L⊃with no difference in the branch in which the search continues.

With R∀, a fresh variable y was chosen. Higher up, another fresh variable z

was chosen. It is seen that the search necessarily produces sequents that are

identical save for the addition of a copy of A(v) with some fresh variable

v. Therefore the proof search cannot terminate. The result, together with

earlier results for intuitionistic propositional logic, suggests the following:

Independence of the connectives and quantifiers: All of the connectives

&, ∨, ⊃, the formula ⊥, as well as the two quantifiers ∀ and ∃ are needed in

intuitionistic predicate logic.
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A conclusive proof of this result is not easy.

b. � ¬¬∀x(A(x) ∨ ¬A(x))

A(z), A(y), ¬∀x(A(x) ∨ ¬A(x)) � ⊥
A(y), ¬∀x(A(x) ∨ ¬A(y) � ¬A(z)

R⊃

A(y), ¬∀x(A(x) ∨ ¬A(x)) � A(z) ∨ ¬A(z)
R∨

A(y), ¬∀x(A(x) ∨ ¬A(x)) � ∀x(A(x) ∨ ¬A(x))
R∀ ⊥ � ⊥

A(y), ¬∀x(A(x) ∨ ¬A(x)) � ⊥ L⊃

¬∀x(A(x) ∨ ¬A(x)) � ¬A(y)
R⊃

¬∀x(A(x) ∨ ¬A(x)) � A(y) ∨ ¬A(y)
R∨

¬∀x(A(x) ∨ ¬A(x)) � ∀x(A(x) ∨ ¬A(x))
R∀ ⊥ � ⊥

¬∀x(A(x) ∨ ¬A(x)) � ⊥ L⊃

� ¬¬∀x(A(x) ∨ ¬A(x))
R⊃

There are only two places of choice here: On line four from below, one of

the right disjunction rules has to be instantiated or else there is a loop. If it

is the first, we have A(y) in the succedent of the premiss, and have to apply

L⊃ next, which gives a loop. On line three from below, we chose a variable

y different from x , and similarly higher up z different from y. The latter

was dictated by the eigenvariable condition, and it is seen that one never

gets instances of A with the same eigenvariable at left and at right.

The underivability of ¬¬∀x(A(x) ∨ ¬A(x)) by intuitionistic principles

was first seen by L. Brouwer in the late 1920s, through a counterexample

that used his theory of constructive real numbers. Well knowing that the

corresponding law for propositional logic, ¬¬(A ∨ ¬A), is instead deriv-

able, one wonders how Brouwer came to see the failure of the ‘infinitistic

excluded middle’ in the first place. A syntactic proof of underivability was

found by Gentzen in 1933, but he never published it and the underivability

was rediscovered in the 1950s. Its importance is that it shows the following:

Failure of Glivenko’s theorem in classical predicate logic. There are classi-

cally provable negative formulas of predicate logic that are not intuitionistically

provable.

A final example shows yet another intuitionistic limitation to classical logic:

c. � (∀x A(x) ⊃ B) ⊃ ∃x(A(x) ⊃ B)

∀x A(x) ⊃ B � A(y)

∀x A(x) ⊃ B � ∀x A(x)
R∀

B � ∃x(A(x) ⊃ B)
∀x A(x) ⊃ B � ∃x(A(x) ⊃ B)

L⊃

� (∀x A(x) ⊃ B) ⊃ ∃x(A(x) ⊃ B)
R⊃
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Rule L⊃ gives a loop in the left branch. The other choice for the next-to-last

rule is ∃R:

A(t), ∀x A(x) ⊃ B � ∀x A(x) B, A(t) � A(y)

A(t), ∀x A(x) ⊃ B � A(y)
L⊃

A(t), ∀x A(x) ⊃ B � ∀x A(x)
R∀

B, A(t) � B
A(t), ∀x A(x) ⊃ B � B

L⊃

∀x A(x) ⊃ B � A(t) ⊃ B
R⊃

∀x A(x) ⊃ B � ∃x(A(x) ⊃ B)
R∃

Note how the eigenvariable condition in rule R∀ prevents to instantiate

with t at right. Thus, a loop is produced in the left premiss of the upper-

most rule, and even the right premiss is underivable because it has no

structure.

In general, a formula of predicate logic is said to be in prenex normal
form if it has the quantifiers at the head of the formula. We shall see in the

next section that all formulas have such an equivalent in classical predicate

logic, whereas the above example shows the following:

Failure of prenex normal form in intuitionistic predicate logic. Not all

formulas of intuitionistic logic have an equivalent in prenex normal form.

9.3 Classical predicate logic

We begin with some examples that show how classical natural deduction

works in the case of predicate logic. Then we show that the rule of indi-

rect proof works with the quantifier elimination rules in the same way as

with the propositional ones: Whenever the major premiss of an elimina-

tion has been concluded by rule DN , the latter can be permuted down.

Lastly, we turn to a completely different idea for a classical logical calculus,

namely, the multisuccedent sequent calculus that is suited for root-first proof

search.

(a) Natural deduction for classical predicate logic. The system of clas-

sical natural deduction for predicate logic is obtained by adding the four

quantifier rules to classical propositional logic.

We shall go through some examples of classical derivations, including

two of the previous section that failed in intuitionistic logic:
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a. � ∀x(A(x) ∨ ¬A(x))

2
¬(A(x) ∨ ¬A(x))

2
¬(A(x) ∨ ¬A(x))

1
A(x)

A(x) ∨ ¬A(x)
∨I

⊥ ⊃E

¬A(x)
⊃I,1

A(x) ∨ ¬A(x)
∨I

⊥ ⊃E

A(x) ∨ ¬A(x)
DN,2

∀x(A(x) ∨ ¬A(x))
∀I

The next example corresponds to the principle of indirect existence proofs:

b. ¬∀x¬A(x) � ∃x A(x)

¬∀x¬A(x)

2
¬∃x A(x)

1
A(x)

∃x A(x)
∃I

⊥ ⊃E

¬A(x)
⊃I,1

∀x¬A(x)
∀I

⊥ ⊃E

∃x A(x)
DN,2

The converse is derivable in intuitionistic logic, so that existence can be

defined classically as a negative property: for all x , any counterexample to

A(x) fails.

c. � (∀x A(x) ⊃ B) ⊃ ∃x(A(x) ⊃ B)

3
¬(∃x(A(x) ⊃ B))

4
∀x A(x) ⊃ B

3
¬(∃x(A(x) ⊃ B))

2
¬A(x)

1
A(x)

⊥ ⊃E

B
⊥E

A(x) ⊃ B
⊃I,1

∃x(A(x) ⊃ B)
∃I

⊥ ⊃E

A(x)
DN,2

∀x A(x)
∀I

B
⊃E

A(x) ⊃ B
⊃I

∃x(A(x) ⊃ B)
∃I

⊥ ⊃E

∃x(A(x) ⊃ B)
DN,3

(∀x A(x) ⊃ B) ⊃ ∃x(A(x) ⊃ B)
⊃I,4



D e r ivat ions in pre dicate log ic 145

The der ivation clearly shows that natur al deduc t ion is not suited to proof

search. It is essential that ∃ x ( A( x ) ⊃ B ) is concluded indire c tly.

Wh ene ver the conclusion of r u le DN is a major premiss of an e limination,

it can b e p er mute d dow n. Le t us t reat here the case of ∀ E for w h ich t he

der ivation and its t r ansfor mation are:

1
¬∀ x A( x )....⊥
∀ x A( x ) 

DN,1

A(t )
∀ E

�

2
¬ A(t )

1
∀ x A( x )

A(t )
∀ E

⊥ ⊃ E

¬∀ x A( x ) 
⊃ I,1

....⊥
A(t ) 

DN,2

It tur ns out, instead, that DN does not p er mute w ith r ule ∀ I . The derivation

is:

1
¬ A( y )....⊥

A( y ) 
DN,1

∀ x A( x ) 
∀ I

Tr y i n g t o p e r m u t e d o w n DN similarly to the pre v ious case w ith ∀ E , we

assume ¬∀ x A( x ), and should then der ive a cont r a dic t ion, i.e., ∀ x A( x ), but

it doesn’t succeed because the var iable condition blocks the gener alization

from A( y ).

(b) Proof search in classical predicate log ic. A sequent calculus for clas-

sical predicate logic results if the single-succedent intuitionistic calculus is

generalized so that it has any number of cases in the succedent. The proposi-

tional r ules are those of S ec tion 6.2, w ith the two r ules of pr imitive negation

included. The quantifier rules are as follows:

Table 9.5 Classical quantifier rules for

proof search

A(t),∀x A(x), � � �

∀x A(x), � � �
L∀

� � �, A(y)

� � �, ∀x A(x)
R∀

A(y), � � �

∃x A(x), � � �
L∃

� � �, ∃x A(x), A(t)

� � �, ∃x A(x)
R∃
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The v ar iable conditions are as b efore: The eigenvar iables of r ules R∀ and

L∃ must not o ccur free in the conclusions of these r ules. The left r ules are

just like the r ules of the pre v ious sec tion, save for � as a succe dent instead

of a s ing l e for mula. Rules R∀ and R∃ have similarly an a dded context �,

but the latter r ule has also a rep etition of the pr incipal for mula.

The classical r ules show a p er fec t mir ror-like dualit y of the universal and

existential quantifier : Rule R∃ is like r ule L∀ if the latter is read from r ig ht

to left, and similarly for r ules L∃ and R∀. We c an conclude w ithout f ur ther

wo r k t h a t r u l e R∃ is inver t ible because the premiss is obtainable from the

conclusion by weakening in the succe dent.

More gener al ly, weakening is div ided into weakening at left and at r ig ht,
and similarly for cont r a c t ion. There was no need to e ven consider con-

t r ac tion in the classical propositional calculus, because each premiss of a

r ule was simpler than the conclusion. Here, instead, r ules L∀ and R∃ have

premisses that are more complex than the conclusion. T hese two r ules are

thus the source of p ossible nonter mination.

The classical quantifier r ules L∀ and R∃ can b e used w ithout a rep etition

of the pr incipal for mula in a premiss. The reason is that such r ules are

admissible. To show this, assume there to be a der ivation of the sequent

� � �,  A(t ). The conclusion of r u le R∃ is der ive d as in:

� � �,  A(t )
� � �, ∃ A( x ), A(t ) 

Wk

� � �, ∃ A( x )
R∃

Weakening is an a dmissible r ule, and therefore also r ule R∃ w ithout the

repetition is admissible. The same holds for rule L∀, but it should be kept

in mind that the rules without repetition can also lead to a failure of proof

search.

Let us take some examples of classical derivations:

a. � ¬∀x¬A(x) ⊃ ∃x A(x)

A(y) � A(y)

A(y) � ∃x A(x)
R∃

� ¬A(y), ∃x A(x)
R¬

� ∀x¬A(x), ∃x A(x)
R∀

¬∀x¬A(x) � ∃x A(x)
L¬

� ¬∀x¬A(x) ⊃ ∃x A(x)
R⊃

We proved this result in classical natural deduction in the end of

Sec t ion 9.1, but the root-first proof is much easier to find. The converse
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implication was proved already for the intuitionistic calculus, so that exis-

tence can be defined in terms of the universal quantifier in classical logic:

There is no independent notion of existence in classical predicate logic.

By the connection between implication and disjunction, the above example

is equivalent to � ∀x¬A(x) ∨ ∃x A(x). A typical intuitive application of this

principle in a mathematical proof proceeds as follows: To prove that there

is an x such that A(x), assume ¬A(x) for all x. This turns out impossible, so

we have proved the claim. This indirect existence proof is purely classical

and it could equally well have been formulated as an application of the

law of double negation to an existential claim, namely the implication:

¬¬∃x A(x) ⊃ ∃x A(x).

We can give a reading to the double negation that shows why the above

step is purely classical. Let an algorithm be given for the computation of

a decimal expansion, and let x range over the natural numbers with A(n)

expressing: The nth decimal is nonzero. The double negation ¬¬∃x A(x)

states: It is impossible that there should not be a decimal that is nonzero.

It can very well happen that the proof of this fact gives no information

on how many decimal places have to be computed before a nonzero dec-

imal is found. Thus, ¬¬∃x A(x) can be read as: In the computation of the

decimal expansion, a nonzero decimal will eventually turn out. The differ-

ence to the direct existential claim is that its constructive proof gives a

method for actually finding in a predictable number of steps a nonzero

decimal.

The quantifiers ∀ and ∃ are duals to each other, so we have also:

b. � ¬∃x¬A(x) ⊃ ∀x A(x)

A(y) � A(y)

� ¬A(y), A(y)
R¬

� ∃x¬A(x), A(y)
R∃

� ∃x¬A(x), ∀x A(x)
R∀

¬∃x¬A(x) � ∀x A(x)
L¬

� ¬∃x¬A(x) ⊃ ∀x A(x)
R⊃

Note that there was no need to repeat the principal formula in rule R∃.

This rule has to be applied before R∀ to respect the eigenvariable condition.

Without the condition, one could conclude � ¬A(y), ∀x A(x), and then

� ∀x¬A(x), ∀x A(x), and finally the clear fallacy � ∀x¬A(x) ∨ ∀x A(x).
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c. � (∀x A(x) ⊃ B) ⊃ ∃x(A(x) ⊃ B)

A(y) � A(y), B

� A(y), A(y) ⊃ B
R⊃

� A(y), ∃x(A(x) ⊃ B)
R∃

� ∀x A(x), ∃x(A(x) ⊃ B)
R∀

B, A(y) � B

B � A(y) ⊃ B
R⊃

B � ∃x(A(x) ⊃ B)
R∃

∀x A(x) ⊃ B � ∃x(A(x) ⊃ B)
L⊃

� (∀x A(x) ⊃ B) ⊃ ∃x(A(x) ⊃ B)
R⊃

Repetitions of principal formulas have again been left out. The converse

was proved in the intuitionistic calculus. There also the equivalence of

∃x A(x) ⊃ B and ∀x(A(x) ⊃ B) was proved. These two results are classical

duals, as is seen by writing them one below the other:

� (∀x A(x) ⊃ B) ⊃⊂ ∃x(A(x) ⊃ B)

� (∃x A(x) ⊃ B) ⊃⊂ ∀x(A(x) ⊃ B)

In classical predicate logic, also the following equivalences are derivable:

� (A ⊃ ∀x B(x)) ⊃⊂ ∀x(A ⊃ B(x))

� (A ⊃ ∃x B(x)) ⊃⊂ ∃x(A ⊃ B(x))

If x happens to be free in A (resp. in B in the upper two) in the left part

of the equivalences, it can be substituted by a fresh variable. Then the four

equivalences can be seen as equally many ways of bringing a quantifier in

the head of a formula.

Definition 9.5. Prenex normal form. A formula is in prenex normal form
if it begins with a string of quantifiers followed by a quantifier-free part.

The transformation to prenex normal form goes through all the way, not

just for the case of an implication: If a universal quantification is a conjunct,

we have ∀x A(x) & B and this is easily shown equivalent to ∀x(A(x) & B).

In cases such as ∃x A(x) & ∃x B(x), the equivalent prenex normal form is,

with a change of a bound variable occurrence, ∃x∃y(A(x) & B(y)). With

negation, the transformation into prenex normal form is one of:

¬∀x A(x) becomes ∃x¬A(x), ¬∃x A(x) becomes ∀x¬A(x).

By the above transformations we have:

Theorem 9.6. Prenex normal form theorem. Each formula in classical pred-

icate logic can be transformed into an equivalent formula in prenex normal

form.
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If a for mula is in prenex nor mal for m and if it is der ivable, the quanti-

fier r ules must necessar ily come last in the der ivation, and only two of

them, the r ig ht ones, are applied. T here is no myster y here: Rule R∃ do es ,

by t h e d u a l i t y o f ∀ and ∃, the work of  L∀. T he par t w ith quantifier r ules in

the der ivation is pre ce ded by a par t in which only propositional r ules are

applied. The conclusion of the last propositional r ule, at the same time the

premiss of the first quantifier r ule, is the midsequent of the der iv ation.

The der iv abilit y of any sequent � � � can b e reduced by the prenex

nor mal for m to the der ivabilit y of a suitable midsequent by the r ules of

propositional log ic: Take a der ivable sequent � � �, and let &� stand

for the conjunc tion of the for mulas i n � and ∨� for the d isjunc tion of

the for mulas i n �. Then � � � is der ivable if and only if � &� ⊃ ∨�

is der ivable. The for mula &� ⊃ ∨� can b e broug ht into prenex nor mal

for m and the midsequent theorem applied. Cont r ar y to the good hop es

that this result mig ht g ive r ise to, because of the decidabilit y of der ivabilit y

by the propositional r ules, it is not p ossible to deter mine in advance how

complicate d the midsequent has to be: No b ound can b e set on how many

instantiations by r ule R∃ are required in a root-first proof search.

Le t us now re tur n to weakening and cont r a c t ion in the classical calculus,

br iefly discussed in the beg inning of this sec t ion:

Theorem 9.7. Admissibilit y of left and r ig ht weakening.

(i) If � � � is der ivable, als o A, � � � is der ivable for any for mula A.

(ii) If � � � is der ivable, als o � � �,  A is der ivable for any for mula A.

Pro o f . The pro of is by induc t ion on the heig ht of der ivation and goes

throug h analogously to the proof for the intuitionistic calculus. QED.

Theorem 9.8. Admissibilit y of left and r ig ht cont r ac t ion.

(i) If A, A, � � � is der ivable, the n A, � � � is der ivable.

(ii) If � � �,  A, A is derivable, then � � �, A is derivable.

Proof. The propositional part is different from the intuitionistic calculus

so that the pro of of admissibilit y of (left) cont r a c t ion in S ec tion 3.5 do es

not apply. Howe ver, we prove d in S ec tion 6.2 that al l of the prop ositional

rules are invertible. Thus, if there is a duplication of a formula, both copies

can be decomposed and contraction applied to the components. From

the contracted sequents, the contracted conclusion can be reached. There

are eight cases. The first is contraction of A & B, A & B in the succedent.
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Decomposition goes as follows:

� � �, A, A � � �, B, A
� � �, A & B, A

R&
� � �, A, B � � �, B, B

� � �, A & B, B
R&

� � �, A & B, A & B
R&

The leftmost uppermost sequent is contracted into � � �, A and the right-

most uppermost similarly to � � �, B . Rule R& gives now the conclusion

� � �, A & B . The rest of the propositional rules are handled similarly.

For the quantifier rules, contraction at left goes through as for the intu-

itionistic calculus, with an arbitrary context in the succedent instead of a sin-

gle formula. Contraction at right is proved dually. QED.

As in the intuitionistic calculus, whenever a step of root-first proof search

produces a sequent that is identical to a previous one, save for the mul-

tiplication of some formulas, proof search with that step fails. Thus, the

possible sources of nontermination come from ever new instances of exis-

tential formulas in the succedent and universal formulas in the antecedent.

The overall result is:

There is no general method for deciding derivability in classical predicate logic.

This result was proved by Alonzo Church in 1936. He showed that the decid-

ability of predicate logic would result in a complete system of arithmetic,

contrary to Gödel’s incompleteness result. Another proof of undecidability

used what is called the halting problem for Turing machines. It was found

by Alan Turing and published in his path-breaking article of 1936. During

the Second World War, Turing put his machine into practice in his decoding

work (ENIGMA), and he and Max Newman began the development that

led to some of the first computers and programming languages, both direct

descendants of the logical ideas of computability and formal languages,

respectively.

Notes and exercises to Chapter 9

1. Give derivations of the following:

a. ∀x A(x) & ∀x B(x) ⊃⊂ ∀x(A(x) & B(x))

b. ∃x(A(x) ∨ B(x)) ⊃⊂ ∃x A(x) ∨ ∃B(x)

c. ∀x(A(x) ⊃ B(x)) ⊃ (∀x A(x) ⊃ ∀x B(x))

d. ∀x A(x) ∨ ∀x B(x) ⊃ ∀x(A(x) ∨ B(x))

e. ∃x(A(x) & B(x)) ⊃ ∃x A(x) & ∃x B(x)

f. ∃x A(x) & ∃x B(x) ⊃⊂ ∃x∃y(A(x) & B(y))
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2. Show throug h counterexamples that the converses to the implications in

(d) and (e) do not hold.

3. Do the p er mutative conversion for ∀.

4. Show that ¬∃ x A( x ) ⊃ ∀x¬ A( x ) is intuitionistically der ivable. Show

that ¬∀ x A( x ) ⊃ ∃x¬ A( x ) instead is not intuitionistically der ivable.

5. As note d, the for mula ¬¬∀ x ( A( x ) ∨ ¬A( x )) is not intuitionistically

der ivable. Show that ∀ x¬¬( A( x ) ∨ ¬A( x )) instead is der ivable. It fol-

lows that ∀ x¬¬( A( x ) ∨ ¬A( x )) ⊃ ¬¬∀ x ( A( x ) ∨ ¬A( x )) is not intu-

itionistical ly der ivable. Show dire c tly that e ven the more gener al law

of ‘double-ne g ation shift’ ∀ x¬¬ A( x ) ⊃ ¬¬∀ x A( x ) is not intuitionisti-

cally der ivable.

6. Indep endence of the intuit ionist ic quant ifiers. A detailed pro of of the

indep endence of the intuitionistic connec t ives and quantifiers is g iven in

Pr aw itz (1965, pp. 59–62) w ithin natur al deduc tion. With P an atomic

formula, show that if C contains no ∀, � ∀x P (x) ⊃⊂ C is underiv-

able in intuitionistic sequent calculus. Similarly, if C contains no ∃,

� ∃x P (x) ⊃⊂ C is underivable. Warning: As with ∨ in exercise 5 of

Chapter 4, Har rop’s theorem needs to b e used for the latter.



10 The semantics of predicate log ic

Similarly to classical propositional log ic, the classical for m of pre dicate log ic

has a simple semantics. Kr ipke semantics for intuitionistic predicate log ic

instead has the complication that the domain of indiv idual objec ts is not

g iven once and for all.

10.1 Inter pretat ions

(a) The semant ics of classical pre dicate log ic. The semantics of classical

propositional log ic presente d in S ec tion 7.1 was based on the idea that in

each concrete situation, the t r uth values of atomic for mulas are deter mined.

The for mal presentation was in ter ms of valuations, i.e., assig nments of

t r uth values to the atomic for mulas. In predicate log ic we have a domain of

indiv iduals and the atomic for mulas make statements about the prop er t ies

of indiv iduals and re lations among them. T he basic ideas of the semantics

of classical pre dicate log ic were already g iven in S ec tion 8.2: As explained

there, the schematic atomic for mulas get inter pre te d in a g iven domain,

and a universal for mula ∀ x A( x ) is t r ue under an inter pre tation if each

of its instances A(a ), A(b ), A(c ), . . . is t r ue, and an existential for mula

∃ x A( x ) is similarly t r ue if there is some instance A(a ) that is true under an

inter pre tation.

If a domain is infinite, as in the case of the natur al numbers, it is not

possible to go through all the instances of a formula  A( x ) w ith a fre e var iable.

In the Fre ge–Gentzen explanation of the universal quantifier in S ec tion 8.2,

prov abilit y of ∀ x A( x ) required a proof of  A( y ) for an ar bit r ar y y . This

condition is st ronger than the t r uth condition for a universal for mula.

The t r uth of an existential for mula ∃ x A( x ) under a g iven inter pre tat i on

re quires some indiv idual a such that A(a ) and is analogous to the condition

of prov abilit y.

Let us consider an example, the formula ∀ x∃ y A( x, y ) that we encoun-

tere d already in Sec t ion 8.1. Let the domain consist of the natur al num-

bers N and let A(x, y) be the relation y > x . Under this interpretation,

∀x∃y y > x is true if ∃y y > n is true for whatever value is given to n. The152
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latter, in turn, is true if, whatever value is given to n, there is some m such

that m > n is true. If we set m = n + 1, we get n + 1 > n that is true for

any n. Therefore ∀x∃y A(x, y) is true under the given interpretation.

Let us consider next the formula ∃y∀x A(x, y) under the same interpre-

tation. As before, ∃y∀x y > x is true if there is some m such that ∀x m > x

is true. The latter is true if, whatever value is given to n, m > n is true. If we

give to n the value m, we get m > m that is false. Therefore ∃y∀x A(x, y) is

false under the given interpretation.

Let us next combine the two formulas into the implication

∀x∃y A(x, y) ⊃ ∃y∀x A(x, y). Under the given interpretation, the

antecedent is true but the consequent false, so that the implication

∀x∃y A(x, y) ⊃ ∃y∀x A(x, y) is false under the interpretation. We say that

the formula ∀x∃y A(x, y) ⊃ ∃y∀x A(x, y) is refutable and that there is an

arithmetic counterexample to it.

A formula is closed if it has no free variables. Logical truth of a closed

formula A in classical predicate logic requires that A be true under any

interpretation, i.e., true whatever domain of individuals D is chosen and

whatever concrete meaning is given to the schematic atomic formulas. If a

formula A contains the free variables x, . . . , z, logical truth is taken to refer

to the logical truth of its universal closure ∀x . . .∀z A.

Classical predicate logic is often explained as follows: To show a formula

A logically true, one tries to disprove it by a falsifying counterexample. If

such a counterexample turns out impossible, A is logically true. Another

way to express the matter is: Define first a formula to be satisfiable if it

is true under at least one interpretation. The search for a counterexample

to formula A can now be described as the search for an interpretation

that shows ¬A satisfiable. The connection to refutability is: A is refutable

whenever ¬A is satisfiable, and A is satisfiable whenever ¬A is refutable.

When it is assumed that atomic formulas have determinate truth values

under an interpretation, it is required that they contain just constants. We

determined some such truth values above, e.g., we noticed that n + 1 > n is

true whatever constant n is chosen, and that m > m is similarly false. These

truth values are determined on the basis of the mathematical properties of

the domain N .

There need not exist any general method for determining the truth value

of an atomic formula under an interpretation. As an example, let the domain

consist of the real numbers R, and consider the relation of equality x = y.

Let C be the well-known Riemann constant. A decimal expansion for C

can be computed to any length. So far the computation has given the value

0.4999 . . . to millions of decimals, but nobody knows if a decimal less than 9
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will show up. If not, 2C = 0.999 . . . = 1, otherwise 2C < 1. Thus, nobody

knows if the atomic formula 2C = 1 is true in R. If it is decided one day,

other undecided examples can be pointed out.

As a further example, consider the converse of the above implication:

∃y∀x A(x, y) ⊃ ∀x∃y A(x, y). We show that it is true under any inter-

pretation. For this, it is sufficient to take an arbitrary interpretation, to

assume that ∃y∀x A(x, y) is true under this interpretation, then to show

that also ∀x∃A(x, y) is true under the interpretation. Henceforth, we shall

not repeat the words ‘under the interpretation’. If ∃y∀x A(x, y) is true, there

is some b such that ∀x A(x, b) is true. Then A(a, b) is true for any a .

Therefore ∃y A(a, y) is true for any a . Therefore ∀x∃A(x, y) is true, and

so is the implication ∃y∀x A(x, y) ⊃ ∀x∃y A(x, y). The interpretation was

arbitrary, and therefore ∃y∀x A(x, y) ⊃ ∀x∃y A(x, y) is logically true.

The above proof of logical truth uses principles of proof on a semanti-

cal level that are absolutely analogous to those we learned when studying

the rules of inference for the quantifiers. An informal logical proof of the

implication would be more or less as follows: Assume ∃y∀x A(x, y). Next, to

apply rule∃E , consider an instance∀x A(x, y) with an eigenvariable y. From

∀x A(x, y), conclude A(x, y) by ∀E , then ∃y A(x, y) by ∃I . Now the tempo-

rary assumption ∀x A(x, y) in rule ∃E can be closed. Noting that x works as

an eigenvariable in rule ∀I , conclude ∀x∃y A(x, y), and as a last step, close

the open assumption to conclude by rule ⊃I ∃y∀x A(x, y) ⊃ ∀x∃y A(x, y).

It has often been said that the semantics of classical predicate logic just

repeats the principles of logic reasoning on an informal, semantical level,

instead of explaining them. Let us try to elaborate on this general remark.

All formulas in classical predicate logic have an equivalent in prenex

normal form, and say we have the formula ∀x∃y∀z A(x, y, z). To determine

whether it is logically true, consider an arbitrary domain, and try to find a

falsifying counterexample to it. Take an instance ∃y∀z A(a, y, z), then some

b to obtain ∀z A(a, b, z). Finally, take an instance A(a, b, c). A falsifying

instance results if this propositional formula is not a tautology, something

that can be in principle checked by a truth table. The crux of the matter

is, of course, to choose a and c in an appropriate way to arrive at such a

falsifying instance, or to show that no such instance can be found. The latter

would make ∀x∃y∀z A(x, y, z) a logical truth.

The explanation of the connectives and quantifiers in terms of proof pro-

ceeded through the introduction rules: These rules gave sufficient conditions

under which a corresponding formula could be inferred. If the semantics

of classical predicate logic is described in terms of an attempt at finding

a counterexample to a formula in prenex normal form, the reasoning on
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the semantical le vel uses the elimination r ules for the quantifiers, as is seen

from the example of the pre ce ding par ag r aph.

From the p oint of v ie w of s e mant ic s, it is the e liminat ion r ules that g ive

meaning, w hereas from the p oint of v ie w of proof sy ste ms, it is the int roduct ion

r ules that have this task.

Syntax builds up, semantics unfolds, we could put br iefly.

(b) Kr ipke semant ics of intuit ionist ic pre dicate log ic. We shall just out-

line the basic ideas. In place of a fixed domain, the definition of a Kr ipke

model for predicate log ic has a nonempt y domain of objec ts for each world

w , denoted Dw . New objec ts are always added as one moves along the

accessibilit y re lation, but ne ver taken away :

Monotonicit y of the domain func t ion. If a i s a n ob j e c t i n Dw and w � o,

the n a is an obj ect in Do .

The forcing re lation of Table 7.4 is extended to the quantifiers as follows:

Table 10.1 Forcing the quantifiers

6. w � ∀ x A( x ) w hene ver from w � o fol lows o � A(a ) for all a in Do .

7. w � ∃ x A( x ) w hene ver w � A(a ) for some a in Dw .

The difference to the classical explanation is not about existence, in clause

7, but in clause 6 for universalit y : Any objec t in any possible future world

has to b e considere d in that clause.

10.2 Completeness

The most impor tant result about classical predicate log ic is:

Completeness of classical pre dicate log ic. For each c los ed for mula A in

classical predicate logic, either A is derivable or A has a counterexample.

A pro of can b e found in St r uctural Proof Theor y, sec tion 4.4.

In a failed proof search that does not terminate, rules R∃ and L∀ gener-

ate ever new terms. The completeness result means that such failed proof

search can be turned, after a finite number of steps, into a counterexample.

However, it is not possible to determine from a given formula A in advance
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any upp er bound on instantiations in proof search. Were this possible, the

systematic search for a counterexample could b e tur ned into a decision

method. As remar ke d at the end of the pre v ious chapter, such is not the

case:

Undecidabilit y of classical pre dicate log ic. There is no algor ithm for dec iding

if a for mula is der ivable in c lassical predicate log ic.

There i s, for each for mula A of classical pre dicate log ic, a classically e quiva-

lent for mu la A∗ such that if A is a theorem of classical pre dicate log ic, A∗ is

a theorem of intuitionistic predicate log ic. T herefore, if the latter p ossessed

a decision method, also the for mer would, cont r ar y to w hat was stated.

Final ly, we have the result established by Skolem in his talk in He lsing fors

in 1922:

L öwenheim–Skolem theorem. If a for mula A is sat is fiable, it is t r ue under

s ome ar ithme t ic inter pre tat ion.

One way to express the completeness of classical pre dicate log ic is: If A is

log ically t r ue, it is der ivable. To see this, assume A to b e l o g i c a l l y t r u e . T h e n

it is t r ue under any inter pretation and cannot have a counterexample. By

the completeness result, it is der ivable.

From a metaphysical p oint of v iew, the completeness of classical pre d-

icate log ic seems at first an immense result. Any talk about any objec ts,

their prop er t ies and re lations, universalit y and existence, can b e codified

in a log ical calculus that has a finite, indeed quite low number of r ules,

such that any log ical t r uth about these objec ts and their prop er ties can b e

established by these r ules and communicate d by a finite message to anyone

who knows the r ules. It is, a priori, not clear that this should b e the case. T he

Löwenheim–Skolem theorem, however, tones down somewhat the impor-

tance of completeness. One way to look at the theorem is that the language

of predicate logic is not able to distinguish between natural numbers and

other objects: Any consistent collection of formulas in predicate logic has

an arithmetic interpretation.

10.3 Interpretation of classical logic in intuitionistic logic

At the end of Sec t ion 5.2, it was note d that a for mula A is der ivable in

classical propositional logic if and only if ¬¬A is derivable in intuitionistic

propositional logic. The same is not true of predicate logic. An example
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is the for mu la ∀ x ( A( x ) ∨ ¬A( x )) that is classical ly der iv able. It is some-

what st r ange that the double-negated for mula ¬¬∀ x ( A( x ) ∨ ¬A( x )) is

not intuitionistically der ivable. A more complicate d t r ansfor mation can be

defined, denoted by ( A)∗ , and it has an effec t analogous to the a ddition of

double-neg ations in the head of for mulas in propositional log ic:

Table 10.2 The G ödel–Gentzen

t r anslation

1. P ∗ � ¬¬ P

2. (¬ A)∗ � ¬( A∗ )

3. ( A & B )∗ � ( A∗ ) & (B∗ )

4. ( A ⊃ B )∗ � ( A∗ ) ⊃ ( B∗ )

5. (∀ x A( x ))∗ � ∀ x ( A( x )∗ )

6. ( A ∨ B )∗ � ¬(¬( A∗ ) & ¬ ( B∗ ))

7. (∃ x A( x ))∗ � ¬∀ x¬( A( x )∗ )

It i s o b v i o u s t h a t A and ( A)∗ are classically e quivalent.

G ödel’s t r anslation removes also implications A ⊃ B , by t r anslating them

into ¬(( A∗ ) & ¬( B∗ )).

The cr ucial points of the t r anslation are disjunc tion and existence. T he

for mer is t r anslated into the intuitionistically weaker ¬(¬( A∗ ) & ¬( B∗ )),

and the latter into ¬∀ x¬( A∗ ). G ödel’s and Gentzen’s t r anslations were made

for interpreting classical arithmetic in intuitionistic arithmetic. The atomic

formulas are decidable equations and need therefore not be double-negated,

but Gentzen notes that if it is done, as in Table 10.2, an inter pre tation of

classical predicate logic in intuitionistic predicate logic follows:

Translation from classical to intuitionistic logic. If A is derivable in classical

predicate logic, then A∗ is derivable in intuitionistic predicate logic.

Before Gödel and Gentzen found the translations, it was thought that the

indirect existence proofs of classical arithmetic would be in need of a separate

foundation through a proof of consistency. Gödel’s and Gentzen’s result

shows that this is not the case: If a contradiction is derivable classically, it is

already derivable intuitionistically, i.e., without indirect proofs.
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11 Equality and axiomatic theories

11.1 Equality relations

(a) The axioms of equality. We assume given a domain D of individuals

a, b, c . . . and a two-place relation a = b in D with the following standard

axioms:

Table 11.1 The axioms of an equality

relation

EQ1. Reflexivity: a = a

EQ2. Symmetry: a = b ⊃ b = a

EQ3. Transitivity: a = b & b = c ⊃ a = c

These axioms can be added to a Frege-style axiomatization of logic. We shall

instead first add them to natural deduction, so that instances of the axioms

can begin a derivation branch. Thus, when we ask whether a formula A is

derivable from the collection of assumption formulas � by the axioms of

equality, arbitrary instances of the axioms can be added to �.

Let us take as an example a derivation of d = a from the assumptions

a = b, c = b, and c = d :

a = d ⊃ d = a
a = c & c = d ⊃ a = d

a = b & b = c ⊃ a = c
a = b

c = b ⊃ b = c c = b
b = c

⊃E

a = b & b = c
&I

a = c ⊃E c = d
a = c & c = d

&I

a = d
⊃E

d = a
⊃E

Each top formula in the derivation is either one of the assumptions or an

instance of an equality axiom. The derivation tree looks somewhat forbid-

ding. The natural way to reason would be different, something like: from

a to b, b to c , c to d , therefore from d to a . Here the principles are that

equalities can be combined in chains and that equalities go both ways. The

latter was applied to get the link b to c from c to b and to get the conclusion

d to a from a to d . 161
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Logic in the derivation of d = a from the assumptions a = b, c = b, and

c = d seems like a decoration necessitated by the use of logic in the writing

of the axioms. We now want to say instead that two equalities a = b and

b = c give at once a = c , and that a = b gives b = a , i.e., we reformulate

the axioms as rules of inference. The procedure is analogous to that of

Gentzen who reformulated the axiomatic logic of Frege and others as the

rule system of natural deduction.

Table 11.2 Symmetry and

transitivity as rules of

inference

a = b
b = a

Sym a = b b = c
a = c Tr

Our example derivation becomes:

a = b
c = b
b = c

Sym

a = c Tr c = d
a = d

Tr

d = a
Sym

This transparent rule-based derivation should be compared with the

axiomatic derivation above. To get the full theory of equality, we must

add reflexivity as a zero-premiss rule:

Table 11.3 The rule

of reflexivity

a = a Ref

Now formal derivations start from assumptions and instances of rule Ref.

What about the role of logic after the addition of mathematical axioms

as rules? A premiss of an equality rule can be the conclusion of a logical

rule and a conclusion of an equality rule a premiss in a logical rule. It

should be clear that logic itself must not be ‘creative’ in the sense of making

equations derivable from given equations used as assumptions, if they were

not already derivable by just the equality rules. To show that there cannot

be any such creative use of logic, Gentzen’s normalization theorem comes

to help. No introduction rule can have a premiss of a mathematical rule

as a conclusion, because the latter are atomic and don’t have any logical
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structure. By the same reason, no conclusion of a mathematical rule can be

the major premiss of an E -rule. Therefore the mathematical rules can be

completely separated from the logical ones, so that in a normal derivation,

the former are applied first in a part of derivation that contains only atomic

formulas, then the latter build up logical structure. Thus, if an equality is

derivable from given equalities in natural deduction extended with the rules

of equality, it is derivable by just the rules of equality.

The separation of logic from mathematical axioms goes through for a

large class of axiomatizations, though not all. In particular, axioms that

contain just free variables but no quantifiers can be converted to rules that

maintain the separation.

Assume there to be a derivation of the equality a = c from given assump-

tions a1 = c1, . . . , an = cn by the rules of equality. By what has been said,

no logical rules need be used. Assume there to be a term b in the derivation

that is neither a term in the conclusion a = c nor a term in any of the

assumptions. There is thus some instance of rule Tr that removes b:

a = b b = c
a = c Tr

If the premiss a = b is a conclusion of rule Tr, we can permute up the

instance of Tr that removes b, as follows:

a = d d = b
a = b

Tr
b = c

a = c Tr
a = d

d = b b = c
d = c

Tr

a = c Tr

A similar transformation applies if the second premiss b = c has been

derived by Tr. Thus, we may assume that neither premiss of the step of

Tr that removes the ‘unknown’ term b has been derived by Tr. The next

possibility is that both premisses have been derived by rule Sym. We then

have the part of derivation and its transformation:

b = a
a = b

Sym
c = b
b = c

Sym

a = c Tr

c = b b = a
c = a Tr

a = c Sym

In the end, at least one premiss of the step of Tr that removes the term b has

an instance of rule Ref as one premiss, as in:

d = b b = b
Ref

d = b
Tr

Now the conclusion is equal to the other premiss, so the step of Tr can be

deleted. Tracing up in the derivation the premiss d = b, the permutations
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can never lead to an instance of Tr that removes b and has an assumption as

one premiss, because then b would be a term known from the assumption.

The conclusion is that there cannot be derivations by the rules of equality

with unknown terms.

Consider next a derivation that has a ‘cycle’ or a ‘loop’, i.e., a branch in

which the same equality occurs twice:

....
a = b....
a = b....

The part between the two occurrences can be cut out. This part may use

some equalities as assumptions that are not otherwise used in the deriva-

tion, but their deletion just improves the result: The conclusion follows

from fewer assumptions. When no loops are allowed to occur, all deriva-

tions of an equality a = c from the assumptions a1 = c1, . . . , an = cn have

an upper bound on size, here the length of the longest derivation tree

branch: The number of distinct terms is at most 2n + 2, therefore the

number of distinct equalities is at most (2n + 2)2, an upper bound on

height.

The role of reflexivity in derivations is to conclude a reflexivity atom.

In other cases, reflexivity will produce a loop. As for transitivity and sym-

metry, their role is now clear. We can conclude a1 = an from assumptions

a1 = a2, . . . an−1 = an that form, possibly after some equalities have been

reversed by Sym, a chain.

(b) Natural deduction for predicate logic with equality. Predicate logic

with equality is obtained from standard predicate logic through the addition

of a two-place reflexive relation a = b with the property that equals be

substitutable everywhere. The latter is formulated as:

The replacement axiom. A(a) & a = b ⊃ A(b)

It is possible to restrict the replacement axiom to atomic predicates and rela-

tions. Therefore it is also possible to consider predicate logic with equality

as a system of natural deduction extended by two mathematical rules that

operate on atomic formulas:
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Table 11.4 The r ules of predicate

log ic w ith equalit y

a = a Re f
P (a ) a = b

P (b )
Re p

The second r ule is schematic: T here is one r ule for each predicate and

re lation. T he nor mal for m of der ivations, as explained in S ec tion 3.4,

car r ies over to predicate calculus w ith equalit y. T he reason is that the

r u les of e qualit y a c t on atomic for mulas that c annot b e major pre-

misses of e limination r ules. Thus, the nor malization pro cess by which

der ivations w ith der ive d major premisses of E -r ules are conver ted into

ones in w hich the y are assumptions, is not affec te d by the presence of

instances of e qualit y r ules. T hese latter can b e p er mute d above the log ical

rules.

We show first that the e qualit y of pre dicate log ic w ith e qualit y is an

equalit y re lation:

Lemma 11.1. Ru l e s Sy m and Tr are der ivable in predicate log ic w ith equalit y.

Pro o f . Fo r Sy m , set  P ( x ) ≡ x = a in the r ule of replacement. T he conclu-

sion of Sy m is der ive d from its premiss as fol lows:

a = a Re f a = b
b = a

Re p

Fo r Tr , set  P ( x ) ≡ x = c . T he conclusion of Tr is der ive d from its premisses

by:

b = c
a = b
b = a

Sym

a = c Rep

QED.

The lemma shows, incidentally, that the theory of equality of part (a) above

is a special case of predicate logic with equality, namely the one in which

there are no other predicates than equality.

We show that the r ule of replacement of Table 11.4 is a dmissible for

arbitrary formulas:

Lemma 11.2. Application of replacement to arbitrary formulas reduces to rule

Rep.



166 Beyond pure logic

Proof. The proof is by induction on the length of the replacement formula.

The base case is that of an atomic formula, covered by rule Rep. For ⊥,

nothing happens. The other cases are:

1. The formula is A(a) & B(a). Replacement is reduced to the components

A(a) and B(a) as follows:

A(a) & B(a)

1
A(a) a = b

A(b)
Rep

1
B(a) a = b

B(b)
Rep

A(b) & B(b)
&I

A(b) & B(b)
&E ,1

2. With A(a) ∨ B(a), the reduction is similar.

3. With A(a) ⊃ B(a), the reduction is as follows:

A(a) ⊃ B(a)

2
A(b)

a = b
b = a

Sym

A(a)
Rep

1
B(a) a = b

B(b)
Rep

B(b)
⊃E ,1

A(b) ⊃ B(b)
⊃I,2

The quantifiers are treated similarly. QED.

By this proof, the calculus is complete. Notice that if the standard implication

elimination rule were used, the replacement of a with b in B(a) would have

to be done after the logical elimination step so that logical and mathematical

parts of derivations could not be maintained apart.

We can give a complete analysis of the role of rule Ref in derivations.

If Ref gives the second premiss of rule Rep, a loop is produced. If it gives

the first premiss, the replacement predicate is of the form a = x or x = a .

There are thus altogether three possible steps:

P (a) a = a Ref

P (a)
Rep a = a Ref a = b

a = b
Rep

a = a Ref a = b
b = a

Rep

Two cases give a loop, the third the rule of symmetry.

(c) Sequent calculus for predicate logic with equality. The rules of equality

were formulated in the previous subsection for a system of intuitionistic

natural deduction. They can be equally well formulated for sequent calculus,

as is natural if we want to have a system of classical predicate logic with

equality. Our specific aim will be to show that if the sequent � � � is

derivable and contains no equality, the rules for equality are not needed.
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In other words, predicate log ic w ith equalit y is conser vative over pre dicate

log ic w ithout e qualit y.

It is usual in sequent calculus to let der ivations star t w ith ‘axiomatic

sequents’ of the for m:

Table 11.5 Replacement r ules as

axiomatic sequents

� a = a a = b, P (a ) � P (b )

He r e P is an atomic for mula. T he use of axiomatic sequents re quires an

addition to sequent calculus, namely the rule of cut. This rule is explained

in Sec t ion 13.4. It can b e avoided if the replacment axioms are conver te d

into rules instead of axiomatic sequents:

Table 11.6 Replacement rules in sequent calculus

a = a, � � �

� � �
Ref

a = b, P (a), P (b), � � �

a = b, P (a), � � �
Rep

The axiomatic sequents follow at once by the rules:

a = a � a = a
� a = a

Ref
a = b, P (a), P (b) � P (b)

a = b, P (a) � P (b)
Rep

In the other direction, the conclusions of the rules can be derived from their

premisses by axiomatic sequents and cuts.

Lemma 11.3. The replacement rule

a = b, A(a), A(b), � � �

a = b, A(a), � � �
Rep

is admissible for arbitrary formulas A.

Proof. The proof is a sequent calculus version of the proof given in

lemma 11.2. QED.

Next we prove the conservativity of predicate logic with equality over pred-

icate logic. Assume there to be a derivation of a sequent � � � that has no

equalities. We show that rules Ref and Rep are not needed in the derivation.

The only way to arrive at such a sequent � � � from sequents that contain

equalities is by rule Ref. Thus, it is sufficient to show that instances Ref can

be eliminated from derivations of equality-free sequents.
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The rule of replacement has an instance that produces a duplication of

an atom, namely, when the predicate P (x) is x = b:

a = b, a = b, b = b, � � �

a = b, a = b, � � �
Repl

The conclusion follows by rule Ref, but we want to show that that rule need

not be used. Therefore, for the proof of conservativity, the instance of Rep

with the duplication of a = b contracted has to be added to the rules:

a = b, b = b, � � �

a = b, � � �
Rep∗

The rules can remove equalities from the antecedent part of sequents, but

not from the succedent part. Therefore we have the result:

Lemma 11.4. If � � � has no equalities and is derivable in classical sequent

calculus extended by the rules Ref+Rep+Rep∗, no sequents in its derivation

have equalities in the succedent.

The following lemma contains the essential analysis in the proof of conser-

vativity of predicate logic with equality over predicate logic:

Lemma 11.5. If � � � has no equalities and is derivable through the use of

the rules Ref+Rep+Rep∗, it is derivable by Rep and Rep∗.

Proof. We show that all instances of Ref can be eliminated from a given

derivation, by induction on the height of derivation of a topmost instance

a = a, �′ � �′

�′ � �′ Ref

If the premiss is an initial sequent, also the conclusion is, because by the

above lemma, �′ contains no equality. If the premiss has been concluded

by a logical rule, apply the inductive hypothesis to the premisses and then

the rule.

If the premiss has been concluded by Rep there are two cases, according to

whether a = a is or is not principal. In the latter case the derivation is, with

�′ = P (b), �′′,

a = a, b = c , P (b), P (c), �′′ � �′

a = a, b = c , P (b), �′′ � �′ Rep

b = c , P (b), �′′ � �′ Ref

By permuting the two rules, the inductive hypothesis can be applied.
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If a = a is principal, the derivation is, with �′ ≡ P (a), �′′,

a = a, P (a), P (a), �′′ � �′

a = a, P (a), �′′ � �′ Repl

P (a), �′′ � �′ Ref

It can be shown (cf. Structural Proof Theory, p. 131) that the two occurrences

of P (a) can be contracted to one without increasing the height of deriva-

tion. Therefore there is a derivation of a = a, P (a), �′′ � �′ to which the

inductive hypothesis applies, giving a derivation of �′ � �′ without rule

Ref.

If the premiss of Ref has been concluded by Rep ∗ with a = a not principal

the derivation is:

a = a, b = c , c = c , �′ � �′

a = a, b = c , �′ � �′ Rep∗

b = c , �′′ � �′ Ref

The rules are permuted and the inductive hypothesis applied.

If a = a is principal the derivation is:

a = a, a = a, �′ � �′

a = a, �′ � �′ Rep∗

�′ � �′ Ref

Now apply height-preserving contraction and the inductive hypothesis.

QED.

Next, because the rules Rep and Rep ∗ have equalities in their conclusions,

we obtain:

Theorem 11.6. If � � � is derivable in classical sequent calculus extended

by the rules Ref+Rep+Rep∗ and if �, � contains no equality, then � � � is

derivable without these rules.

11.2 Sense and denotation

One reads often of predicate logic with identity, instead of predicate logic

with equality. There have been many attempts in philosophy at defining

identity. Leibniz had the idea that two objects are identical if they share

the same properties. Such a definition can be written in second-order logic
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in which it is allowable to quantify over predicates. Upp er case var iables

X, Y, Z, . . .  are used for predicates. T he definition of identit y is:

a = b ≡ ∀X ( X (a ) ⊃⊂  X (b ))

It is obv ious that identit y defined in this way has the prop er ties of an

equalit y re lation, as in Table 11.1. More over, each instance of the schematic

replacement axiom A(a ) &  a = b ⊃ A(b ) fol lows from the definition.

Lo g ical systems, their axioms and r ules, op er ate on expressions for

objec ts, not the objec ts themselves. The for mer denote the latter. The same

is t r ue of such expressions as 7 + 5 and 3 × 4. The y are different expressions

for the same objec t. In the equalit y 7 + 5 = 3 × 4, we have a sum at left

and a product at r ig ht. T he equalit y of 7 + 5 and 3 × 4 means that these

different expressions have the same v alue, i.e., denote the same natur al

number 12.

The sense of an expression is the way it has b een built, its denotat ion
or referen ce is the objec t expressed. Thus, the sense of 7 + 5 is that it is

the sum of two numbers. Another ter minolog y is intension and extension.

A simple example may b e useful. Consider plane elementar y geomet r y as

it has b een taug ht at school. We have two kinds of objec ts, namely points

a, b, c , . . .  and lines l , m, n, . . . .  There are re lations of e qualit y for points

a = b and for lines l = m , a re lation of par al lelism l ‖ m , and a relation of

incidence written a ∈ l and read point a is inc ide nt w ith line l. Finally, g iven

a point a and a line l , we can construct the object par (l , a), the parallel to

line l through point a.

The axioms of geometry include equality axioms for the equality of

points and of lines, as in Table 11.1, and replacement axioms for equals in

the parallelism and incidence relations. The replacement axioms are:

l ‖ m & m = n ⊃ l ‖ n

a ∈ l & a = b ⊃ b ∈ l

a ∈ l & l = m ⊃ a ∈ m

The relation of parallelism is reflexive, symmetric, and transitive. Thus,

it is an equality relation. It is, on the other hand, clear that two parallel

lines are not in general equal, because they can be in different places in the

geometrical plane. The terminology equivalence relation is often used in

such situations.

Two objects can be equivalent as far as the properties and relations

considered are concerned or as one says, extensionally equal, even though

they need not be the same in any ultimate sense. Such extensional equality

is precisely what replacement axioms correspond to.
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The famous axiom of parallels can be written with the help of predicate

logic in the following way:

l ‖ m & a ∈ l & a ∈ m ⊃ l = m

In words, any two lines parallel to each other that have a common point are

equal to each other.

Consider the objects par (l , a) and par (m, a). These are constructed
objects, and there is no limit to how complicated such constructed objects

can be. There would normally be in geometry a connecting line construction

ln(a, b) and an intersection point construction pt(l , m), and we can iterate

constructions to get, say:

ln( pt( par (l , a), m), b)

First the parallel to l through a has been drawn, then its intersection point

with m, and finally the connecting line of this point and b has been drawn.

As said, the sense of an object is the way it has been constructed. Con-

structed objects in geometry have certain ideal properties. The parallel line

construction has the following characteristic ideal properties, expressed as

axioms for the construction par :

a ∈ par (l , a) par (l , a) ‖ l

The parallel goes exactly through the point a and is exactly parallel to the

given line l . We can draw geometric figures that are far from being ideal

objects, even by free hand, because we understand what it means for them

to have the ideal properties and can reason about the figures as if they had

those properties.

Given two lines l and m and a point a , we can thus construct the

lines par (l , a) and par (m, a) and know by the construction axioms that

a ∈ par (l , a) and a ∈ par (m, a). In other words, lines l and m pass through

a common point a . If at some stage we find that the two given lines are par-

allel, l ‖ m, we can conclude that par (l , a) ‖ par (m, a) and by the axiom

of parallels that these latter are equal, through the instance:

par (l , a) ‖ par (m, a) & a ∈ par (l , a) & a ∈ par (m, a) ⊃
par (l , a) = par (m, a)

The two lines par (l , a) and par (m, a) are equal in the sense that they

are in the same place, in geometrical terminology congruent, but they are

not identical, whatever that means, because they have been constructed in



172 B e yond pure log ic

different ways. Even thoug h identit y is an elusive notion, it should include

that identit y is immediately recog nizable, but that need not b e the case for

equalit y in the geometr ic example: The equalit y pa r (l , a ) = pa r  (m, a ) was

co n c l u d e d f ro m l ‖ m , but that par allelism may be as difficult to establish

as any thing .

11.3 Axiomat ic theor ies

Predicate log ic can b e used for the for mulation of many mathematical the-

or ies, namely those that cor resp ond to its natur al ontolog y of indiv idual

objec ts, their prop er t ies, and relations between the objec ts. Such theor ies

include e lementar y ar ithmetic, geomet r y, and algebr a, the second one of

which was illust r ate d at the end of the pre v ious sec t ion. Other mathematical

theor ies use concepts such as ar bit r ar y sets of objec ts from a g iven col lec tion

that go be yond the expressive means of pre dicate log ic. For example, real

numbers can be const r ued as sets of natur al numbers, a dvance d par ts of

geomet r y can use continuit y axioms, and advanced par ts of algebr a pr inci-

ples from set theor y.

The theor y of e qualit y can be considere d a model of a simple axiomatic

theor y for mulate d in pre dicate log ic. We shall t reat one less simple theor y as

an example, namely lattice theory. Its origins are in great part in logic itself,

in the algebraic tradition that prevailed in logic from the times of George

Boole around 1850 through Ernst Schröder, Charles Peirce, and others, to

Skolem’s wor k around 1920 (cf. also Sec t ion 14.2). After this time, lattice

theory became a part of algebra.

A lattice consists of domainD of objects a, b, c , . . . with a relation of par-
tial order a � b. An equality relation is defined by a = b ≡ a � b & b � a .

Next we have two operations by which new objects can be constructed:

a ∧ b the meet of a and b

a ∨ b the join of a and b

The axioms are:

I General properties of the basic relation

Reflexivity: a � a Transitivity: a � b & b � c ⊃ a � c

II Properties of constructed objects

a ∧ b � a a ∧ b � b a � a ∨ b b � a ∨ b
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III Uniqueness of constructed objects

c � a & c � b ⊃ c � a ∧ b

a � c & b � c ⊃ a ∨ b � c

By axiom III, anything in the partial order that is ‘between’ a ∧ b and a and

also between a ∧ b and b, is equal to a ∧ b:

a ∧ b � c & c � a & c � b ⊃ c = a ∧ b

The substitution principles for equals in the meet and join operations are:

a = b ⊃ a ∧ c = b ∧ c b = c ⊃ a ∧ b = a ∧ c

These are provable.

Part of the origin of lattice theory is in number theory: Richard Dede-

kind noticed that the greatest common divisor and least common multiple

of two natural numbers follow certain abstract laws, namely those for a

lattice meet and join. Lattice theory was practised by Ernst Schröder in his

‘algebra of logic’, though with a terminology and notation that is completely

different from that of today. Schröder considered the theory quite abstractly,

with various readings of the lattice order relation a � b: The most common

reading was that a and b were some sort of domains and the order an

inclusion relation, so, in substance, sets with a subset relation. Then meet

and join became intersection and union, respectively. In another reading,

a and b could be taken as propositions and the order expressed logical

consequence with meet and join standing for conjunction and disjunction,

or they could be taken as ‘circumstances’ with a relation of cause and effect.

Skolem’s early work in logic followed Schröder’s algebraic tradition. In

1920, he solved what is called today the word problem for freely generated

lattices. Schröder’s terminology and notation were unknown to the extent

that Skolem’s discovery remained unnoticed until 1992.

A peculiarity of Skolem’s axiomatization is that it does not use the lattice

operations, but additional basic relations. Why he made this axiomatization

is not told to the reader of his article, but it works as a fine illustration of a

relational axiomatization.

Relational axiomatizations replace operations with relations. For exam-

ple, relational lattice theory is based on the idea of adding two three-place

relations M(a, b, c), J (a, b, c), read as ‘the meet of a and b is c ’ and ‘the

join of a and b is c ’, and axioms that state the existence of meets and joins:

∀x∀y∃zM(x, y, z) ∀x∀y∃z J (x, y, z)
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There are many more axioms as compared to an axiomatization with oper-

ations, but there are no functions:

I General properties of the basic relations

Reflexivity: a � a Transitivity: a � b & b � c ⊃ a � c

II Properties of meet and join

M(a, b, c) ⊃ c � a M(a, b, c) ⊃ c � b

J (a, b, c) ⊃ a � c J (a, b, c) ⊃ b � c

III Uniqueness of meet and join

M(a, b, c) & d � a & d � b ⊃ d � c

J (a, b, c) & a � d & b � d ⊃ c � d

Substitution of equals in the meet and join relations needs to be postulated,

with a = b ≡ a � b & b � a . The relations have three arguments, so to cut

down the number of axioms, we do as follows:

IV Substitution axioms

M(a, b, c) & a = d & b = e & c = f ⊃ M(d, e, f )

J (a, b, c) & a = d & b = e & c = f ⊃ J (d, e, f )

Substitution in one argument, say d for a in M(a, b, c), is obtained by the

instance M(a, b, c) & a = d & b = b & c = c ⊃ M(d, b, c).

Finally, we have:

V Existence of meets and joins

∀x∀y∃zM(x, y, z) ∀x∀y∃z J (x, y, z)

The existential axioms are used as follows:

∀x∀y∃zM(x, y, z)

∃zM(a, b, z)
∀E ,∀E

1
M(a, b, v)....

C
C

∃E ,1

Here v is an eigenvariable of rule ∃E . One would normally use existential

axioms by simply considering an instance M(a, b, v) with v arbitrary. This

was done by Skolem in 1920, well before Gentzen gave the natural quantifier

rules.

As can be gathered from the axioms, relational lattice theory is formulated

in terms of pure logic. Therefore, if we take the universal closures of the
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axioms and call the collection �, the derivability relation of pure predicate

logic can be used to express that A is a theorem of lattice theory: � � A.

Lattice theory with operations has eight axioms, relational lattice theory

instead twelve. We show that the former is ‘at least as good’ as the latter:

Define the meet and join relations by:

M(a, b, c) ≡ a ∧ b = c J (a, b, c) ≡ a ∨ b = c

Axiom V is derived by:

a ∧ b � a ∧ b
Ref

a ∧ b � a ∧ b
Ref

a ∧ b = a ∧ b
&I

∃z a ∧ b = z
∃I

∀x∀y∃z x ∧ y = z
∀I,∀I

By definition, we have proved ∀x∀y∃zM(x, y, z). The rest of the relational

axioms are derived similarly from the definition of meet and join.

Given a derivation in relational lattice theory, we can substitute the meet

and join relations in it as in the above definition, then substitute the rela-

tional axioms by their derivations:

The meet and join relations can be defined, their axioms derived, and deriva-

tions replaced by ones in lattice theory with operations.

The language of relational lattice theory is not more expressive than that

of lattice theory with operations, because the former can be emulated in

the latter. In the other direction, to show the equivalence of the two axiom-

atizations, we proceed as follows: Let an atomic formula t � s in lattice

theory with operations be given. It is translated into relational lattice theory

as follows: Let a, b be some ground terms in t, i.e., ones without lattice

operations, such that also a ∧ b is in t. Take a fresh term c and write down

M(a, b, c). If a ∧ b was a component in some lattice term, say (a ∧ b) ∧ d ,

we now write c ∧ d in its place and add M(c , d, e) into our list, with e a

fresh term. Proceeding in this way, we eventually find that t itself is some

lattice term, say e ∧ f and add M(e, f, g ) to our list. The same procedure

with the term s gives us a list of relational atoms that finishes with, say,

M(e ′ ∧ f ′, h). We prove now by induction on the build-up of terms that

if t � s is provable in lattice theory with operations, then g � h is prov-

able from M(a, b, c), . . . , M(e, f, g ), . . . , M(e ′, f ′, h) in relational lattice

theory. The procedure is completely general so that, combining the two

ways, we have:
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The equivalence theorem. Derivations in relational lattice theory and lattice

theory with operations can be translated to each other.

The translations we have given exemplify the general method of translation

between axiomatizations in terms of operations and relations.



12 Elements of the proof theory of arithmetic

12.1 The Peano axioms

Giuseppe Peano published in 1889 an article with the title Arithmetices prin-

cipia, nova methodo exposita (Latin for ‘The principles of arithmetic, pre-

sented by a new method’). Peano took his axioms from Richard Dedekind’s

book of one year earlier, Was sind und was sollen die Zahlen? (‘What are

numbers and what are they for?’). Dedekind’s aims were more general than

Peano’s, because he wanted to capture such notions as the infinity of a set.

Peano’s aim was to formalize arithmetic, and his work indeed gives a formal

language that is the model of the notation standardly used today. Thus,

Peano’s notation was a big step ahead compared to that of Frege.

The famous five axioms of Peano read as follows, with the notation a : N
to indicate that a is an element in N :

Table 12.1 The axioms of Peano

I. 0 : N
II. a : N ⊃ a + 1 : N

III. a : N & b : N ⊃ (a = b ⊃⊂ a + 1 = b + 1)

IV. a : N ⊃ ¬ a + 1 = 0

V. A(0) & ∀y(A(y) ⊃ A(y + 1)) ⊃ ∀x A(x)

The notation is only slightly modernized: The sequence of natural numbers

begins with 0 instead of 1 as in Peano, and the last axiom is written in first-

order logic. Peano had followed Dedekind and his fifth axiom states that if

for a class K we have that 0 : K and x : K ⊃ x + 1 : K for an arbitrary x ,

thenN is contained inK. To relate this principle to axiom V above, think of

A as the class of all x that have the property A. To get rid of classes altogether

in the formulation of the Peano axioms, we can take N to correspond to a

predicate N(x), ‘to be a natural number’, and write axioms I and II as N(0)

and N(a) ⊃ N(a + 1), respectively.

A system of classical arithmetic, called Peano arithmetic, is obtained by

adding the five Peano axioms to a system of classical predicate logic, with the 177
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rules of equality included. It is usual to include the possibility of defining

functions by primitive recursion as explained below. Axioms I and II by

which we can prove something to be a natural number are needed only for

special purposes and can be left aside for now, along with the categorizations

a : N , b : N in axioms III and IV.

One direction of axiom III is the principle of replacement of equals in the

successor function x + 1. The remaining direction, a + 1 = b + 1 ⊃ a = b

is an axiom of infinity. Dedekind had defined a class to be infinite if there is

a one-to-one correspondence between the class and some proper subclass

of it. From this perspective, axiom III guarantees that the image of N under

the successor function s , written s [N ] and abbreviated N+, has at least as

many elements asN : By axiom III, if two arguments a and b are distinct, the

values s (a) and s (b) are distinct. The fourth axiom, ¬ s (a) = 0, states that

0 is not the image of any number under s , so that N+ is a proper subclass

of N . For these reasons, axioms III and IV are called the two axioms of

infinity.

The principle of arithmetic induction has been formulated in various

ways. At school, one learns to prove the formula, reportedly used by Gauss

in an intuitive way as a schoolboy, that gives the sum 1 + 2 + . . . + n as

n(n + 1)/2: First verify this for 1, then assume it for n and show that the

same formula for n + 1 follows.

A variant formulation of induction is to show a property for 0, then

to show that if for each y ≤ x , the assumption A(y) implies A(x), then

∀x A(x). Yet another version of the principle of induction is the method of

‘infinite descent’: To show ∀x¬A(x), show that ¬A(0) and that A(n + 1)

implies A(n). A restricted case of induction, sometimes called special induc-
tion, is the one in which a property is provable for 0 and for any successor

s x . Thus, one infers ∀x A(x) from A(0) and A(s x), with x arbitrary in the

latter.

Philosophers of mathematics have tried to justify the principle of arith-

metic induction, but the conclusion has been that it cannot be reduced to

anything simpler. The intuitive motivation can be put as follows: Consider

some property of natural numbers, such as 1 + 2 + . . . + n = n(n + 1)/2,

and let this be denoted by G(n). If G(1) and G(n) ⊃ G(n + 1) for any n, we

can produce a proof of G(m) for any specific given number m: Take G(1) and

instantiate G(n) ⊃ G(n + 1) by the substitution[1/n] to get G(1) ⊃ G(2).

Now G(2) follows, so next instantiate G(n) ⊃ G(n + 1) by [2/n] to get

G(2) ⊃ G(3), and so on until you reach a proof of G(m). Thus, the process

terminates for any m, but the assumption that a proof of G(m) is reached

is just the principle of induction in disguise.
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We should note that Peano’s axiomatization of arithmetic is schematic:

The principle of induction is meant as a scheme such that any of its instances,

with A a concrete formula built up from atomic formulas by the connectives

and quantifiers, is an axiom. It is not possible to tell in advance how these

induction formulas, also called inductive predicates, should be chosen in

proofs, neither is it possible in general to reduce the complexity of induction

formulas. For example, if the induction formula is a conjunction and the task

is to prove A(s y) & B(s y) from the assumption A(y) & B(y), the proof of

just A(s y) may require the use of B(y). Therefore, the inductive step cannot

be composed of two simpler steps, namely a proof of A(s y) from A(y) and a

proof of B(s y) from B(y). An essential difference is met between quantified

and quantifier-free induction formulas.

12.2 Heyting arithmetic

Peano arithmetic uses classical logic. If we change it into intuitionistic

logic, we obtain Heyting arithmetic, so named after Arend Heyting who

introduced it in connection with his axiomatization of intuitionistic logic

in 1930. We shall formulate Heyting arithmetic, abbreviated HA, as an

extension of the system of rules of intuitionistic natural deduction NI. We

begin with the rules for equality:

Table 12.2 Rules for arithmetic

equality

a = a Ref
a = b
b = a

Sym a = b b = c
a = c Tr

Next, for each function introduced, a rule of replacement has to be added.

For example, we have for the successor function the rule:

Table 12.3 Rule of replacement for

the successor function

a = b
s (a) = s (b)

s Rep

A replacement rule is needed for all functions f , one that gives the con-

clusion f (a) = f (b) from the premiss a = b. Therefore, one direction of

Peano’s third axiom is a principle of substitution of equals in the successor
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function. The schematic nature of the replacement rule leads to no prob-

lems, because the number of instances to be considered is the same as the

number of functions that have been introduced. There is, however, another

possible formulation in which the only functions are successor, sum, and

product.

When functions are defined by primitive recursion, we add correspond-

ing mathematical rules to the system. For sum and product, we have two

replacement rules and two recursion rules for each operation:

Table 12.4 Replacement and recursion for sum and product

a = b
a + c = b + c

+Rep
b = c

a + b = a + c
+Rep

a + 0 = a
+0Rec

a + s (b) = s (a + b)
+s Rec

a = b
a × c = b × c

×Rep
b = c

a × b = a × c
×Rep

a × 0 = 0
×0Rec

a × s (b) = (a × b) + b
×s Rec

The addition of functions defined by recursion works always in the same

way: We add for each function f replacement rules (f Rep) and zero-premiss

computation rules for zero and successor ( f 0Rec and fs Rec). Incidentally,

the first or second replacement rule in sum and product can be left out if the

commutativity of addition and multiplication is proved. Such proofs can

be quite tricky and require the principle of induction. Therefore, in order

to study the arithmetical rules with induction excluded, both replacement

rules are added.

In setting up our system of intuitionistic arithmetic HA, we shall not

consider the first two of Peano’s axioms. As said, one half of axiom III is a

principle of replacement, and the other half can be treated in at least two

ways as we shall show. This leaves us with the fourth and fifth axioms, the

former formulated as in:

Table 12.5 The rule of infinity

s (a) = 0
⊥ Inf

The induction axiom is schematic, but in a way different from the replace-

ment scheme, because there is an infinity of instances. We shall formulate

it analogously to the E -rules of natural deduction, with an arbitrary conse-

quence C and the abbreviation s y in place of s (y):
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Table 12.6 The induc tion r ule

�....
A(0)

1

A( y ), �
....

A(s y)

1

A(t ),�....
C

C 
In d ,1

He r e A is any for mula, a nd y is the eigenvar iable of the r ule, not fre e in

�, �, � . In the der ivation of the m inor premiss C , the term t can b e ar bi-

t r ar ily chosen. If t is a number instead of a var iable, we have an instance of

nu m e r i c a l i n d u c t i on . T he r ule of induc t ion h as no major premiss, but it h as

an ar bit r ar y consequence and therefore b ehaves like a gener al elimination

rule.

The standard r ule of induc t ion is obtained as a sp ecial case of the above

rule, when C ≡ A(t ) and the degener ate der ivation of the third premiss is

left unw r itten:

Table 12.7 The standard r ule of

induc t ion

�....
A(0)

1

A( y ), �
....

A(s y)

A(t )
In d ,1

The rest r ic te d for m of induc tion that was mentioned ab ove, or ‘sp e cial

induc t ion’, has no assumption w ith an eigenvar iable. Thus, sp ecial induc tion

corresponds to the rule:

Table 12.8 The rule of special

induction

�....
A(0)

�....
A(s y)

1

A(t), �....
C

C
Ind,1

Sp ecial induc tion w ith the standard r ule of Table 12.7 g ives the conclusion

A(t) whenever A has been proved for zero and an arbitrary successor, A(0)

and A(s y).

The system HA of Heyting arithmetic is defined as NI extended by rules

for equality, replacement for successor, sum, and product, recursion for sum
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and product, and rules Inf and Ind. A natural deduction system of Peano

arithmetic is obtained from HA by the addition of the principle of indirect

proof for arbitrary formulas:

Definition 12.1. Heyting arithmetic.

HA = NI + Ref + Sym + Tr + Rep + 0Rec + sRec + Inf + Ind.

Definition 12.2. Peano arithmetic.

PA = HA + DN .

Even if we have thus defined formal systems of proof, we shall often give

informal proofs, instead of formal derivations by the rules of HA or PA.

One reason is that such formal derivations become too broad to be printed.

For better readability, we may use a dot in front of quantified equations, as

in ∃y.x = s y.

One direction of Peano’s third axiom is a principle of replacement, the

other one is Dedekind’s axiom of infinity, from s a = s b to conclude a = b.

We have:

Theorem 12.3. If the terms a and b have no free variables, the rule by which

one concludes a = b from s a = s b is admissible in HA.

By this result, a proof of s a = s b can be turned into a proof of a = b.

There are at least two ways to the result, one of which is difficult, the other

one easy: In the former, one shows by direct proof transformations that if

s a = s b has no free variables and is derivable, it is essentially concluded

from a = b (cf. Siders 2014). The easy way to the result is to have a system

with arbitrary functions defined by primitive recursion and to define a

predecessor function prd by the recursion equations:

prd(0) = 0 prd(s a) = a

If s a = s b, the principle of replacement for the predecessor function gives

prd(s a) = prd(s b) so a = b follows by the above second recursion equation

for prd.

An arithmetic axiom weaker than induction was proposed by Raphael

Robinson in 1950:

Lemma 12.4. Robinson’s axiom ∀x(x = 0 ∨ ∃y.x = s y) is provable in HA.

Proof. We prove t = 0 ∨ ∃y.t = s y for an arbitrary term t by induction.

For the base case, we have 0 = 0 ∨ ∃y.0 = s y by Ref and ∨I1. For the

inductive case, assume x = 0 ∨ ∃y.x = s y and show s x = 0 ∨ ∃y.s x = s y.
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If x = 0, then s x = s 0 follows by sRep, so ∃y.s x = s y, consequently also

s x = 0 ∨ ∃y.s x = s y. If ∃y.x = s y, we apply ∃E and assume x = s z with

z the eigenvariable of rule ∃E . Now, s x = s s z by sRep, so ∃y.s x = s y and

s x = 0 ∨ ∃y.s x = s y follows. By ∨E , s x = 0 ∨ ∃y.s x = s y, so by rule Ind,

t = 0 ∨ ∃y.t = s y, and ∀I gives Robinson’s axiom. QED.

The above proof suggests that HA is a natural collection of principles of

proof. A comparison with a formal derivation shows how close to formal-

ization the informal argument is. To keep the derivation manageable in

breadth and readable in font size, we use the standard form of Ind in which

the third minor derivation is degenerate (C equal to A(t) in the schematic

rule) and leave unwritten that minor derivation:

Table 12.9 A formal derivation of Robinson’s axiom

0 = 0
Ref

0 = 0 ∨ ∃y.0 = s y
∨I1

3
x = 0 ∨ ∃y.x = s y

2
x = 0

s x = s 0
sRep

∃y.s x = s y
∃I

2
∃y.x = s y

1
x = s z

s x = s s z sRep

∃y.s x = s y
∃I

∃y.s x = s y
∃E ,1

∃y.s x = s y
∨E ,2

s x = 0 ∨ ∃y.s x = s y
∨I2

v = 0 ∨ ∃y.v = s y
Ind,3

∀x(x = 0 ∨ ∃y.x = s y)
∀I

Robinson’s axiom in place of the induction principle gives a weak system of

arithmetic that nevertheless has a remarkable feature: It is finitely axioma-

tizable yet at the same time sufficiently strong for Gödel’s incompleteness
theorem, i.e., for the existence of a true arithmetic proposition that is not

derivable within the formal system.

Theorem 12.5. Excluded middle a = b ∨ ¬ a = b for atoms is provable in

HA.

Proof. The proof is by induction on the first argument in the equation: We

show first the base case 0 = y ∨ ¬ 0 = y, for arbitrary y. By lemma 12.4,

y = 0 or ∃z.y = s z. In the former case 0 = y ∨ ¬ 0 = y follows. In the

latter case, Inf gives ¬ s z = 0 so ¬ 0 = y follows by s z = y, therefore also

0 = y ∨ ¬ 0 = y.

For the inductive case, assume x = y ∨ ¬ x = y for an arbitrary y and

show s x = y ∨ ¬ s x = y. By the assumption, following the easy method

in the outline of proof of theorem 12.3, we get in particular the instance,

x = prd(y) ∨ ¬ x = prd(y). In the first case, if x = prd(y), if y = 0, then

¬ s x = y. If x = prd(y), if y = s z for some z, then by s Rep and recursion for
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prd , s x = y . In the second case, if ¬ x = prd ( y ), then, assuming s x = y ,

we h ave prd (s x) = prd ( y ) so  x = prd ( y ) w hich is impossible. Therefore

¬ s x = y . All cases have now led to s x = y ∨ ¬ s x = y so we conclude by

induc t ion that a = b ∨ ¬ a = b . QED.

Theorem 12.6. Excluded middle A ∨ ¬A for quant ifier-free for mulas is prov-

able in HA.

Pro o f . Prov abilit y of excluded midd le is show n by induc t ion on the length

of the for mula. QED.

We shal l n ow extend the n or mal for m theorem for log ical der iv ations to

der ivations in HA.

Theorem 12.7. Given a derivation in HA, it can be converted into normal

form.

Proof. The proof is an extension of the normalization procedure of

Sec t ion 13.2 b elow. We note first that the conclusions of all ar ithmetical

rules except Ind are never major premisses in elimination rules, because

they are atomic formulas. Therefore the only new case to consider in nor-

malization is when such a major premiss has been derived by rule Ind. It

is readily seen that the E -rule permutes up to the derivation of the third

major premiss of rule Ind. QED.

Normal derivations begin with instances of the arithmetical rules, followed

by logical rules and Ind. If in the rule of induction the arbitrary term t

in the discharged assumption A(t) is a number instead of a variable (case

of ‘numerical induction’), the instance of induction can be eliminated by

repeated application of a conversion. The given derivation is:

�....
A(0)

1
A(y), �....
A(s y)

1
A(t), �....

C
C

Ind,1

For simplicity, we assume the discharges simple. If t = 0, the conversion is

into:

�....
A(0), �....

C
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If t = s n, the conversion is into:

�....
A(0)

1
A( y ), �....
A(s y)

1
A(n ), �....
A(s n), �....

C
C 

In d ,1

The der iv ation of A(s n) from the assumption A(n ) is obtained by the sub-

stitution [n/ x ] in the der ivation of the second premiss. A rep etition of the

conversion w ill e ventually produce a tower of composed der ivations that

beg ins w ith the der ivation of A(0) and continues to A(1), . . . ,  A(n ), A(s n),

w ith the induc tion eliminated. Note that op en assumptions in � get mul-

tiplied, possibly zero t imes, in the conversion process.

Nor mal der ivabilit y in He y t ing ar ithmetic has the same definition as in

pure log ic, namely that major premisses of e limination r ules are assump-

tions. Cont r ar y to the other ar ithmetical r ules, r ule In d cannot b e for mu -

late d so that it op er ates only on atomic for mulas. As a consequence, there

is no subfor mula prop er t y, a nd some authors w r ite indeed for this reason

that ‘nor malization fails in ar ithmetic’. Ne ver theless, the nor mal for m for

arithmetical derivations is a useful property, as we shall now see.

12.3 The existence property

The G ödel–Gentzen t r anslations of 1933, g iven in S ec tion 10.3, were or ig i-

nally devised to reduce the consistency of classical arithmetic to intuition-

istic arithmetic. The latter does not contain any of the ‘dubitable’ steps of

indirect proofs with the quantifiers, but the question still remained whether

intuitionistic arithmetic could be further justified as consistent. Reflecting

on his incompleteness theorem, Gödel set out in a conference talk of 1933 a

number of criteria for such a justification, including the existence property:

If a formula ∃x A(x) is a theorem in intuitionistic arithmetic, it should be

possible to find an instance A(n) on the basis of a proof of the theorem

(cf. the lecture ‘The present situation in the foundations of mathematics’,

printed in the third volume of Gödel’s Collected Works).

The existence property of Heyting arithmetic was proved by Kleene in

1945 by what is known as the realizability method. We show as an application

of the normal form of theorem 12.7 that the existence property can be proved

by straightforward transformations of formal derivations of an existential
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theorem. The prop er t y fol lows w ith almost nothing to prove: Either the last

r u le in a n or mal der ivation of ∃ x A( x ) is ∃ I or the last rule can be dropped

out.

We shal l set the ar ithmetical r ules except In d aside now and consider the

system of log ical r ules and r ule In d in what follows: As we have noted, the

presence of ar ithmetical r ules other than In d do es not affec t the analysis of

nor mal der ivations b ecause the conclusions of these ar ithmetical r ules are

ne ver major premisses in e limination r ules.

Theorem 12.8. Existence prop er t y for HA. Give n a der ivat ion of ∃ x A( x )

in HA w ith no ope n assumpt ions and no free var iables in ∃ x A( x ), a derivation

of an instance A(n ) can b e found.

Pro o f . We may assume the der ivation to be nor mal. E -r ules would leave

their major premisses as op en assumptions, so the last r ule is not an elim-

ination. If it is ∃ I , the premiss is some  A(t ). If t is a number, a derivation

of an instance is found by deleting the last r ule, and if t is a ter m w ith a

var iable y , denoted t ( y ), then the instance A(t (n )) is similarly der iv able for

any v alue of n .

By the above, we may assume that the last step in the der ivation is In d ,

w ith an induc t ion for mula B and the der ivation:

....
B (0)

1
B ( z )....
B (s z)

1
B (u )....

∃ x A( x )
∃ x A( x )

In d ,1

No t e t h a t B (0) is der ivable w ithout assumptions, so it is a theorem.

If u in the closed assumption B (u ) is a close d ter m , i.e., one w ithout

free var iables, the resulting numer ical induc tion can b e removed as above.

Therefore we c an assume u to b e a t e r m t (v ) w ith a var iable v . Consider

the subder ivation of the third minor premiss ∃ x A( x ) from the assumption

B (u ). Because v remains free in B (u ), it cannot b e an eigenvar iable of a r ule

instance in that subder iv ation. Therefore v can b e substituted by 0 in the

der ivation of ∃ x A( x ) from  B (u ), w ith no assumptions left, and the instance

of In d that ends the der ivation deleted. QED.

The condition that there b e no fre e var iables in ∃ x A( x ) either force s t he

induc t ion n ot to do any wor k, or else ∃ x A( x ) has been  concluded by

rule ∃ I .

We proved the disjunc tion prop er t y of intuitionistic log ic in S ec tion 3.4,

and the existence prop er t y of intuitionistic pre dicate log ic in S ec tion 9.2. In
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HA, the existence property leads to a definition of disjunction in terms of

existence:

Corollary 12.9. Disjunction is definable in HA by:

A ∨ B ≡ ∃x((x = 0 ⊃ A) & (¬ x = 0 ⊃ B))

Proof. We show that the rules for ∨ follow from the definition. For ∨I1,

assume A. Then 0 = 0 ⊃ A. Because 0 = 0 is an instance of Ref, we

have ¬ 0 = 0 ⊃ B . Therefore (0 = 0 ⊃ A) & (¬ 0 = 0 ⊃ B) so ∃I gives

∃x((x = 0 ⊃ A) & (¬ x = 0 ⊃ B)), i.e., A ∨ B . Rule ∨I2 is derived simi-

larly, with (s 0 = 0 ⊃ A) & (¬ s 0 = 0 ⊃ B). For ∨E , let the major premiss

be ∃x((x = 0 ⊃ A) & (¬ x = 0 ⊃ B)) and assume derivations of C from A

and from B . By the existence property, (n = 0 ⊃ A) & (¬ n = 0 ⊃ B) for

some n. By theorem 12.5, we have n = 0 ∨ ¬ n = 0. If n = 0, A follows,

and therefore also C , and if ¬ n = 0, B follows, and therefore also C , so

that C follows. QED.

Corollary 12.10. Disjunction property for HA. If A ∨ B is derivable in HA,

with no free variables in A and B, then A or B is derivable.

Proof. The result follows from the application of the existence property to

∃x((x = 0 ⊃ A) & (¬ x = 0 ⊃ B)). QED.

The disjunction and existence properties fail for Peano arithmetic. One way

to see the former is to consider a Gödelian unprovable proposition A. By the

law of excluded middle, A ∨ ¬A is a theorem of PA, but by incompleteness,

neither A nor ¬A can be a theorem. On the other hand, if A ∨ ¬A were a

theorem of HA, by the disjunction property either A or ¬A would be, so

that excluded middle for arbitrary formulas is not provable in HA. By the

same, since A ∨ ¬A is provable in HA for quantifier-free A, no such A can

be a Gödelian proposition.

The subformula property of normal derivations is lost when rule Ind

is added to NI: All we can say is that formulas in a normal derivation

are subformulas of open assumptions, of the conclusion, or of induction

formulas.

The intuitive principle of arithmetic induction applies to any property

A(n) of natural numbers. There cannot be any effective enumeration of

all possible arithmetic properties. What is known as the diagonal argument

would produce new ones whenever an enumeration was suggested. One way

to look at the incompleteness of arithmetic is that in a formal language there

is a denumerable supply of arithmetic predicates, but these can never capture

all possible properties of natural numbers. Thoralf Skolem came very close
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to trying to prove incompleteness on this basis, some years before Gödel.

In a paper published in 1929, he wrote that ‘it would be an interesting task

to show that each collection of first-order formulas on the natural numbers

remains valid when certain changes in the meaning of a “number” are made’

(see Skolem 1929, p. 269).

12.4 A simple-minded consistency proof

We shall use the normal form for derivations in HA for a simple proof of the

consistency of intuitionistic arithmetic, based on a notion of falsifiability
of formulas. We show that if C is derivable from the assumptions � and if

C is falsifiable, then some formula in � is falsifiable. Then, if no formula in

� is falsifiable, neither is C .

Definition 12.11. Falsifiable formulas of HA. If formula A has free vari-

ables, it is falsifiable when its universal closure is falsifiable. A collection of

formulas � is falsifiable when � contains a falsifiable formula. For the rest,

we have the inductive clauses:

1. ⊥ is falsifiable.

2. A numerical equation n = m is falsifiable if it is false.

3. A & B is falsifiable if A or B is falsifiable.

4. A ∨ B is falsifiable if A and B are falsifiable.

5. A ⊃ B is falsifiable if A is not falsifiable whenever B is falsifiable.

6. ∀x A(x) is falsifiable if A(t) is falsifiable for some term t.

7. ∃x A(x) is falsifiable if A(t) is falsifiable for any term t.

Clause 2 is justified by the decidability of numerical equality, theorem 12.3

above.

Theorem 12.12. Simple-minded consistency of HA. If C is derivable from

the assumptions � in HA and if C is falsifiable, then � is falsifiable.

Proof. The proof is by induction on the height of a normal derivation of C .

The base case is that C is an assumption, with � ≡ C , for which the claim is

immediate. For the inductive case, assume the property for derivations up

to height � n and consider the last rule in derivations of height � n + 1:

1. The last rule is an arithmetical rule different from Ind. Zero-premiss

rules do not have as conclusion falsifiable formulas, so the rule is Sym, Tr,

Rep, or Inf. With Sym, if the conclusion is falsifiable, also the premiss is. With

Tr, at least one premiss is falsifiable by ¬ a = c ⊃ ¬ a = b ∨ ¬ b = c , a
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formula derivable from Tr by the fact that classical logic can be applied, as

in theorem 12.6. With Rep, the premiss is falsifiable, and with Inf likewise,

through the false instance s 0 = 0.

2. The last rule is &I . The derivation, with � ≡ �′, �′′, is:

�′
....
A

�′′
....
B

A & B
&I

If A & B is falsifiable, one of A and B is, and by the inductive hypothesis,

so is �′ or �′′.

3. The last rule is &E . The derivation, with � ≡ A & B, �′, is:

A & B

1
A,

1
B, �′
....

C
C

&E ,1

By the inductive hypothesis, if C is falsifiable, then A or B or �′ is falsifiable.

In the two first cases A & B is falsifiable, so � is falsifiable in each case.

4. The last rule is ∨I or ∨E . The proof is similar to 2 and 3.

5. The last rule is ⊃I . The derivation is:
1
A, �....

B
A ⊃ B

⊃I,1

If A ⊃ B is falsifiable, then A is not falsifiable whenever B is falsifiable.

Therefore, by the inductive hypothesis, if B is falsifiable, also � is falsifiable.

6. The last rule is ⊃E . The derivation, with � ≡ A ⊃ B, �′, �′′, is:

A ⊃ B

�′
....
A

1
B, �′′

....
C

C
⊃E ,1

If C is falsifiable, B or �′′ is falsifiable by the inductive hypothesis. In the

former case, if A is falsifiable, then �′ is, so if A is not falsifiable, then A ⊃ B

is by definition 12.11.
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7. The last rule is ⊥E . The derivation is

�....⊥
C

⊥E

Here � is falsifiable by the inductive hypothesis, because ⊥ is.

8. The last rule is ∀I . The derivation is:

�....
A(y)

∀x A(x)
∀I

If ∀x A(x) is falsifiable, then A(t) is falsifiable for some t. The substitution

[t/y] in the derivation of the premiss A(y) gives a derivation of the falsifiable

formula A(t) from � so � is falsifiable by the inductive hypothesis.

9. The last rule is ∀E . The derivation, with � ≡ ∀x A(x), �′, is:

∀x A(x)

1
A(t), �′

....
C

C
∀E ,1

If C is falsifiable, A(t) or �′ is falsifiable by the inductive hypothesis. With

A(t) falsifiable, also ∀x A(x) is falsifiable.

10. The last rule is ∃I . The derivation is:

�....
A(t/x)

∃x A(x)
∃I

If ∃x A(x) is falsifiable, then A(t) is falsifiable for any t, so � is falsifiable by

the inductive hypothesis.

11. The last rule is ∃E . The derivation, with � ≡ ∃x A(x), �′, is:

∃x A(x)

1
A(y), �′

....
C

C
∃E ,1
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If C is falsifiable, A(y) is falsifiable for an arbitrary y, or �′ is falsifiable. In

the former case, ∃x A(x) is falsifiable.

12. The last rule is Ind. The derivation, with � ≡ �′, �′, �′′′, is:

�′
....

A(0)

1
A(y), �′′

....
A(s y)

1
A(t), �′′′

....
C

C
Ind,1

The case to consider is that A(t) is falsifiable. By definition, A(n) is then

falsifiable for some number n. If n = 0, we conclude from the derivation of

the first premiss A(0) that �′ is falsifiable. If n = s m, we do the substitution

[m/y] in the derivation of the second premiss, to get a derivation of A(s m)

from the assumptions A(m), �′′. Here A(s m) was assumed falsifiable, so

the case to consider is when A(m) is falsifiable. We reason as before that

either m = 0 or m = s k, until we have for some number l the case l = 0

and conclude that �′ is falsifiable. QED.

Corollary 12.13. HA is consistent.

Proof. An empty set of assumptions is not falsifiable. Therefore no theorem

of HA is falsifiable. QED.

By Gödel’s second incompleteness theorem, the proof of theorem 12.12

cannot be formalized in arithmetic. The proof itself is just fine, but the

notion of falsifiability transcends elementary arithmetic: The problematic

points of definition 12.11 are clauses 5, 6, and 7. In the case that there are

free variables in A ⊃ B , falsifiability of A ⊃ B connects the falsifiability of

B to that of A: Those instances that falsify B should not falsify A. Moreover,

this case leads to clause 6 by the falsifiability of open formulas (formulas

with free variables). Both clauses 6 and 7 contain quantifiers (‘some’ and

‘any’) in the defining parts of the inductive clauses. These are the reasons

why definition 12.11 goes beyond elementary arithmetic.

Theorem 12.12 and its proof could be formulated in a dual terminology

of truth of formulas in HA:

Definition 12.14. Truth in Heyting arithmetic. A formula in HA is true if

it is not falsifiable.
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The falsifiability of formulas in arithmetic is not arithmetically definable,

so neither is truth. If � consists of true assumptions and C is derivable

from �, then C is true. A result to this effect is announced in Kleene’s book

Introduction to Metamathematics (theorem 61, p. 500), with the indication

that a proof can be constructed in analogy to a proof of the consistency of

the predicate calculus.
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13 Normalization and cut elimination

13.1 Proofs by structural induction

(a) Inductive generation. A class of objects is said to be inductively
generated if, given some finite collection of objects and operations on

objects, each object in the class is obtained from the finite collection after

some bounded number of operations.

The importance of inductive generation is that it gives us a systematic

means of proving properties of infinite collections of objects: The principle is

to first prove that each object in the given finite collection has the property,

then to prove that each way of generating new objects by the operations

maintains the property.

The above abstract description is best illustrated by examples. The first

and best-known inductive class is that of the natural numbers. The given

finite collection is just the number 0, and there is a single operation, what

is called the successor of a number n, the application of which is written

s (n). The standard notation is 1 for s (0), 2 for s (s (0)), etc.

The principle of proof that goes with an inductive generation of the

natural numbers is called arithmetic induction, or ‘complete induction’

in the older literature: Given a property of natural numbers, written A(n)

for n, prove that 0 (or sometimes 1) has the property and that if n has the

property, also s (n) has. In other words, prove A(0) and A(n) ⊃ A(s (n)). If

n is arbitrary, the conclusion is that every natural number has the property.

Many inductive proofs are so simple that they go practically unrecog-

nized, as with the property expressed by: One out of three consecutive natural

numbers is divisible by 3. We see that 3 is divisible by 3, 6 is divisible by 3,

9 is divisible by 3, and so on, an insight used in example 1.2(c). Yet, what

we see in our mind’s eye would not count for a mathematical proof. We

want to prove by arithmetical means that for any n, one of n, n + 1, n + 2

is divisible by 3. For the proof by induction, let first n = 1, and we have that

one of 1, 1 + 1, 1 + 2 is divisible by 3. Next assume the property for n, i.e.,

assume that one of n, n + 1, n + 2 is divisible by 3, and prove the property

for n + 1, i.e., prove that one of n + 1, n + 2, n + 3 is divisible by 3. The

assumption gives three cases, and the divisibility by 3 of n + 1 and n + 2 195
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leads to the claim. The remaining case is that n is div isible by 3, by w hich

also n + 3 is div isible by 3: There is by assumption a k such that n = 3k , by

which n + 3 = 3k + 3 = 3(k + 1).

In the induc tive proof, we have the base case w ith 0 (or, as in the above,

w ith 1), and the induct ive case w ith the step from n to s (n ). In the latter, n

has to be arbitrary, i.e., an eigenvariable in the sense of predicate logic (cf.

Sec t ion 8.2): Nothing must be assumed about n except that it is a natur al

number.

We can write the principle of induction as a rule that can be added to the

system of natural deduction for predicate logic:

�....
A(0)

1
A(n), �....
A(s (n))

∀x A(x)
Ind,1

The temporary assumption A(n) is closed at the inference. The number n

in it has to be arbitrary, i.e., no assumption about n must be contained in

�, �. Special induction is that special case of rule Ind in which the discharge

of A(n) is vacuous.

Given an inductive class such as the natural numbers, one can define new

operations, such as the sum of two numbers:

1. n + 0 = n

2. n + s (m) = s (n + m)

In this recursive definition of the sum, it is first defined what the addition

of 0 gives, then what the addition of a successor s (m) gives. The latter is

reduced to the addition of m that is smaller than s (m). The cases for m are

two:

1. If m = 0, we have s (n + m) = s (n + 0) = s (n).

2. If m = s (k) for some k, we have s (n + m) = s (n + s (k)) = s (s (n + k)).

With k, the cases are again two, until the second term in the sum is 0 and

vanishes as in case 1.

We can now prove inductively properties of the defined operation, such

as n + m = m + n, for every n, m. Such proofs can be rather involved; for

example, sum is an operation that takes two arguments, and repeated sums

are written with parentheses. A proof of the commutativity of sum requires

first a proof of the associative law (n + m) + k = n + (m + k).
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The pro duc t of two numbers is defined by :

1. n × 0 = 0

2. n × s (m ) = n × m + n

We can now prove prop er t ies of natur al numbers, such as the for mula

2 × (1 + 2 + . . . + n ) = n × (n + 1) that Gauss is said to have discovered

as a child when g iven the task to do the sum 1 + 2 + . . . + 100.

(b) St r uctur al induct ion. The natur al numbers are the histor ically first

induc t ive class. In log ic, the induc tive classes of g reatest interest are those of

for mulas and der ivations. The for mulas of prop ositional log ic were defined

in Sec t ion 1.6 as fol lows: First the class of simple for mulas was g iven, then

the induc tive clauses by w hich compound for mulas can be const r uc ted.

Thus, we have:

Table 13.1 In duc t ive gener at ion of for mulas

1. P , Q, R, . . .  and ⊥ are for mulas .
2. If A, B, C, . . .  are for mulas , also (A) & (B ), ( A) ∨ ( B ), and ( A) ⊃ ( B )

are for mulas .

In each concrete situation, the number of simple for mulas, i.e., those under

clause 1, is bounded, but we cannot put any fixe d b ound on their number.

(In the end, the natur al numbers are re quired.)

The pr inciple of pro of based on the induc t ive gener ation of for mulas

from the simple ones is cal led induct ion on the length of a for mula, w here

length l ( A) of a for mula A is the number of connec t ives in it:

l ( P ) = 0

l (⊥) = 1

l (( A) & (B )) = l (( A) ∨ ( B )) = l (( A) ⊃ ( B )) = l ( A) + l ( B ) + 1

For an unimag inative example of such a pro of, consider Al l c o m p o u n d

for mulas have an e ve n number of pare nthes es. The base case of st r uc tur al

induc t ion is a simplest compound for mula. It has four parentheses, as is

seen from the three op er ations for for ming comp ound for mulas. Next,

for the inductive step, assume both of A and B to have an even number

of parentheses. Each of the three constructions adds four parentheses, by

which the conclusion follows.

Induction on the length of a formula was used in the proof of the admis-

sibilit y of the r ule of cont r ac tion in Sec t ion 4.5.
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A for mal system of proof is nothing but an induc tive definition of a class

of der ivable for mulas or, more gener a l ly, of for mulas der iv able from g iven

assumptions. As an example, consider intuitionistic sequent calculus for

propositional log ic:

Table 13.2 Induc t ive gener at ion of der iv at ions

1. The sequents A, � � A, and ⊥, � � C are der iv a t i ons of A, � � A, and

⊥, � � C .

2. Given der iv a t i ons of the sequents found as premisses of the r ules of

Table 4.1, application of the r ules pro duces der iv a t i ons of the s equents

found as conclusions of these r ules.

Der ivations star t w ith initial sequents, fol lowed by applications of the log ical

r ules. Thus, the for mal definition of der ivations goes in a direc tion opposite

to that of finding der ivations. The latter pro ceeds in a ro ot-first direc tion.

St r uc tur al induc t ion on the heig ht of a derivation proceeds in the direction

in w hich der ivations are defined, i.e., it star ts from the initial sequents that

for m the leaves of der ivation t rees. Heig ht is defined as the g reatest numb er

of consecutive steps in a der ivation t ree, i.e., as the length of its longest

br anch. Induc tion on the heig ht of a der ivation was used first in the proof

of the inver tibilit y of r ules in sequent calculus, in Sec t ion 4.2.

Lo oking at the proof of a dmissibilit y of cont r a c t ion in S ec tion 4.5, we

notice that it is a ‘double induc t ion’, w ith two induct ive par ameters: The

main or pr incipal induc t ion is on the length of the cont r ac tion for mula, the

secondar y one, the subinduct ion, on the heig ht of der ivation. Der ivations

were t r ansfor med in the pro of so that either cont r ac tion was applied on

a shor ter for mula, w ith no cont rol on the heig ht of der iv ation, or heig ht

was reduced but the length of the cont r ac tion for mula kept intac t. We can

depic t the par ameter as a pair ( n, m ). The main induc tion shows that n can

be re duce d but says nothing of w hat happ ens to m . T he subinduc tion shows

that m can b e reduced w ith n left intac t. Altogether, we ar r ive at the case of

a simple for mula ( n = 0) and an initial sequent (m = 0).

13.2  A proof of normalization

We g ive a pro of of nor malization for a system of intuitionistic natur al

deduction. It will be useful to write derivations in sequent calculus style,

as defined by the follow ing t r anslation of the system of r ules of Sec tions 3.4

(rules for connectives) and 9.1 (quantifier rules).
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Root-first translation of natural deduction into sequent calculus style:

�....
A

�....
B

A & B
& I

�

...
� A �

...
� B

�, � � A & B
& I

∨I is similar, and ⊃I is:

1
An, �....

B
A ⊃ B

⊃I
An, �

...
� B

� � A ⊃ B
⊃I

Rule ∨E is translated as:

A ∨ B

1
An
....

C

1
Bm

....
C

C
∨E ,1

� � A ∨ B An, � � C Bm, � � C
�, �, � � C

∨E

The translation continues from the premisses until assumptions are reached.

The logical rules of the calculus NLI are obtained by translating the

rest of the logical rules in sequent notation. The nomenclature NLI was

used in some early manuscripts of Gentzen to denote a ‘natural-logistic

intuitionistic calculus’.

Table 13.3 Natural deduction in sequent style

� � A & B An, Bm,� � C
�, � � C

&E
� � A � � B
�,� � A & B

&I

� � A ∨ B An, � � C Bm, � � C
�, �, � � C

∨E
� � A

� � A ∨ B
∨I1

� � B
� � A ∨ B

∨I2

� � A ⊃ B � � A Bm, � � C
�,�, � � C

⊃E
An, � � B
� � A ⊃ B

⊃I

� � ∀x A(x) A(t)n, � � C
�, � � C

∀E
� � A(y)

� � ∀x A(x)
∀I

� � ∃x A(x) A(y)n, � � C

�,� � C
∃E

� � A(t)

� � ∃x A(x)
∃I

The calculus is completed by adding initial sequents of the form A � A,

with A an arbitrary formula, and the zero-premiss rule ⊥E by which ⊥ � C

can begin a derivation branch.

We say that the closing of assumption formulas in E -rules and in rule

⊃I is vacuous if n = 0 or m = 0. Similarly, the closing of an assumption
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is mult iple if n > 1 or m > 1. With n = 1 or m = 1, the closing of an

assumption is simple. Vacuous and multiple closing of assumptions is seen

in standard natur al deduc tion in:

�....
B

A ⊃ B 
⊃ I

1
A,

1
A, �....
B

A ⊃ B
⊃ I,1

The for mer case cor responds to the situation in sequent calculus in which a

for mula ac tive in a log ical r ule stems from a step of weakening , the latter to

a situation in w hich it stems from a step of cont r ac tion (cf. St r u c t u ra l Pro of

Theor y, p. 175).

The sequent calculus for ro ot-first pro of search of Chapter 4, Table 4.1,

i s m o re re s t r i c t e d t h a n NLI. If in the latter the major premisses of E -r ules

are assumptions, the sequent notation g ives A & B � A & B for the major

premiss, and similar ly for the other E -r ules. When these are left unw r itten

and the multiplicities in closed assumptions are simple, the sequent calculus

for ro ot-first pro of search is obtained, save for the share d contexts in two-

premiss r ules (cf. also Sec t ion 13.4).

In a permutative conversion, the height of derivation of a major premiss

derived by ∨E or ∃E is diminished. The effect of the general rules is that

such conversions work for all derived major premisses of elimination rules,

by which:

Definition 13.1. A derivation in natural deduction with general elimination

rules is normal if all major premisses of E -rules are assumptions.

The composition of two derivations is an essential step in the normalization

of derivations. It can now be written quite generally in the form:

� � D D, � � C
�, � � C

Comp

Iterated compositions appear as so many successive instances of rule Comp.

Lemma 13.2. Closure of derivations with respect to composition. If given

derivations of the sequents � � D and D, � � C in NLI are composed by

rule Comp to conclude the sequent �, � � C, the instance of Comp can be

eliminated.

Proof. We show by induction on the height of derivation of the right premiss

of Comp that it can be eliminated.
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1. Base case. The second premiss of Comp is an initial sequent, as in:

� � D D � D
� � D

Comp

The conclusion of Comp is identical to its first premiss, so that Comp can

be deleted.

If the second premiss is of the form ⊥ � D, the first premiss is � � ⊥.

It has not been derived by a right rule, so that Comp can be permuted up

in the first premiss. In the end, a topsequent �′ � ⊥ is found as the left

premiss of Comp, by which ⊥ is in �′, so that the conclusion of Comp is an

initial sequent.

2. Inductive case with the second premiss of Comp derived by an I -rule.

There are two subcases, a one-premiss rule and a two-premiss rule. In the

former case, Comp is permuted up to the premiss, with a lesser height of

derivation as a result. In the latter case, we use the notation (D) to indicate

a possible occurrence of D in a premiss:

� � D
(D), �′ � C ′ (D), �′′ � C ′′

D, �′, �′′ � C
Rule

�, �′, �′′ � C
Comp

Rule Comp is permuted to any premiss that has an occurrence of D, say the

first one, with the result:

� � D D, �′ � C ′

D, �′ � C ′ Comp
�′′ � C ′′

�, �′, �′′ � C
Rule

3. Inductive case with the second premiss of Comp derived by an E -rule,

as in:

� � D
(D), � � A & B (D), An, Bm, � � C

D, �, � � C
&E

�, �, � � C
Comp

As in case 2, Comp is permuted up, to whichever premiss has an occur-

rence of the composition formula D, with a lesser height of derivation as a

result. QED.
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In the case of a multiple discharge, a detour conversion w il l lead to se ver al

compositions, w ith a multiplication of the contexts as in the example:

� � A � � B
�, � � A & B

& I
A, A, B, � � C

�, �, � � C 
& E

The conversion is into:

� � B
� � A

� � A A, A, B, � � C
A, B, �, � � C

Co m p

B, �, �, � � C
Co m p

�, �, �, � � C
Co m p

Such multiplication do es not affec t the nor malization pro cess. Note we ll

that nor malization dep ends on the a dmissibilit y of composition, which

latter has to b e prove d before nor malization.

In nor malization, der ive d MP’s o f E -r ules are conver ted step by step into

assumptions. There are two situations, dep ending on whether the MP was

der ive d by a n E -r ule or an I -r ule.

Definit ion 13.3. Nor malizabilit y. A derivation in  NLI is nor malizable if

there is a s eque nce of conver sions that t rans for m it into nor mal for m.

The idea of our proof of the nor malization theorem is to show by induc-

tion on the last rule applied in a derivation that logical rules maintain

normalizability.

The cut elimination theorem, to b e presented in Sec t ion 13.4, is often

called Gentzen’s Hauptsatz, main theorem. He used the word Hilfssatz, aux-

iliary theorem or lemma, for an analogous result by which composition of

derivable sequents maintains the reducibility of sequents, a property defined

in his original proof of the consistency of arithmetic in 1935 (cf. von Plato

2014 for details). Here we have as a crucial element of the normalization

theorem an analogous Hilfssatz by which normalizability is maintained

under composition.

Theorem 13.4. Normalizability for intuitionistic natural deduction.
Derivations in NLI convert to normal form.

Proof. Consider the last rule applied. The base case is an assumption that is a

normal derivation. In the inductive case, if an I -rule is applied to premisses

the derivations of which are normalizable, the result is a normalizable

derivation. The same holds if a normal instance of an E -rule is applied.

The remaining case it that a non-normal instance of an E -rule is applied.

The MP of the rule is then derived either by another E -rule or an I -rule,
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so we have two main cases with subcases according to the specific rule in

each. Derivations are so transformed that normalizability of the last rule

instance can be concluded either because the rule instance resolves into

possible non-normalities with shorter conversion formulas, or because the

height of derivation of its major premiss is diminished.

1. E -rules: Let the rule be &E followed by another instance of &E , as in:

� � A & B An, Bm, � � C & D
�, � � C & D

&E
C k, Dl , � � E

�, �, � � C & D
&E

By the inductive hypothesis, the derivations of the premisses of the last rule

are normalizable. The second instance of &E is permuted above the first:

� � A & B
An, Bm, � � C & D C k, Dl , � � E

An, Bm, �, � � E
&E

�, �, � � E
&E

The height of derivation of the MP of the last rule instance in the upper

derivation has diminished by 1, so the subderivation down to that rule

instance is normalizable. The height of the MP of the other rule instance

has remained intact and is therefore normalizable.

All other cases of permutative convertibility go through in the same way.

2. I -rules: The second situation of convertibility is that the MP has been

derived by an I -rule, as in:

� � A � � B
�, � � A & B

&I
An, Bm, � � C

�, �, � � C
&E

Let us assume for the time being that n = m = 1. The detour conversion is

given by:

� � B
� � A A, B, � � C

B, �, � � C
Comp

�, �, � � C
Comp

The result is not a derivation in NLI. We proved in Lemma 13.2 that Comp

is eliminable. The next step is to show that Comp maintains normalizability.

This will be done in the Hilfssatz to be proved separately. By the Hilfssatz, the

conclusion of the upper Comp is normalizable, and again by the Hilfssatz,

also the conclusion of the lower Comp. If n > 1 or m > 1, Comp is applied
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repeatedly, the admissibility of an uppermost Comp giving the admissibility

of the following ones.

The other I -rules go through in the same way. Just to check, let us go

through rule ⊃I . The detour convertibility is:

An, � � B
� � A ⊃ B

⊃I
� � A Bm, � � C

�, �, � � C
⊃E

In the conversion, multiple discharge of assumptions is again resolved

into iterated compositions, so we may assume n = m = 1 and have the

conversion:

� � A A, � � B
�, � � B

Comp
B, � � C

�, �, � � C
Comp

By the Hilfssatz, the derivation is normalizable. QED.

It remains to give a proof of the Hilfssatz:

Hilfssatz 13.5. Closure of normalizability under composition. If the pre-

misses of rule Comp are normalizable, also the conclusion is.

Proof. The proof is by induction on the length of the composition formula

D with a subinduction on the sum of the heights of derivation of the two

premisses.

1. D ≡ P . With an atomic formula P , we have:

� � P P , � � C
�, � � C

Comp

P is never principal in the right premiss, so that Comp can be permuted up

with a lesser sum of heights of derivation as a result. There are two cases,

a one-premiss rule and a two-premiss rule. For the latter, we use again the

notation (P ) to indicate a possible occurrence of P in a premiss:

� � P
(P ), �′ � C ′ (P ), �′′ � C ′′

P , �′, �′′ � C
Rule

�, �′, �′′ � C
Comp

Rule Comp is permuted to the premiss that has an occurrence of P , say the

first one, with the result:

� � P P , �′ � C ′

P , �′ � C ′ Comp
�′′ � C ′′

�, �′, �′′ � C
Rule
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In the end, the second premiss of Comp is an initial sequent, as in:

� � P P � P
� � P

Comp

The conclusion of Comp is identical to its first premiss, so that Comp can

be deleted.

2. D ≡ ⊥. Because⊥ is never principal in the left premiss, Comp is permuted

up as in the proof of admissibility of composition.

3. D ≡ A & B . If A & B is not principal in the right premiss, Comp can be

permuted as in 1.

If A & B is principal, there has to be a normal rule instance in the right

premiss, as in:

� � A & B
A & B � A & B An, Bm, � � C

A & B, � � C
&E

�, � � C
Comp

Comp is permuted up to the first premiss:

� � A & B A & B � A & B
� � A & B

Comp
An, Bm, � � C

�, � � C
&E

Comp is now deleted and a generally non-normal instance of rule &E

created. If the major premiss is concluded by an E -rule, a permutative

conversion is done and no instance of Comp created. If the last rule is

&I , a detour convertibility with the conversion formula A & B is created. A

detour conversion will lead to new instances of Comp, but on strictly shorter

formulas.

The other cases of composition formulas are treated in a similar

way. QED.

The proof is extended without problems to the calculus of natural deduction

for classical logic.

13.3 The Curry–Howard correspondence

At the time when intuitionistic logic was in its infancy, around 1930, Heyting

and Kolmogorov suggested an explanation of the principles of intuitionistic

logic in terms of the notion of proof. Also Gentzen makes in his doctoral

thesis the suggestion that the introduction rules give the meanings of the
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various forms of propositions in terms of provability. These rules make more

precise Heyting’s earlier discussion. In Kolmogorov (1932), it is suggested

that intuitionistic logic is a ‘logic of problem solving’: The atomic formu-

las express the primitive problems that have no logical structure. A & B

expresses a problem that is solved by solving A and B separately, A ∨ B is

solved by solving at least one of A and B , and A ⊃ B is solved by reducing

the solution of B to one of A. Falsity ⊥ expresses an impossible problem that

has no solution. In Kolmogorov’s interpretation, the notion of a problem

comes before the notion of a theorem: A theorem can be considered that

special case of a problem in which the task is to find a proof.

(a) Typed lambda-calculus. In 1969, William Howard made precise some of

the ideas behind the proof interpretation of intuitionistic logic, in his article

‘The formulae-as-types notion of construction’. The paper circulated as a

manuscript and was finally published as Howard (1980). It established what

came to be called the ‘Curry–Howard isomorphism’ or ‘Curry–Howard

correspondence’. Curry’s role was that he suggested the idea for implication

in his book (1958). The basic idea is that a formula corresponds to the

set of its proofs. More precisely, to each formula A there is the set of

proofs of A in the sense of formal derivation. The notation a : A stands

for ‘a is a proof of A’. In terms of sets, the reading is ‘a is an element

of the set A’. An introduction rule shows how to construct a proof from

proofs of components: If a : A and b : B , then pair (a, b) : A & B . The

operation of forming pair (a, b) is the construction that gives a proof of the

conjunction A & B . If a : A, then i(a) : A ∨ B , if b : B , then j (b) : A ∨ B .

The two operations indicated by i and j carry the information from which

component of the disjunction the proof is constructed, proof of A or proof

of B . Implication is more difficult: Assume an arbitrary proof or a ‘witness’

w of A, so symbolically w : A. If you succeed in constructing from w a

proof b(w) of B , then the proof of A ⊃ B is written as λw b(w). This is the

lambda-abstract of the expression b(w) that depends on the variable w, as

invented by Alonzo Church (1932). Set-theoretically, A & B is the Cartesian

product of the sets A, B , and A ∨ B their ‘disjoint’ union, and A ⊃ B the

set of functions from A to B .

As to the elimination rules, they show how to pass from an arbitrary

proof of a formula to proofs of its components: If w : A & B , then p(w) : A

and q(w) : B are the projection constructions that do this. For implication,

using a suggestive symbol for a member of A ⊃ B , if f : A ⊃ B and w : A,

then f (w) : B . In terms of sets, a proof f of A ⊃ B is a function f that

transforms any proof w of A into some proof f (w) of B . Thus, rule
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modus p one ns is the same as the applicat ion of a func tion. Implication

int roduc tion, then, is funct ional abst r act ion as invented by Church.

The notion of proof has been interpreted in a very specific way here,

namely so that proofs are represented by what are often called the proof
ter m s of a for mal calculus of ter ms. A pro of ter m should indicate what r ule

produced it, and therefore we w r ite app( f, a ) :  B w h ene ver r u le ⊃ E was

used, instead of simply f (a ) :  B , and similarly for all the other ter ms.

The r ules of natur al deduc tion become the r ules of t y p e d lambda-
calculus under the Cur r y–Howard cor respondence:

Table 13.4 Ty p e d natur al deduc t ion r ules

a : A b : B
pa i  r  (a, b ) :  A & B

& I
c : A & B
p (c ) :  A

& E 1
c : A & B
q (c ) :  B

& E 2

1
w : A....

b (w ) :  B

λw  b (w ) :  A ⊃ B
⊃ I,1

f : A ⊃ B a : A

app( f, a ) :  B
⊃ E

a : A
i (a ) :  A ∨ B

∨ I1
b : B

j (b ) :  A ∨ B
∨ I2

c : A ∨ B

1
w : A....

a (w ) : C

1
v : B....

b (v ) : C

d (c , λw  a (w ), λv  b (v )) : C
∨ E ,1

In r u l e ⊃ I , an arbitrary proof w is assumed for A, then a proof b (w )

const r uc ted for B that dep ends on the w it ness w . The notation λw  b (w )

stands for the func tional abst r a c t that g ives the proof of A ⊃ B . Rule ∨ E

has similarly two assumptions, a pro of w of A and a proof v of B , and two

func tions that cor resp ond to the der ivations of C from each assumption.

( We have simplified the presentation a bit here by using λ in r ule ∨ E , cf.

St r uctural Proof Theor y, app endix B.)

In Table 13.4, the ter m s at the left of the colon that cor respond to

int ro duc tion r ules are often cal led co n s t r u c t o r s and those that cor respond

to elimination r ules selectors. It is p ossible to g ive t y p ed r ules also for the

modification of natur al deduc t ion of Sec tion 3.4, the one w ith elimination

rules of a general form, which leads to a generalized notion of application

in lambda-calculus.

We can look at the proof terms of typed lambda-calculus as linear codifi-

cations of proof trees, conceived as algorithms that transform proofs of the

open assumptions into a proof of the conclusion. Take as an example some
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neat natur al der ivation, such as the ver y first one in Chapter 3:

(A ⊃ B) & (B ⊃ C )
B ⊃ C

&E 2

(A ⊃ B) & (B ⊃ C )
A ⊃ B

&E 1 1
A

B
⊃E

C
⊃E

A ⊃ C
⊃I,1

It is straightforward to add the proof terms to the natural derivation:

c : (A ⊃ B) & (B ⊃ C )
q(c) : B ⊃ C

&E 2

c : (A ⊃ B) & (B ⊃ C )
p(c) : A ⊃ B

&E 1 1
w : A

app( p(c), w) : B
⊃E

app(q(c), app( p(c), w)) : C
⊃E

λw app(q(c), app( p(c), w)) : A ⊃ C
⊃I,1

Whenever the schematic propositions A, B, and C have some concrete

content, the proof transforms a categorical proof of (A ⊃ B) & (B ⊃ C )

into a categorical proof of A ⊃ C . Here categorical means: with no open

assumptions.

We can go one step further in the application of functional abstraction

and close also the assumption (A ⊃ B) & (B ⊃ C ), with the result:

λc λw app(q(c), app( p(c), w)) : (A ⊃ B) & (B ⊃ C ) ⊃ (A ⊃ C )

There are no open assumptions left, and the proof term is therefore closed,

i.e., contains no free parameters. It does the job of the logical law of the

transitivity of implication.

(b) Derivation and computation. In the natural representation of mathe-

matical proofs, their characteristic form is that a claim B follows under some

conditions A. This form is expressed concisely as the implication A ⊃ B

obtained by the rule of implication introduction. If at some stage the condi-

tions A obtain, B follows by implication elimination. The Curry–Howard

correspondence gives this latter step as a functional application: An argu-

ment a : A is fed into the function f : A ⊃ B and a value app( f, a) : B

obtained. Reasoning constructively, without the use of the classical law of

excluded middle, the function f : A ⊃ B is an algorithm, i.e., a computable

function. Gentzen’s idea of normalization has then the following specific

meaning: Given the function f : A ⊃ B and the argument a : A, normal-

ization consists in the computation of the value of app( f, a), into f (a)

obtained by substitution. The computation of the value is nothing but the

conversion of the non-normal derivation into normal form, which makes

clear the importance of strong normalization and uniqueness. The former

concept requires that a normal form is reached independent of the order of
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conversions, the latter that the result moreover be unique. Let us make the

above more precise:

Assume given λw b(w) : A ⊃ B and an actual proof of A, so a : A. The

function λw b(w) is applied to a by substituting a for w in b(w), with a

proof of B as a value. A formal notation for the computation of the value

is given by an equality in which the ‘second-order’ function app takes the

function λw b(w) as a first argument and an argument of this latter function

as a second argument, written altogether as app(λw b(w), a) = b[a/w].

The value is thus obtained by the substitution b[a/w]. The step of natural

deduction and its typed version are:

1
A....
B

A ⊃ B
⊃I,1

....
A

B
⊃E

1
w : A....

b(w) : B
λw b(w) : A ⊃ B

⊃I,1

....
a : A

app(λw b(w), a) : B
⊃E

The natural derivation has a non-normality; the typed version has a selector

term. The non-normality is eliminated by a detour conversion, the selec-

tor term by the computation given by the equation app(λw b(w), a) =
b[a/w]. It corresponds exactly to the detour conversion in which a proof

of A is taken, continued by a proof of B from A:
....
A....
B

....
a : A....

b(a) : B

Conversion of proof terms works similarly in other cases of non-normality:

Say, if we have proved A & B by &I , then pair (a, b) : A & B . An elimi-

nation rule with the conclusion A has the proof term p( pair (a, b)) : A.

Normalization corresponds to the computation p( pair (a, b)) = a .

The rules for the quantifiers can be typed similarly to those for the

connectives:

Table 13.5 Typed natural deduction rules for the

quantifiers

a(x) : A(x)

λx a(x) : ∀x A(x)
∀I

f : ∀x A(x)

f (t) : A(t)
∀E

w : A(t)

pair (t, w) : ∃x A(x)
∃I

c : ∃x A(x)

1

w : A(y)
....

a(w) : C

d(c , λw a(w)) : C
∃E ,1
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In r u l e ∀ I , the lambda-abst r ac tion is taken over the indiv idual eigenvar iable

x . The proof a ( x ) is thus something that g ives, for any indiv idual ter m t , a

proof of a (t ) throug h the substitution of t for x . Rule ∃ I has a ter m that g ives

an indiv idual t and a proof w that t has the prop er t y A(t ). The t y p ed quan-

tifier r ules lead to a remar kable unification in log ic. When the y are w r itten

as in Per Mar tin-L öf ’s intuit ionist ic t y p e theor y (1984), the fol low ing hap-

p ens: In case A does not dep end on x , i.e., is a constant proposition, the

r u les for ∀ are the same as those for ⊃ and the r ules for ∃ the same as those

for &. In other words, implication tur ns out to b e a sp ecial case of universal

quantification and conjunc tion a sp e cial case of existential quantification.

Tr uth of a for mula A is established by a proof a : A. T hus, A is true

cor responds to A being , when considere d as a set, none mpt y. Ty p ed lambda-

calculus shows the r ules of intuitionistic natur al deduc t ion to b e cor re c t (or,

as one says in model theor y, sound) under the computational semantics

g iven by the Cur r y–Howard cor respondence: If the premisses of a r ule are

assumed t r ue, each of them has an e lement, and the r ules show how to

const r uc t an element of the conclusion that thereby also must be t r ue.

From the p oint of v iew of the Cur r y –Howard idea, for mal pro of s in

intuitionistic natur al deduc tion are computable func tions. Const r uc t iv it y,

which used to b e the philosophical pr inciple b ehind intuitionistic log ic and

mathematics, now has the role of guar ante eing that computations do not

go on indefinitely, but ter minate after s ome b ounded nu mber of steps.

13.4 Cuts, their e liminat ion and inter pretat ion

Sec t ion 13.2 showe d how two der ivations in natur al deduc tion can b e

combined into a sing le one:

�....
A and

A �....
C co m p o s e i n t o

�....
A �....

C

The condition on composition is that the discharge labels and eigenvar i-

ables in the two der ivations to be composed are distinc t. A pro of of the

admissibilit y of composition was likew ise g iven in S ec tion 13.2.

Composition corresponds to the rule of cut in sequent calculus. Gentzen’s

proof systems became first known mainly in the form of sequent calculi and

the cut elimination theorem that we shall detail first. Then follows a precise
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deter mination of the cor respondence of der ivations in sequent calculus w ith

cuts and der ivations in natur al deduc tion.

(a) Cut. Composition in natur al deduc t ion t r anslates into what is called

cut in sequent calculus:

� � A A, � � C
�, � � C

Cu t

Cont r ar y to composition in natur al deduc t ion, the application of Cu t in

sequent calculus takes us outside the class of der ivations by the log ical r ules

for the connec t ives and quantifiers. It can b e show n, instead, that if � � C

is der ivable by the log ical r ules and the r ule of cut, it is der ivable w ithout the

latter. Der iv ations can b e so t r ansfor med that instances of Cu t get e liminate d

one after the other. T his result is often cal led the Ha u p t s a t z (main theorem),

the name Gentzen g ave to it in 1933. It is analogous to nor malization in

a ver y pre cise sense: Any non-nor mal der ivation can b e t r anslated into a

sequent calculus der ivation in which cuts are found in exac tly those places

in which there were non-nor malities in the natur al der ivation. When these

cuts are e liminate d, the resulting cut-free der ivation in sequent calculus

can b e t r anslated back to a natur al der ivation that is always nor mal. For

an example, consider the non-nor malit y and its t r anslation into sequent

calculus:

�....
A

�....
B

A & B
& I

1
A

1
B �....
C

C
& E ,1

� � A � � B
�, � � A & B

R &
A, B, � � C

A & B, � � C
L &

�, �, � � C 
Cu t

The most cent r al feature of cut elimination can now b e illust r ate d: Instances

of Cu t are permuted up in a derivation, as in the transformation of the above

sequent derivation into:

� � B
� � A A, B, � � C

B, �, � � C
Cut

�, �, � � C
Cut

A cut with the cut formula A & B is replaced by two cuts on the shorter cut

formulas A and B . The rules of natural deduction lead to corresponding

sequent calculus rules with independent contexts. After cut elimination, the

t r anslation back to natur al deduc t ion is done as in Table 4.4.

The details of cut elimination depend on the sequent calculus adopted.

The following calculus has turned out to offer the best control over the
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st r uc ture of der ivations: The basis is the intuitionistic sequent calculus w ith

the log ical r ules of Table 4.1, and Table 9.4 for the quantifiers. Initial sequents

must have the form P , � � P with P an atomic formula. (It is not difficult

to prove that sequents of the form A, � � A with A an arbitrary formula,

are then derivable.) Next to the logical rules, certain ‘structural rules’ are

added, to be used in cut elimination:

Table 13.6 The rules of

weakening and contraction

� � C
A, � � C

Wk
A, A, � � C

A, � � C
Ctr

Cut is a rule with independent contexts, whereas the logical rules have shared

contexts. In cut elimination, there is often a need to create shared contexts

through weakening, or to remove duplications through contraction.

The proof of cut elimination is organized as follows:

1. It is shown that rule Wk is admissible, with the further property that the

height of a derivation is preserved. In other words, if � � C is derivable

with a height of derivation n, also A, � � C is derivable with a height of

derivation n. The proof is easy: Just add the formula A to the antecedent

of each sequent in the derivation. (If A contains an eigenvariable of the

original derivation, change the latter.)

2. Rule Ctr is shown admissible, with the same property of preservation of

derivation height as in rule Wk. The proof is not as straightforward as that

for weakening (cf. Structural Proof Theory, p. 33 for details).

3. A derivation with cuts is considered, starting with a subderivation that

ends with an uppermost instance of Cut. As long as the cut formula is not

principal in the right premiss of Cut , it is permuted up. Let the part of

derivation be:

� � A � � B
� � A & B

R&
A & B, � � C

A & B, � � C ∨ D
R∨

�, � � C ∨ D
Cut

The part of derivation with cut permuted up is:

� � A � � B
� � A & B

R&
A & B, � � C

�, � � C
Cut

�, � � C ∨ D
R∨
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In the end, it can happen that A & B, � � C is derived by L& with A & B

as the principal formula and cut is permuted as in the first example in which

A & B was principal in both premisses of cut. Otherwise, the right premiss

is an initial sequent and we have a step of the form:

� � A � � B
� � A & B

R&
A & B, P , � � P

P , �, � � P
Cut

The conclusion is an initial sequent and the part of derivation above it can

be deleted.

If the cut formula is not principal in the left premiss of cut, the cut is

permuted up similarly.

The inductive parameters in cut elimination are the number of cuts in a

given derivation, the length of an uppermost cut formula to be eliminated,

and finally the sum of the heights of derivation of the premisses of such an

uppermost cut.

As said, the details of cut elimination depend on the kind of sequent

calculus one uses. For example, Gentzen’s original calculus had rules of

weakening and contraction that were not eliminated. There were lots of cases

in which, after cut was permuted up one step, weakenings and contractions

had to be introduced to recreate the exact sequent that was concluded in

the original cut.

Looking at the rules of sequent calculus in the direction of the conclusion,

the structural ones included, we notice that cut is the only rule in which a

formula disappears. Thus, moving in the opposite root-first direction, we

could try to find derivations by instantiating cuts with ever new cut formulas,

and proof search would not terminate. If contraction is an explicit part of

a system of proof, proof search could similarly go on for ever, through

the production of duplications by the rule of contraction. For this reason,

the contraction-free sequent calculus is a clear improvement over that of

Gentzen.

What has been said of the intuitionistic calculus holds also for the classical,

symmetric sequent calculus. The rules of weakening and contraction apply

on both sides of sequents:

Table 13.7 Weakening and contraction for symmetric sequents

� � �

A, � � �
LW

� � �

� � �, A
RW

A, A, � � �

A, � � �
LC

� � �, A, A
� � �, A

RC
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With se ver al for mulas in the succe dent par t, there are p er mutations sy m-

met r ic to those in w hich some other for mula than the cut for mula was

pr incipal in the ante ce dent of the r ig ht premiss.

(b) The inter pretat ion of cuts in natur al deduct ion. Rig ht from the

beg inning of st r uc tur al proof theor y, it was clear that the int ro duc t ion r ules

of natur al deduc tion cor respond to the r ig ht r ules of sequent calculus and

the e limination r ules to the left ones. T his much is made clear in Gentzen’s

disser tation that contains a t r anslation from natur al to sequent der ivations.

Odd ly enoug h, cuts are inser ted there each t ime an e limination r ule is

t r anslated, e ven if the g iven natur al der ivation was nor mal.

In von Plato (2001), a t r anslation was defined from nor mal der ivations

in natur al deduc tion w ith gener al e limination r ules such that no cuts were

inser ted. Moreover, the cor respondence was isomor phic in the sense that

it maintained the order of the log ical r ules. A non-nor mal instance of an

E -r ule b ecame t r anslated into a left r ule followe d immediately by a cut

on the pr incipal for mula. Such cuts, in tur n, could be inter pre te d as non-

nor malities, but the question remains how the rest of the cuts are to be

i n te r p re te d i n te r m s o f n a t u r a l d e d u c t i o n .

We beg in by a t r anslation from natur al to sequent der ivations, then

deter mine w hat a re verse t r anslation requires.

Step 1. Natur al deduct ion in sequent calculus st y le. Na t u r a l d e r i v a t i o n s

are w r itten in sequent calculus st yle, as in the calculus NLI of Sec t ion 13.2.

Vacuous and multiple closing of assumptions can be treated in two ways,

first, implicitly as in standard natural deduction, and exemplified by:

An, �

...
� B

� � A ⊃ B
R⊃

The case of n = 0 corresponds to weakening, n > 1 to contraction in

sequent calculus. A proof of cut elimination for such a sequent calculus

is found in St r uctural Proof Theor y, chapter 5.

A second possibility is to use explicit rules of weakening and contraction,

as in:

�....
B

A ⊃ B
⊃I

�

�

...
� B

A, � � B
Wk

� � A ⊃ B
R⊃

1
A,

1
A, �....
B

A ⊃ B
⊃I,1

�

A, A, �

...
� B

A, � � B
Ctr

� � A ⊃ B
R⊃
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We can now mostly leave weakening and contraction aside and assume that

each closing of assumptions is simple (i.e., n = 1).

Elimination rules in sequent calculus style have the form:

�....
A & B

1
A,

1
B, �....
C

C
&E ,1

�

�

...
� A & B A, B, �

...
� C

�, � � C
&E

Step 2. Translation to sequent calculus, normal E -rules. Step 1 gave for

an E -rule, normal instance, the form:

A & B

1
A,

1
B, �....
C

C
&E ,1

�

A & B � A & B A, B, �

...
� C

A & B, � � C
&E

Next leave out the MP A & B � A & B and out comes a sequent rule:

A, B, �

...
� C

A & B, � � C
L&

The rest of the E -rules are translated in exactly the same way, with the result:

Theorem 13.6. Isomorphic translation. The translation of a normal deriva-

tion in natural deduction with general elimination rules gives a sequent deriva-

tion that is cut free and has the same order of logical rules.

The translation goes both ways, so we get:

Corollary 13.7. Interpretation of cut-free derivations in natural deduc-
tion. Sequent calculus is a method for constraining proof search to produce

normal derivations in NLI.

Step 3. Translation to sequent calculus, non-normal E -rules. Step 1 for a

non-normal instance of an E -rule gave:

�....
A & B

1
A,

1
B, �....
C

C
&E ,1

�

�

...
� A & B A, B, �

...
� C

�, � � C
&E

The third step of translation is:

� � A & B A, B, � � C
�, � � C

&E
�

� � A & B
A, B, � � C

A & B, � � C
L&

�, � � C
Cut
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It is seen clearly that natural deduction, the inference at left, is closed

with respect to non-normal rule instances, whereas sequent calculus, the

inference at right, requires a cut for the corresponding inference.

Theorem 13.8. Isomorphic translation of non-normal derivations. The

translation of a non-normal derivation in natural deduction with general

elimination rules gives a sequent derivation in which each derived MP of an

E -rule is the principal formula of a left rule and a cut formula immediately

after the left rule, and no other cut formulas appear.

Again, the translation goes both ways, so that we can interpret certain cuts

in terms of natural deduction, as non-normalities.

Translation of normal instances is in fact a special case of the above:

A & B � A & B A, B,� � C
A & B,� � C

&E
�

A & B � A & B
A, B,� � C

A & B,� � C
L&

A & B,� � C
Cut

Here we have the base case of the inductive procedure of cut elimination:

The left premiss of Cut is an initial sequent so that the conclusion of Cut is

identical to the right premiss and the rule instance can be deleted.

Let us summarize the results of the four translations:

1. Normal to cut-free derivations

2. Cut-free to normal derivations

3. Non-normal derivations to derivations with L-rule+Cut

The reverse of 3 gives a translation to natural deduction such that each

L -rule+Cut turns into a non-normality, so we have:

4. To non-normal derivations when all cut formulas in the right premiss of

cut have been derived by a left rule

(c) How to interpret arbitrary cuts? Something has to be added to natural

deduction; the key is how two derivations are composed together. There is a

gap in the standard notation for natural deduction, for it cannot be shown

when, if at all, a composition was made. Here is a simple example:

A & B
1
B

B
&E ,1

and

B
B ∨ C

∨I

(B ∨ C ) ∨ D
∨I

compose into

A & B
1
B

B
&E ,1

B ∨ C
∨I

(B ∨ C ) ∨ D
∨I
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No trace is left of the composition. In sequent notation, instead, we have:

A & B � A & B B � B
A & B � B

&E

B � B
B � B ∨ C

∨I

B � (B ∨ C ) ∨ D
∨I

A & B � (B ∨ C ) ∨ D
Comp

When we translate a non-normal derivation into sequent calculus, the

derived major premiss is at once cut from the derivation. In sequent cal-

culus, instead, it is possible to cut it out at a later stage. Thus, what can

be called delayed composition is possible in sequent calculus. This will be

our interpretation in natural deduction of cuts that do not turn into non-

normalities in translation. The rule of composition has to be made explicit

to make such delays visible.

Main theorem 13.9. Interpretation of cuts in natural deduction. Deriva-

tions in sequent calculus with cuts can be interpreted as derivations in natural

deduction with explicit composition:

1. If the cut formula D is principal in rule L◦ in the right premiss of cut,

the cut is translated into a non-normal instance of rule ◦E with derived major

premiss D.

2. If the cut formula D is not principal, the cut is translated into an explicit

composition.

The first case is illustrated by the example:

� � A & B
A, B, � � C

A & B, � � C
L&

�, � � C
Cut

�

� � A & B A, B, � � C
�, � � C

&E

For the second case, it will be instructive to look at the elimination of Comp

in detail. Comp will in general permute up just like that, as in:

� � D
D, �′ � C ′

D, � � C
I-Rule

�, � � C
Comp

�

� � D D, �′ � C ′

�, �′ � C ′ Comp

�, � � C
I-Rule

Eventually either the base case of Comp-elimination is met and Comp dis-

appears, else Comp hits an elimination rule.

Case of Comp with an E -rule:

� � D
(D), � � A & B (D), A, B, � � C

D, �, � � C
&E

�, �, � � C
Comp

Comp is permuted up to whichever premiss contains D.
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Crucial observation. The permutations are trivial unless a normal instance

of an E-rule is met.

Permuting Comp up, it can happen that it meets a normal instance of an

E -rule:

� � A & B
A & B � A & B A, B, � � C

A & B, � � C
&E

�, � � C
Comp

Permuting Comp up at right one more step, we get:

� � A & B A & B � A & B
� � A & B

Comp
A, B, � � C

�, � � C
&E

This is the base case of elimination of Comp, so we get a non-normality with

no Comp left:

� � A & B A, B, � � C
�, � � C

&E

Sequent calculus confounds cuts that correspond to non-normalities and

cuts that correspond to compositions in natural deduction. An explicit rule

of composition keeps track of when a composition was made, but Comp

is not a rule of natural deduction in sequent calculus style. Closure with

respect to Comp has to be shown for just one instance of Comp, and repeated

instances of Comp are eliminated one at a time with an uppermost one first.

Two successive instances of Comp on C and D, respectively, can be

permuted, as in:

� � C C, � � D
�, � � D

CompC
D, � � E

�, �, � � E
CompD

�

� � C
C, � � D D, � � E

C, �, � � D
CompD

�, �, � � E
CompC

Just as with two cuts, the latter order of composition can be permuted back,

with such back and forth repeated any number of times, so some say there

is ‘failure of strong cut elimination’.

Corollary 13.10 The proper analogue of strong normalization in sequent
calculus. An isomorphic image of normalization and strong normalization is

projected on sequent derivations with cuts by the following procedure:
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1. Translate a given derivation with arbitrary cuts into natural deduction

in sequent calculus style +Comp.

2. Eliminate all instances of Comp, starting with uppermost ones.

3. Normalize as you please.

4. All major premisses of E-rules are of the form D � D, and when they are

left unwritten, the result is a cut-free derivation in sequent calculus. It is as

unique as the result of normalization in 3.

In 1, some cuts can vanish into non-normalities, and others turn to explicit

instances of rule Comp. In 2, some non-normalities may be created in the

elimination of Comp.



14 Deduc t ive machiner y from Ar istotle to He y ting

We shall re v iew the de ve lopment of log ic, b eg inning w ith Ar istotle’s syllo-

g istic log ic. Next the t r a dition of algebr aic log ic is descr ibed, throug h the

wor k of George Boole, Er nst Schr öder, and Thoralf S kolem. There fol lows a

sec t ion on axiomatic log ic w ith two phases, the early wor k of Gottlob Frege,

Giusepp e Peano, and Ber t r and Russell, and a second phase w ith Dav id

Hilber t and Paul Ber nays, and up to He y ting’s intuitionistic log ic in 1930.

That is the p oint r ig h t b efore G entzen’s de ve lopment of n atur al deduc t ion

and sequent calculus. The emphasis is on how the log ical systems wor k, i.e.,

on their deduc tive machiner y.

14.1 Ar istotle’s deduc t ive log ic

Aristotle’s system of deductive logic, also known as the ‘theory of syllogisms’,

has b een inter preted in var ious ways in the long time since it was conceive d.

The situation is not different from the reading of other chapters of the for mal

sciences of antiquit y, such as Euclid’s geomet r y and wor ks of Archimedes.

When Frege invente d pre dicate log ic, he finished the presentation proud ly

w ith a reconst r uc t ion of the Ar istote lian for ms of propositions, such as Ev e r y

A is B that is interpreted as∀x(A(x) ⊃ B(x)), with a universal quantification

over some domain and the predicates A and B . Frege reproduced similarly

Aristotelian inferences, such as the conclusion Every A is C obtained from

the premisses Ev e r y A i s B and Ev e r y B i s C , in the way show n in Sec t ion 9.1.

Frege’s interpretation has become the most common one, but we can also

consider Aristotle’s logic in itself, without such interpretations, and see that

it works to perfection. Passages in Aristotle are referred to by the ‘Bekker

numbering’ of his works.

(a) The forms of propositions. Aristotle’s system of deductive logic is pre-

sented in his book Prior Analytics. It begins with four forms of propositions

with a subject A and a predicate B :
220
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Table 14.1 The Aristotelian forms of

propositions

Universal affirmative: Every A is B

Universal negative: No A is B

Particular affirmative: Some A is B

Particular negative: Some A is not-B

There is also an indefinite form of proposition, A is B, not usually present

in the rules of inference, even though it can so be (cf. Prior Analytics,

26a28).

Subjects and predicates together are terms. The indefinite form A is B

has various other readings: Subject A has the predicate B, predicate B belongs

to subject A, B belongs to A, etc. The last one is preferred by Aristotle, and he

writes the other forms similarly:

B belongs to every A, B belongs to no A, B belongs to some A, B does not belong

to some A.

Here the copula is written as one connected expression between the predicate

and the subject, which underlines the formal character of the sentence

construction.

A second reading is given to B does not belong to some A, namely B does not

belong to all A (in 24a17). Another useful way of expressing the Aristotelian

propositions is:

Every A is B, No A is B, Some A is B, Not every A is B.

Now the indefinite form A is B is a constant part of the propositions and

the varying quantifier structure is singled out. It is seen clearly that the

first and last are opposites, and that the second and third are likewise

opposites.

The main principle in the formation of propositions is that subjects

and predicates are treated symmetrically in the universal and particular

propositions: Whenever Every A is B is a proposition, also Every B is A is

one, and similarly for the universal negative and the particular forms. A

formal structure is imposed that is not a natural feature of natural language,

as in Some man is wise, the converse of which, Some wise is a man, would

not be a natural expression, but would have to be paraphrased, as in Some

wise being is a man.
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We shall use the following notation for the propositions of Aristotle’s

logic:

Table 14.2 Notation for the

Aristotelian propositions


+(A, B) for Every A is B


−(A, B) for No A is B

�+(A, B) for Some A is B

�−(A, B) for Some A is not-B

The universal quantifier of the Aristotelian form 
+(A, B) is explained as

follows in the Prior Analytics (24b28):

A thing is said of all of another when there is nothing to be taken of which the

other could not be said.

Aristotle is saying that universality means the lack of a counterexample,

a common idea in logic ever since. The other forms of quantification are

explained similarly and used in a justification of the Aristotelian rules.

However, we do not need to go into the details, because it will turn out

sufficient to treat the four Aristotelian forms as just atomic formulas with

two terms but no further internal structure.

(b) Indirect proof. The two pairs �+(A, B), 
−(A, B) and 
+(A, B),

�−(A, B) form between themselves contradictory opposites. Further-

more, because from 
−(A, B) the weaker �−(A, B) follows, also


+(A, B) and 
−(A, B) together lead to a contradictory pair. We shall

indicate the contradictory opposite of a formula P by the orthogonality

symbol, P ⊥. (Note that P ⊥⊥ is identical to P .) In general, if an assumption

P has led to contradictory consequences Q and Q⊥, P ⊥ can be concluded

and the assumption P closed. The rule of indirect proof thus takes on the

following schematic form:

Table 14.3 The scheme

of indirect proof

1
P m

....
Q

1
P n
....

Q⊥

P ⊥ RAA,1
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This schematic proof figure is to be understood as follows: The assumption

P may appear among those that were used in the derivations of Q and

Q⊥, respectively. Any numbers m, n � 0 of occurrences of P in the two

subderivations can be closed at the inference. The closed ones are indicated

by a suitable label, such as a number, so that each instance of rule RAA (for

reductio ad absurdum) clearly shows which occurrences of P are closed at

the inference. It is typical of Aristotle’s proofs that an assumption closed in

indirect proof occurs just once, i.e., either m = 1, n = 0 or m = 0, n = 1.

We then have one of:

Table 14.4 Aristotelian special cases of

indirect proof

1
P....
Q Q⊥

P ⊥ RAA,1
Q

1
P....

Q⊥

P ⊥ RAA,1

As mentioned, Aristotle’s derivations have at most one instance of indirect

proof, as a last rule. A rule of indirect proof in which the premisses of RAA

are 
+(A, B) and its contrary 
−(A, B) can be derived from the second

of the below conversion rules.

(c) The rules of conversion and syllogism. Aristotle’s system of deductive

logic begins properly with his rules of conversion:

Table 14.5 The rules of conversion


−(A, B)


−(B, A)

−C


+(A, B)

�+(B, A)

+C

�+(A, B)

�+(B, A)
�+C

The third rule of conversion is a derivable rule: Its conclusion is derivable

from its premiss by the first conversion rule and the rule of indirect proof.

Aristotle, in fact, notes the same (24a22).

Two more rules enter into Aristotle’s deductive logic, the proper syllo-
gisms as this word has been understood for a long time. Its meaning in

Aristotle vacillates between a single syllogism and what today is called a

deduction or derivation. The major part of the Prior Analytics deals with

derivations that consist of a single syllogism, conversions, and a single step

of indirect inference. The two syllogistic rules are (25b38–26a2):
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Table 14.6 Aristotle’s formulation of the syllogisms

When A of every B and B of every C, it is necessary that A is said of every C. For

we have explained above what we mean by every.

Correspondingly also when A of no B, B instead of every C, then A will not belong

to any C.

The added clause in the first syllogism hints at a justification of the rule in

terms of the meaning given to universal quantification.

We write the above two rules as:

Table 14.7 The syllogistic rules


+(A, B) 
+(B, C)


+(A, C)

+ S


+(A, B) 
−(B, C)


−(A, C)

− S

The order of the premisses, from left to right, is the reverse of Aristotle’s

proof texts. At some stage, it became customary to read the propositions

with the subject first, so, to have the middle term in the middle, the order

of premisses was changed.

When one reads Aristotle’s examples of syllogistic inference, the real

deductive structure is somewhat hidden behind the convention of a linear

sentence structure. Here is an example (from Prior Analytics, 27a10):

If M belongs to every N and to no X, then neither will N belong to any X. For

if M belongs to no X, then neither does X belong to any M; but M belonged to

every N; therefore, X will belong to no N (for the first figure has come about).

And since the privative converts, neither will N belong to any X.

Let us number the sentences of this text in the succession in which they

appear, rewritten so that each single purely syllogistic sentence is identified

(i.e., with the connectives and rhetorical expressions eliminated):

1. M belongs to every N.

2. M belongs to no X.

3. N belongs to no X.

4. M belongs to no X.

5. X belongs to no M.

6. M belongs to every N.

7. X belongs to no N.

8. N belongs to no X.
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The assumpt ions in the syllog istic proof are 1 and 2. Line 3 states the

co n c l u s i o n of the pro of. Line 4 rep e ats assumption 2, and line 5 g ives the

result of application of a conversion r ule to the premiss g iven by line 4.

Line 6 rep eats the assumption from line 1. Line 7 g ives the conclusion of a

syllog istic r ule from the premisses g iven by lines 5 and 6. Line 8 g ives the

conclusion of a conversion r ule applied to the premiss g iven by line 7. It is

at the same time the soug ht-for conclusion expressed on line 3.

The for mal nature of Ar istotle’s pro of text is re vealed by the rep etition,

tw ice, of assumptions or pre v ious conclusions, on lines 4 and 6. T hese rep-

etitions are made so that the application of a r ule of inference in the pro of

text can follow a cer tain patter n: A one-premiss r ule such as conversion is

applied to a sentence in a way in which the conclusion follows immediately

the sentence. A two-premiss r ule such as a syllog ism is applied to two pre-

misses, g iven in succession in a pre deter mined order, so that the conclusion

follows immediately the premisses.

(d) The deduct ive st r ucture of sy llog ist ic pro of s. The linear it y of Ar istotle’s

proof texts hides a par t of their t r ue deduc tive st r uc ture. In the example, the

two assumptions are indep endent of each other, neither is der iv able from

the other by the r ules. Leav ing out the tentative statement of the conclusion

from line 3, the deduct ive dep endencies on assumptions in Ar istotle’s proof

are: Line 4 depends on assumption 2, line 5 likewise on 2 through 4, line 6

on 1, line 7 on 1 and 2, and line 8 on 1 and 2.

We shall translate Aristotle’s linear derivation, with sentences numbered

as in the example, into a tree form by the following two clauses, quite similar

to those found in Chapter 3 when linear natur al der ivations were t r anslated

to tree form:

1. Take the last sentence, draw a line above it, with the name of the rule that

was used to conclude it next to the line. Write the sentences that correspond

to the lines of the premisses of the last rule above the inference line.

2. With indirect proof, add a numerical label next to the rule.

3. Repeat the procedure until assumptions are arrived at. With indirect proof,

add a numerical label on top of closed assumptions.

Here is what we get when the translation algorithm is applied to the example

text:

M belongs to no X

X belongs to no M
Conv

M belongs to every N

X belongs to no N
Syll

N belongs to no X
Conv
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The same derivation in our notation is:


−(X, M)


−(M, X)

−C


+(N, M)


−(N, X)

− S


−(X, N)

−C

As a next example, consider the following indirect syllogistic derivation

(from 28b17):

If R belongs to every S but P does not belong to some, then it is necessary for P

not to belong to some R. For if P belongs to every R and R to every S, then P

will also belong to every S; But it did not belong.

Our notation and translation into tree form gives:

3


+(R, P ) 
+(S, R)


+(S, P )

+ S

�−(S, P )

�−(R, P )
RAA,3

To finish this brief tour of Aristotle’s logic, we show that his practice of

making at most one last step of indirect inference is justified:

Theorem 14.1. Normal form for derivations. All derivations in Aristotle’s

deductive logic can be so transformed that the rule of indirect proof is applied

at most once as a last rule.

Proof. Consider an uppermost instance of RAA in a derivation. If it is

followed by another instance of RAA, we have a part of derivation such as:

1
P....
Q

....
Q⊥

P ⊥ RAA,1

2
R....
P

R⊥ RAA,2

This derivation is transformed into:

1
R....
P....
Q

....
Q⊥

R⊥ RAA,1
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Admissibility of composition guarantees that the derivation of P from R

can be continued by the derivation of Q from P .

The above transformation is repeated until there is just one instance of

RAA. If the conclusion R⊥ is existential, it cannot be a premiss in any rule

and the claim of the theorem follows. If the conclusion is universal, we have

one of:

1

�−(A, B)....
Q

....
Q⊥


+(A, B)
RAA,1

1

�+(A, B)....
Q

....
Q⊥


−(A, B)
RAA,1

There are by assumption no instances of RAA above the ones shown. There-

fore the existential formulas that are closed cannot be premisses in any other

rules than the instances of RAA shown. Then the derivations of the left pre-

misses of RAA are degenerate, with �−(A, B) ≡ Q and �+(A, B) ≡ Q,

respectively. The derivations are therefore:

1

�−(A, B)

....

+(A, B)


+(A, B)
RAA,1

1

�+(A, B)

....

−(A, B)


−(A, B)
RAA,1

A loop is produced in both, and therefore the instances of RAA can be

removed. QED.

The formulas of Aristotle’s deductive logic are atomic formulas in today’s

terminology, and his rules act only on such atomic formulas. The question

of the derivability of an atomic formula from given atomic formulas used as

assumptions is known as the word problem. The terminology stems from

algebra where the word problem concerns the derivability of an equality

from given equalities. The solution of this problem in Aristotle’s deductive

logic, i.e., the decidability of derivability by his rules, follows at once by

the above result on normal form. It is sufficient to show that the terms

in a derivation of P from the assumptions � can be restricted to those

included in the assumptions and the conclusion. If the proof is direct, this

is so because terms in any formula in the derivation can be traced up to

assumptions. Otherwise, the last step is indirect, but the closed assumption

is P ⊥ so that the terms in a derivation are again found in the assumptions

or the conclusion P . With a bounded number of terms, there is a bounded

number of distinct formulas. The number of possible consecutive steps of

inference in a loop-free derivation, i.e., the height of a branch in a derivation

tree, is bounded by the number of distinct formulas and we have:
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Theorem 14.2. Word problem for Aristotle’s deductive logic. The deriv-

ability of a formula P from given formulas � used as assumptions is decidable.

The Prior Analytics is rather brief on the general logical theory of syllogisms.

Most of the treatise is devoted to modal syllogisms in which the basic form

of expression is qualified, as in A is possibly B and A is necessarily B.

14.2 The algebraic tradition of logic

(a) Boole’s logical algebra. Algebraic logic began in 1847 when George

Boole presented his ‘calculus of deductive reasoning’ in a short book titled

The Mathematical Analysis of Logic. His calculus reduced known ways of

logical reasoning into the solution of algebraic equations. The known ways

of logical reasoning were not just accounted for, but extended to full classical

propositional logic.

Boole’s starting point was Aristotle’s theory of syllogistic inferences and

its later development. Let us recall the propositions in Boole’s notation:

Table 14.8 The four basic forms

of syllogistic propositions

1. A: Each X is Y.

2. E : No X is Y.

3. I : Some X is Y.

4. O : Some X is not-Y.

Boole considered also more complicated forms, ones that appear in what

are known as ‘hypothetical syllogisms’.

Boole’s logical calculus assumes as given a universe of objects, denoted

1. Classes of objects in the universe are denoted by X, Y, Z, . . . . Lower case

letters x, y, z, . . . are ‘elective symbols’ for these classes. The easiest way to

understand these symbols is that x is a variable that takes the values 1 and 0

according to whether an object a belongs to the class X . The product xy is

used for expressing that an object belongs to both X and Y , the sum x + y

for expressing that it belongs to at least one of X and Y , and the difference

1 − x for expressing that the object belongs to not-X , i.e., is a ‘not-X ’ type

of object.

The reading that is closest to Boole takes X, Y, Z, . . . to be subsets of the

universe of objects, with not-X given by the complement of a set, product by
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the intersection, and sum by the union of two sets. We can equivalently use

monadic predicate logic, by which the predicates X, Y, Z, . . . are applied

to objects a, b, c , . . . with elementary propositions such as X(a) as results.

Anachronistically speaking, Boole invented the valuation semantics of clas-

sical monadic predicate logic, therefore also of classical propositional logic,

and this even before these two systems of logic had a well-defined syntax.

The small variables represent valuations over the propositions: We have

a valuation function v with v(X(a)) = x and with x = 1 if X(a) is true,

x = 0 if X(a) is false.

Boole writes down in an intuitive way properties of valuations, such as

xy  = yx  or x ( y + z ) = xy + xz. T he sy l log istic for ms of Table 14.8 are

represented in terms of equations as:

Table 14.9 Propositions represented as algebraic equations

1. A: With X a subclass of Y , we have xy = x , so x(1 − y) = 0.

2. E : If no X is Y , then xy = 0.

3. I : With V the class of those X that are also Y, v = xy gives I .

4. O : Similarly to 3, we have v = x(1 − y).

We are now ready to reason by calculation. Consider the first syllogistic

inference in Aristotle. The premisses and their algebraic representations

are:

Each X is Y, x(1 − y) = 0,

Each Y is Z, y(1 − z) = 0.

We have thus x − xy = 0 from the first premiss. Multiply 1 − z by the

left side, to get x(1 − z) − xy(1 − z) = 0. Since by the second premiss

y(1 − z) = 0, also xy(1 − z) = 0, so that x(1 − z) = 0. This just states that

every X is Z, or the conclusion of the syllogism.

Boole moves to hypothetical propositions such as: If A is B , then C is D.

It has the form: If X is true, then Y is true. The four possibilities, X true and

Y true, X true and Y false, X false and Y true, X false and Y false, are repre-

sented by xy, x(1 − y), (1 − x)y, and (1 − x)(1 − y), respectively. It is now

clear that any correct inference of classical propositional logic is validated

by Boole’s algebraic semantics, of which the ‘truth tables’ popularized by

Wittgenstein are a notational variant. Thus, Boole has no difficulty to con-

tinue the list of ‘principal forms of hypothetical Syllogism which logicians

have recognized’, as in his final example:
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Table 14.10 Boole’s final example of a hypothetical syllogism

If X is true, then either Y is true, or Z is true. But Y is not true. Therefore, if X

is true, Z is true.

The disjunction in the first premiss is exclusive and can be given as the term

y + z − yz. Then the first premiss is x(1 − y − z + yz) = 0. The second

premiss is y = 0, and the conclusion x(1 − z) = 0 follows at once by easy

calculation.

Boole did not put down any definitive list of algebraic laws that would

define what we today call a Boolean algebra. The usual way to introduce

such algebras is to start from classical propositional logic, then to collect all

formulas equivalent to a given formula A into an equivalence class denoted

[A]. Product, sum, and complement relative to the universe 1 in these

classes correspond to the logical operations through the formation of the

equivalence classes [A&B], [A ∨ B], and [¬A].

Boole reduced Aristotelian syllogistic reasoning to calculation, which was

a wonderful achievement. Encouraged by the success, he wrote a book with

the bold title The Laws of Thought (1854). His logic was not able to treat

relations, but just one-place predicates, however. Today we know that there is

no algebra of logic for full predicate logic, in which logical reasoning could

be reduced to algebraic computation in the way Boole did for monadic

predicate logic.

(b) Schröder’s algebraic logic. The next important person in the develop-

ment of the algebraic approach to logic and logic in general was Ernst

Schröder. His work is found in the three-volume Vorlesungen über die

Algebra der Logik, published between 1890 and 1905. He goes beyond Boole

in that there is as a basic structure a partial order relation over objects,

called ‘groups’, or ‘domains’ (Gebiet), with areas of the blackboard delim-

ited by circles and ovals as a paradigmatic example. The order relation is

used to represent logical consequence where Boole reasoned in terms of

equalities. There are operations such as product and sum and relative com-

plementation, with an obvious interpretation on the blackboard. Schröder’s

‘Gruppenkalkül’ amounts to the study of logic in terms of lattice theory,

though the latter terminology and its German equivalent ‘Verbandstheorie’

are of later origin. The partial order relation a�b in a lattice has vari-

ous readings, one of which is set inclusion, another logical consequence.

Schröder’s own symbol for the order is produced by superposing something
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like a subset symbol and an equality, the latter indicating that the ‘subsump-

tion’ need not be strict, as in ⊂= . The axioms are (Schröder (1890), pp. 168

and 170):

I. a ⊂= a .

II. When a ⊂= b and b ⊂= c then also a ⊂= c .

Algebraic laws determine unique lattice operations a · b, also written ab,

and a + b (product and sum) that correspond to conjunction and disjunc-

tion in the logical reading. The principles that govern these operations are

written as the ‘definitions’ (p. 197):

(3×)′ If c ⊂= a, c ⊂= b, then c ⊂= ab.

(3×)′′ If c ⊂= ab, then c ⊂= a and c ⊂= b.

(3+)′ If a ⊂= c , b ⊂= c , then a + b ⊂= c .

(3+)′′ If a + b ⊂= c , then a ⊂= c and b ⊂= c .

There are in addition two special domains 0 and 1 with 0 ⊂= c and c ⊂= 1.

By setting c equal to ab in (3×)′′, one obtains the standard lattice axioms

ab ⊂= a and ab ⊂= b. Axiom (3+)′′ gives similarly the axioms a ⊂= a + b

and b ⊂= a + b.

One famous problem in Schröder’s logic concerns the law of distribu-
tivity. It is expressed in Schröder’s language ((1890), p. 282) as the equa-

tion a(b + c) = ab + ac with equality defined as partial order in both

directions, and in a dual formulation as (a + b)(a + c) = a + bc . Is there

a derivation of distributivity in Schröder’s Gruppenkalkül? The founder

of pragmatism, Charles Peirce, was one of the algebraic logicians and he

believed himself to have proved the law. However, Schröder found a counter-

example, with explicit reference to analogous counterexamples in Euclidean

geometry: It consists of three circular areas a, b, c that intersect in a canon-

ical way. With sum as union and product as intersection of the areas, it

is readily seen that the dual formulation of distributivity fails in this case

(p. 286). The subsumption relation goes only in one way, not two, as would

be required by the definition of equality. Meanwhile also Peirce had come

to recognize that his purported proof was fallacious (p. 290).

An abstract formulation of Schröder’s counterexample to distributivity

is given by a lattice that consists of just five distinct elements a, b, c , d, e

with the following orderings:

d � b, d � a, d � c , b � e, a � e, c � e

A figure will be useful for computing the terms in the distributive inequality:
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e

cab

d

From the figure can be read off the equations a(b + c) = ae = a as well as

(ab) + (ac) = dd = d . For distributivity, we should have a � d , but d � a

was assumed. By the condition that all the elements be distinct, distributivity

fails. This is the standard counterexample to distributivity in today’s lattice

theory.

The calculus of groups leads to a calculus of classes through the addition

of an operation of negation, denoted a⎪and interpreted as a complement

for areas. Schröder uses the algebraic calculus in the same way as Boole. The

letters indicate properties and the task is to show what can be inferred from

given letters used as assumptions. Here is one example (p. 530):

Let it be stipulated that every b that is not d is either both a and c or neither

a nor c . Further, no c and no d can be a and b simultaneously. To prove that

no a is b.

The assumptions are expressed as:

bd⎪ ⊂= ac + a⎪c⎪c ⊂= (ab)⎪ and d ⊂= (ab)⎪
One of Schröder’s basic observations is that the subsumption a ⊂= b is

equivalent to the equalities a = ub and b = a+v, for any u and v (p. 398).

In particular, a ⊂= b whenever ab⎪ = 0. The three subsumptions that are

assumed lead by this method into what is called a ‘combined equation’:

(ac⎪ + a⎪c)bd⎪ + abc + abd = 0

Since uu⎪= 0 and u + u⎪= 1 for any u, the terms c and d can be eliminated

from this equation, with the result ab = 0 as required. By the above, it

follows that a ⊂= b⎪, i.e., that no a is b.

The example shows how logical consequence relations, as expressed by

the subsumption relation, are turned into equalities on which algebraic

manipulations in the style of Boole can be performed, to obtain a result that

can be finally read again in terms of consequence.
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(c) Skolem’s combinator ics of deduct ion. Skolem’s famous pap er of 1920

contains the crow ning a chie vement of algebr aic log ic. T he pap er, thoug h,

is not know n for this, but for its first sec tion that contains the L öwenheim–

Skolem theorem, discussed in S ec tion 10.2. The other par ts were completely

forgotten, together w ith the algebr aic log ic of Schr öder that got t r a nsfor med

into lattice theor y. Par t of the reason was the notation: Skolem w rote ( xy)

for Schr öder’s x ⊂= y , the partial order relation  x �  y , and  
�

xyz  for the

re l a t i o n S c h r öder w rote a s xy  = z and that we w rote as M ( x, y, z ) (‘the

meet of x and y is z ’) in Sec t ion 11.3, and similarly xyz


for Schröder’s

x+ y = z , the join relation  J ( x, y, z ) of S ec tion 11.3.

Skolem wrote in 1913 a Master’s thesis in Norwegian, titled Undersökelser

innenfor logikkens algebra (Investigations in the algebra of logic). A part

of the results was published in 1913 in the article Om konstitutionen av

den identiske kalkuls grupper (On the structure of groups in the identity

calculus). The paper begins with an admirably concise account of the alge-

braic approach to logic. The lattice ordering a � b has various readings,

one of which is set inclusion, another logical consequence. Algebraic laws

determine unique lattice operations ab and a + b (product and sum) that

correspond to conjunction and disjunction in the logical reading. Negation

a is defined by introducing a null class 0 and a universal class 1 satisfying

an algebraic law that Skolem writes as:

(aa � 0)(1 � a + a)

Now the lattice structure becomes Schröder’s ‘identity calculus’, or a Boolean

algebra in modern terms. Implication between a and b is later defined as

the supremum of x such that ax � b.

In a later paper of 1919, Skolem studied further the notion of impli-

cation, or the case of a lattice in which the inequality ax � b has a

maximal solution, denoted by b
a in Skolem. The resulting structure is in

fact what is today called a Heyting algebra. The modern notation intro-

duces an arrow operation a → b, and Skolem’s inequality written with

the lattice meet and arrow operations reads as a∧(a → b) � b. Many

basic properties of Heyting algebras are proved, for which see von Plato

(2007).

It is quite astonishing that Skolem had found an algebraic axiomatization

of intuitionistic propositional logic well before its basic principles were

definitively clarified by Heyting’s axiomatization (1930). Of his motivations

for introducing the algebraic axiomatization, what he called ‘class rings’

(Klassenringe), Skolem writes that they are ‘a natural continuation and

generalization of the groups of the identity calculus’.
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Let us now turn to Skolem’s 1920 paper. It gave the axioms of Schröder’s

lattice theory as production rules:

I. For each x , (xx).

II. From (xy) in combination with (yz) follows (xz).

III×. From
�

xyz follow (zx) and (zy).

III+. From xyz


follow (xz) and (yz).

IV×. From
�

xyz in combination with (ux) and (uy) follows (uz).

IV+. From xyz


in combination with (xu) and (yu) follows (zu).

V×. From
�

xyz in combination with (xx ′), (x ′x), (yy ′), (y ′y), (zz′), and

(z′z) follows
�

x ′y ′z′.
V+. From xyz


in combination with (xx ′), (x ′x), (yy ′), (y ′y), (zz′), and

(z′z) follows x ′y ′z′


.

VI×. There is for arbitrary x and y a z such that
�

xyz.

VI+. There is for arbitrary x and y a z such that xyz


.

Principles V× and V+ contain assumptions such as (xx ′), (x ′x). It would

have helped the reader if Skolem had written out these as x = x ′, etc.,

so that one could see that these two principles just state that equals can

be substituted in the meet and join expressions. No such concessions are

made to the reader. Had Skolem been used to the notation of Principia

Mathematica by the time of the article, he might have written the production

rules as logical axioms:

I. (xx).

II. (xy) & (yz) ⊃ (xz).

III×.
�

xyz ⊃ (zx),
�

xyz ⊃ (zy).

IV×.
�

xyz & (ux) & (uy) ⊃ (uz).
...

VI+. (x)(y)(∃z) xyz


.

Even if there is no such symbolic language for the production rules, Skolem

takes a purely formal and combinatorial view of them, one usually associated

with Hilbert rather than the algebraic logicians:

The validity of a sentence in algebra, based on this axiomatic foundation, consists

simply in the possibility of proving the following: Given these and these pairs and

triples (xy),
�

xyz, etc., those and those pairs and triples can be derived by possibly

repeated and combined applications of the axioms. . .
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In fact, the axioms presented are production principles by which new pairs and

triples are derived from certain initial symbols . . .

Here we have a purely combinatorial conception of deduction on which I would like

to put emphasis, because it proves to be especially useful in logical investigations.

Skolem’s paper has no formal notation for derivations, either. In proving

his results, he writes things like ‘consider one application of the principle of

substitution of equals as a last step’. No trace is left of how he did his proofs

that involve transformations of the order of application of the rules; in his

head, on discarded paper? In my paper In the shadows of the Löwenheim–

Skolem theorem: Early combinatorial analyses of mathematical proofs (2007)

I show in great detail that Skolem’s 1920 solution of the word problem

for lattices is based on the permutation of the order of application of the

production rules.

Let’s look here at Skolem’s example of a formal proof. It is the converse

to the distributive law, expressed in the language of lattice theory with

operations as (a ∧ b) ∨ (a ∧ c) � a ∧ (b ∨ c). Skolem’s proof text in the

language and notation of his relational lattice theory is:

From
�

abd in combination with
�

ace, bc f


, deg


, and
�

af h follows the pair (g h). Proof:

From bc f


follows by III+ the pair (b f ). From
�

abd follow (da) as well as (db) by

III×. From (db) and (b f ) follows by II (d f ). From (da) and (d f ) in combination

with
�

af h follows by IV× [original has VI×] (dh). From bc f


follows on the force

of III+ the pair (c f ). From
�

ace follow by III× (ea) and (ec). From (ec) and (c f )

[original has (e f )] follows by II (e f ). From (ea) in combination with (e f ) and
�

af h

follows by IV× [original has VI×] (eh). From (dh) in combination with (eh) and

deg


follows finally by IV+ (g h).

The proof is easier to read if we eliminate linguistic variation, often used

to break the monotonicity of sentence construction in a proof text. The

sentences in Skolem’s proof are then, numbered and with the theorem to be

proved added as line 0:

0. From
�

abd ,
�

ace, bc f


, deg


, and
�

af h follows (g h).

1. From bc f


follows by III+ (b f ).

2. From
�

abd follows by III× (da) and (db).

3. From (db) and (b f ) follows by II (d f ).

4. From (da) and (d f ) and
�

af h follows by IV× (dh).

5. From bc f


follows by III+ (c f ).

6. From
�

ace follows by III× (ea) and (ec).
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7. From (ec) and (c f ) follows by II (e f ).

8. From (ea) and (e f ) and
�

af h follows by IV× (eh).

9. From (dh) and (eh) and deg


follows by IV+ (g h).

Now eliminate the conjunctive conclusion from line 2:

2. From
�

abd follows by III× (da) and (db)

becomes:

2. From
�

abd follows by III× (da)

2′. From
�

abd follows by III× (db)

Do similarly for line 6, and next write out the ‘given pairs and triples’ on

lines that begin a proof, as in:

1. Given
�

abd

2. Given
�

ace

3. Given bc f


4. Given deg


5. Given
�

af h

The result is, with some renumbering of lines and aligning:

1. Given
�

abd

2. Given
�

ace

3. Given bc f


4. Given deg


5. Given
�

af h

6. From bc f


follows by III+ (b f )

7. From
�

abd follows by III× (da)

8. From
�

abd follows by III× (db)

9. From (db) and (b f ) follows by II (d f )

10. From (da) and (d f ) and
�

af h follows by IV× (dh)

11. From bc f


follows by III+ (c f )

12. From
�

ace follows by III× (ea)

13. From
�

ace follows by III× (ec)

14. From (ec) and (c f ) follows by II (e f )

15. From (ea) and (e f ) and
�

af h follows by IV× (eh)

16. From (dh) and (eh) and deg


follows by IV+ (g h)
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The final step is to replace the premiss formulas by the numbers of their

lines, to see better what depends on what. The result is:

1. Given
�

abd

2. Given
�

ace

3. Given bc f


4. Given deg


5. Given
�

af h

6. From 3 follows by III+ (b f )

7. From 1 follows by III× (da)

8. From 1 follows by III× (db)

9. From 8 and 6 follows by II (d f )

10. From 7 and 9 and 5 follows by IV× (dh)

11. From 3 follows by III+ (c f )

12. From 2 follows by III× (ea)

13. From 2 follows by III× (ec)

14. From 13 and 11 follows by II (e f )

15. From 12 and 14 and 5 follows by IV× (eh)

16. From 10 and 15 and 4 follows by IV+ (g h)

Next apply the following prescription:

1. Write the last formula.

2. Draw a line above it.

3. Write next to the line the rule that was used.

4. Write above the line in order the premisses of the rule.

5. Repeat until you arrive at the given formulas.

Translation of the production rules into tree form gives:

(xx)
I

(xy) (yz)

(xz)
I I

�
xyz

(zx)
I I I×

�
xyz

(zy)
I I I×

(ux) (uy)
�

xyz

(uz)
I V×

With x = u standing for (xu) and (ux), the rules of substitution can be

written as:

x = u y = v z = w
�

xyz
�

uvw

V×
x = u y = v z = w xyz


uvw


V+
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Skolem’s example der ivation becomes t r anslated into the t re e:

�
abd
(da) 

I I I×

�
abd
(db) 

I I I×

bc f


(b f  ) 
I I I+

(d f  )
I I  �

af h

(dh) 
I V×

�
ac  e
(ea) 

I I I×

�
ac  e
(ec  ) 

I I I×

bc f


(c f  ) 
I I I+

(e f  )
I I  �

af h

(eh) 
I V×

deg


( g h) 
I V+

No w w e s e e t h e deduct ive dep endencies in Skolem’s pro of:

3231

11132681

51412597

41510

16

The t r a ditional linear for m of a w r itten pro of text hides these.

The follow ing can b e proved:

The r ules of s ubst itut ion p er mute dow n re lat ive to the other r ules and t wo

cons ecut ive instances of a r ule of subst itut ion cont ract into one.

Skolem may have thought such results too obvious to mention. The details

can b e found in Proof Analy sis , sec tion 5.3(b).

Skolem’s treatment of lattice theory as a system of production rules ends

with some examples of purely syntactic proofs of independence through

failed proof search, including the distributive law, or what is written as

a ∧ (b ∨ c) � (a ∧ b) ∨ (a ∧ c) today:
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Example 2. The task is to prove that the subsumption a(b + c)€ ab + ac (in

Schröder’s notation), generally valid in the calculus of classes, is not generally

valid in the calculus of groups. Translated into our language, this task means the

following: Let the triples
�

abd ,
�

ace , bc f


, deg


, and
�

a f h be given. Does the pair (hg )

follow from these by axioms I–VI? To investigate this, it suffices for us to apply

axioms I–V as long as there appears a set S closed with respect to these axioms.

Axiom I gives us the pairs (aa) (bb) (cc) (dd) (ee) ( f f ) (g g ) (hh). Axiom III

gives us (da) (db) (ea) (ec) (b f ) (c f ) (dg ) (eg ) (ha) (h f ), and we get further by

II (d f ) and (e f ) and by IV+ also (g f ). Now, however, no more pairs or triples

can be formed with the help of I–V from the 5 given triples. The pair (hg ) does

not appear among the pairs obtained. By this, the underivability of (hg ) from

the 5 given triples by axioms I–VI is proved or, in other words, the unprovabil-

ity in the calculus of groups of what is known as the distributive law a(b + c)

€ ab + ac .

The lattice-theoretic part is followed by another one on plane projec-

tive geometry, and a similar syntactic proof of the independence of what

is known as Desargues’ conjecture. Skolem’s anticipation of proof search

methods in algebra and geometry remained unnoticed for some eighty

years – a lost opportunity in foundational research.

14.3 The logic of Frege, Peano, and Russell

(a) Frege’s axiomatic predicate logic. Frege is the founding father of con-

temporary logic, through his little book Begriffsschrift that came out in

1879. The name stands for something like ‘conceptual notation’, and there

is a long subtitle that specifies the notation as ‘a formula language for pure

thought, modeled upon that of arithmetic’. The actual notation in Frege’s

book is rather bizarre, and no one else has ever used it. Luckily he had

Bertrand Russell among his few readers; Russell rewrote Frege’s formula

language in a style, adopted from Giuseppe Peano, that later evolved into

the standard logical notation we have today.

The unique feature in Frege is that he wrote his formulas in two dimen-

sions. The notation for an implication A ⊃ B is:

B

A

This looks just like a vertical notation, but iterated implications show how

it really is. Let us take as an example the formula that is written in standard
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notation as:

(C ⊃ (B ⊃ A)) ⊃ ((C ⊃ B) ⊃ (C ⊃ A))

Frege’s writing is:

A

C

B

C

A

B

C

No parentheses are needed.

Next to implication, there is a negation sign that is just a little stroke, as

in:

A

The universal quantifier is written so that the variable that is quantified is

written in a little notch in the horizontal line at the head of a formula, as in:

— x
— A(x)

Frege’s logic is classical, and therefore implication and negation and the

universal quantifier suffice for the definition of other connectives, such as

conjunction and disjunction, and for the definition of existence.

Frege makes a careful distinction between a proposition and an assertion:

From the former, the latter is obtained by the addition of the assertion

symbol, a vertical line as in:

|— A

This notation has led to the turnstile that is used for the derivability relation.

The two-dimensional nature of Frege’s formulas is best seen if we manip-

ulate them a bit. Turn first the above formula 90 degrees:

ACBCABC
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St r aig htening the lines, the result is:

AB CCABC

Next annotate the nodes:

(C ⊃ (B ⊃ A)) ⊃ ((C ⊃ B) ⊃ (C ⊃ A))

C ⊃ (B ⊃ A () C ⊃ B) ⊃ (C ⊃ A)

B ⊃ CA ⊃ CB ⊃ A

ACBCABC

The result is a two-dimensional t ree, as in S ec tion 1.5. Therefore:

Frege’s logical formulas are syntax trees with missing annotations.

We look next at the rules of proof of Frege’s axiomatic logic, in a modern

notation and with an anachronistic definition. Proofs begin with axioms, a

list of which is given in the end of the Begriffsschrift .

Definition 14.3. Logical truth.

(i) The axioms of logic are logical truths.

(ii) If A ⊃ B and A are logical truths, also B is.

(iii) If A(x) is a logical truth for an arbitrary x, also ∀x A(x) is.

Frege made explicit the principles that govern the notion of an eigenvari-
able, the ‘arbitrary’ x that is used in mathematics for making universal

generalizations. He noticed that a clear-cut syntactic criterion about free

variables is sufficient to warrant generalization, which is one of the great

insights in the development of logic.

Deduction from the axioms is typically organized in a ‘chain of infer-

ences’. In these, any previously derived truths can be used. There is no
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problem about the combination of derivations, because the premisses of

rules are always logical truths. Therefore we have the following features, in

contrast to logic after Gentzen:

1. There are no hypothetical inferences.

2. There are no transformations of derivations.

3. The only problem is to find the right instances of axioms.

Finally, let us see how Frege organizes his derivations. The propositional

rule of inference is given as:

‘From the two judgments A

B

and B the new judgment A follows.’

In the construction of chains of deduction, the writing is linear and one

premiss is just referred to by what seems to be a Roman numeral:

B A

(X): B

A (X)::

A

In these figures, (X): stands for the major premiss A

B

and (X):: for the

minor premiss B .

The combination of steps of deduction is shown schematically, as in:

A

B

�

(XX, XXX)::

A

There are two unwritten minor premisses, � and B . Frege

doesn’t tell us how to write a derivation if one premiss is a major one (:)

and the other a minor (::); perhaps :,:: would do?

There is only one place in which a combined deduction is used in the

whole of the Begriffsschrift (viz., in the derivation of formula 102). Never-

theless, even one place is proof enough that the thing exists.

Frege’s linear derivations share the feature with other such deductive

systems that premisses have to be referred to by some device, or recalled by

a rule of repetition as in Aristotle: In all, we cannot do better than report

the words of Roy Dyckhoff who once exclaimed:
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Frege had two-dimensional formulas and one-dimensional derivations when

he should have had exactly the opposite!

(b) Peano’s symbolic notation. Giuseppe Peano’s little book of 1889 was

written in Latin, with the title Arithmetices principia, nova methodo exposita,

or ‘The principles of arithmetic, presented by a new method’. Peano writes:

I have denoted by signs all ideas that occur in the principles of arithmetic, so that

every proposition is stated only by means of these signs.
...

With these notations, every proposition assumes the form and the precision that

equations have in algebra; from the propositions thus written other propositions

are deduced, and in fact by procedures that are similar to those used in solving

equations.

Peano’s signs are, first of all, dots that are used in place of parentheses, and

then: P for proposition, a ∩ b, even abbreviated to ab, for the simultaneous

affirmation of the propositions a and b, – a for negation, a ∪ b for or, V for

truth, and the same inverted for falsity. The letter C stands for consequence,

used inverted as in today’s stylized implication sign a ⊃ b. There is also

the connective of equivalence, a = b, definable through implication and

conjunction as a ⊃ b . ∩ . b ⊃ a .

Pure logic is followed by a chapter on classes, or sets as one could say. The

notation is a ε b for a is a b, and a ε K for a is a class.

When Peano proceeds to arithmetic, he first adds to the language the

symbols N (number), 1 (unity), a + 1 (a plus 1), and = (is equal to). The

reader is warned that the same symbol is used also for logic. Next he gives

the famous Peano axioms for the class N of natural numbers:

Table 14.11 Peano’s axioms for natural numbers

1. 1 ε N

2. a ε N.⊃ . a = a

3. a, b ε N.⊃ : a = b . = . b = a

4. a, b, c , ε N.⊃∴ a = b . b = c : ⊃ . a = c .

5. a = b . b ε N : ⊃ . a ε N.

6. a ε N. ⊃ . a + 1 ε N.

7. a, b ε N.⊃ : a = b . = . a + 1 = b + 1.

8. a ε N.⊃ . a + 1 −= 1.

9. k ε K ∴ 1 ε k ∴ x ε N. x ε k : ⊃x . x + 1 ε k :: ⊃ . N ⊃ k.

The reader would have been helped in axioms 2, 7, and especially in 8 with its

negated equality, had separate signs for equality of numbers and equivalence
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of propositions been used. The last axiom is the principle of induction: Let

k be a class that contains 1 and for any x , let it contain x + 1 if it contains

x . Then it contains the class N. The implication has the eigenvariable x of

the inductive step as a subscript.

The list of axioms is followed by a definition:

10. 2 = 1 + 1; 3 = 2 + 1, 4 = 3 + 1; and so forth.

Now follows a list of theorems, the first one with a detailed proof:

11. 2 ε N.

Proof.
P 1 .⊃ : 1 ε N (1)

1 [a] (P 6) .⊃ : 1 ε N.⊃ . 1 + 1 ε N (2)

(1) (2) .⊃ : 1 + 1 ε N (3)

P 10 .⊃ : 2 = 1 + 1 (4)

(4).(3).(2, 1+1) [a,b] (P 5): ⊃ : 2 ε N (Theorem).

It will be very useful to inspect this proof in detail. The justifications for

each step are written at the head of each line so that they together imply

the conclusion of the line. The derivation begins with P 1 (proposition 1

in the list of axioms) in the antecedent, justification part of an implica-

tion, and 1 ε N in the consequent as the conclusion. The meaning is that

from P 1 follows 1 ε N. The second line has similarly that from axiom P 6

with 1 substituted for a follows 1 ε N.⊃ . 1 + 1 ε N. The next line tells that

from the previous lines (1) and (2) follows 1 + 1 ε N. The following line

tells that definition 10 gives 2 = 1 + 1. The last line tells that lines (4) and

(3) give, by the substitution of 2 for a and 1 + 1 for b in axiom P 5, the

conclusion 2 ε N. The order in which (4) and (3) are listed is 2 = 1 + 1 and

1 + 1 ε N. The instance of axiom P 5 used on the last line in the proof is

2 = 1 + 1 . 1 + 1 ε N : ⊃ . 2 ε N. Thus, we have quite formally in the justi-

fication part the expression:

(2 = 1 + 1) . (1 + 1 ε N) . (2 = 1 + 1 . 1 + 1 ε N : ⊃ . 2 ε N)

Line (3) is similar: It has two successive conditions in the justification part,

namely (1 ε N ). (1 ε N.⊃ . 1 + 1 ε N).

There are altogether two instances of logical inference, both written so that

the antecedent of an implication as well as the implication itself is in the
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justification part, and the consequent of the implication as the conclusion

of the line.

Each line of inference in Peano therefore has one of the two forms, with

b a substitution instance of axiom a in the first:

a ⊃ b
a . a ⊃ b : ⊃ b

After the first detailed example, Peano starts to use an abbreviated notation

for derivations that makes it rather hard to read them. The first derivation

is written ‘for the sake of brevity’ as:

P 1 . 1[a](P 6) : ⊃ : 1 + 1 ε N . P 10 (2, 1 + 1) [a, b] (P 5) : ⊃ Th.

An even shorter notation is given as an alternative:

P 1 . (P 6) : ⊃ : 1 + 1 ε N . P 10 (P 5) : ⊃ Th.

It is left for the reader to figure out the meaning of the notation. This

expression stands for a formula, in modern notation, of the logical form:

A & (A ⊃ B) ⊃ (B & (B ⊃ C ) ⊃ C )

Peano’s abbreviation turns a derivation from axioms into a single formula

in which the axiom instances together imply the theorem.

The structure of derivations in Peano. Peano’s formal derivations consist of

a succession of formulas that are:

(i) Implications in which an axiom implies its instance.

(ii) Implications in which the conjunction of two previously derived formulas

a and a ⊃ b imply b.

Peano likened his propositions to the equations of algebra and his deduc-

tions to the solving of the equations. Rather startlingly, Jean van Heijenoort

who edited the book From Frege to Gödel that has the first English trans-

lation of Peano’s work, instead of figuring out what Peano’s notation for

derivations means, claims in his introduction that there is ‘a grave defect.

The formulas are simply listed, not derived; and they could not be derived,

because no rules of inference are given . . . he does not have any rule that

would play the role of the rule of detachment’ (van Heijenoort (1967),

p. 84). Had he not seen the forms a ⊃ b and a . a ⊃ b : ⊃ b in Peano’s

derivations, the typographical display of steps of axiom instances and
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implication eliminations with the conclusion b standing out at right, and the

rigorous rule of combining the antecedent of each two-premiss derivation

step from previously concluded formulas?

Van Heijenoort’s unfortunate assessment, and it becomes much worse if

one reads further, has undermined the view of Peano’s contribution for a

long time, when instead Peano’s derivations are constructed purely formally,

with a notation as explicit as one can desire, by the application of axiom

instances and implication eliminations.

(c) Russell’s synthesis of Frege’s logic and Peano’s notation. The pursuit

of truth in logic had begun with Gottlob Frege and was continued by

Russell and the rest, so that axiomatic logic had become the norm by the

1920s. The axioms were supposed to express the most basic logical truths,

and there were just two rules of proof in the passage from instances of

axioms to the theorems of logic. The latter were, supposedly, the less basic

truths, but sometimes theorems were simpler than axioms. The rules of

passage were detachment, from A ⊃ B and A to conclude B , and the

rule of universal generalization. There was another aspect to axiomatic

logic, namely a fundamental relativity in the choice of the basic notions.

Russell’s standard axiomatization of propositional logic, from the Principia

Mathematica, uses disjunction and negation as the primitive connectives. A

slightly modernized notation is:

Table 14.12 Principia Mathematica

style logical axioms

1. ¬(A ∨ A) ∨ A

2. ¬A ∨ (A ∨ B)

3. ¬(A ∨ B) ∨ (B ∨ A)

4. ¬(A ∨ (B ∨ C)) ∨ ((A ∨ B) ∨ C)

5. ¬(¬A ∨ B) ∨ (¬(C ∨ A) ∨ (C ∨ B))

Implication is defined by A ⊃ B ≡ ¬A ∨ B and its use would make the

above axioms look a little less bad. Say, the first axiom reads as A ∨ A ⊃ A

and the last one as (A ⊃ B) ⊃ (C ∨ A ⊃ C ∨ B). The choice of axioms in

Russell and Whitehead is motivated by the algebraic tradition of logic of

Ernst Schröder, with such algebraic properties of an operation as idempo-

tence (axiom 1), commutativity (3), and associativity (4).

In a paper of 1906, The theory of implication, Russell uses negation and

implication as primitives, with a much better-looking axiomatization as a

result:
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Table 14.13 Russell’s 1906 theory

of implication

1. A ⊃ A

2. A ⊃ (B ⊃ A)

3. (A ⊃ B) ⊃ ((B ⊃ C) ⊃ (A ⊃ C))

4. (A ⊃ (B ⊃ C)) ⊃ (B ⊃ (A ⊃ C))

5. ¬¬A ⊃ A

6. (A ⊃ ¬A) ⊃ ¬A

7. (A ⊃ ¬B) ⊃ (B ⊃ ¬A)

The axioms are nicely motivated by intuitive considerations, partly in refer-

ence to Frege, partly to Peano, in whose work they appear. Next to the rule

of detachment, there is an explicit rule for taking instances of the axioms in

formal derivations.

The new axioms did not help in making the provability of theorems

of propositional logic any more apparent to Russell than those based on

negation and disjunction. He comments wryly ((1906) p. 159):

In the present article, certain propositions concerning implication will be stated as

premisses, and it will be shown that they are sufficient for all common forms of

inference. It will not be shown that they are all necessary, and it is probable that the

number of them might be diminished.

Are the axioms sufficient for (A ⊃ (A ⊃ B)) ⊃ (A ⊃ B)? This is hard to

tell, but what is worse, there is no logical content in the statement that the

axioms are ‘sufficient for all common forms of inference’. After the axioms

there follow more than twenty pages of formal derivations to bring home

the point about sufficiency. The first one is, with the original lower case

notation for atomic formulas, and a fractional notation for substitutions in

two axioms called Id and Comm, axioms 1 and 4 ((1906) p. 169):

�: . p . ⊃ : p ⊃ q . ⊃ . q

Dem.

� . Id
p ⊃ q

p
. ⊃ � : p ⊃ q . ⊃ . p ⊃ q (1)

� . Comm
p ⊃ q , p, q

p, q , r
. ⊃ � : : p ⊃ q . ⊃ .p ⊃ q : ⊃ : . p ⊃ : p ⊃ q . ⊃ q

(2)

� . (1) . ⊃ : � . (2) . ⊃ � .Prop.
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The structure of derivations in Russell is identical to Peano: The first two

lines have an axiom that implies its substitution instance, of the form a ⊃ b,

the third line has the form a ⊃ ((a ⊃ b) ⊃ b).

The net effect of the study of axiomatic logic was a scandalously unman-

ageable logical machinery. Thus, Russell and Whitehead put years into the

production of hundreds and hundreds of pages of formal logical proofs

within the axiomatic system, but had little idea of its properties as a logical

calculus. This aspect becomes obvious through the work of Paul Bernays of

1918. He was studying the propositional calculus of the Principia Mathe-

matica and wanted to prove the mutual independence of the axioms, exactly

as one does in axiomatic geometry à la Hilbert. To this effect, he invented

interpretations of the axioms of logic with more than two truth values.

Then, certainly unexpectedly, the fourth axiom resisted attempts at proving

its independence by such a semantical method. Bernays began suspecting

that it could be a theorem and managed to find a derivation for it from the

rest of the axioms.

Axiomatic logic had, in the hands of Russell, moved far away from

its origin in Frege, namely from a formula language for arithmetic in

which, as Frege wrote, ‘everything necessary for a correct inference is

expressed in full, but what is not necessary is generally not indicated’. Frege,

in contrast to Russell, had a clear idea of the practical meaning of his

axioms.

14.4 Axiomatic logic in the 1920s

(a) Hilbert and Bernays: Logical axioms à la géométrie. In the study

Bernays made in 1918, what is called a Habilitationsschrift or a kind of

second doctorate for those who stay at a university, a step back from the

relativism of the Russellian axiomatizations had been taken, in that all the

standard connectives, conjunction, disjunction, implication, and negation,

were present. Bernays hoped to pinpoint the role of negation in logical

axiomatics, motivated by the possibility of using negation and any one

of conjunction, disjunction, or implication as basic connectives. He asks

whether ‘it is possible to set up a negation-free axiom system from which

all negation-free formulas provable in our calculus, and only these, can be

derived’. A negation-free system is one in which conjunction and implication

are ‘not abbreviations, but symbols for basic operations . . . the question has

a positive answer’. Instead of giving the answer, Bernays sets out to derive
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the four th of the Russell–Whitehead axioms and to show that the rest are

mutual ly indep endent.

The for mal der ivations are w r itten in a linear for m, w ith a stacking of the

premisses of the r ule of detach ment before an inference line. D isjunc tion is

just concatenation: {
α β
α

β

{
α → β
α

β

The notation at r ig ht is g iven as an alter native.

Wh en for mal der ivations s tar t app ear ing in B er nays’ wor k, the y have

always the major premiss of the r ule first, then the minor, and the conclusion

below the inference line. Rep eated applications of the r ule are displayed

so that this ar r angement is kept. It of course happ ens soon that not al l

der ivations can be ar r anged under the patter n, unless pre v iously der ived

formulas are numbered and can be used as premisses in rule instances. A

good example in this respect is the derivation of Russell and Whitehead’s

axiom 4, as in Table 14.12. The ver y first der ivation of the pap er is of the

formula X → Y X , i.e., of X(Y X) by axioms 2, 3, and 5. The first line in the

derivation comes from ‘basic formula 5) with XY substituted for X , Y X

for Y , and X for Z’:{
(XY → Y X) → {X(XY ) → X(Y X)}
XY → Y X (basic formula 3){

X(XY ) → X(Y X)
X(XY ) (basic formula 2)

X(Y X)

A two-premiss rule of syllogism, the use of which is indicated by a double

curly bracket, is shown to be derivable:{{
α → β
β → γ
α → γ

In the proof of derivability of this rule, the premisses appear as formulas

assumed to be derivable, so it is in fact an admissible rule; a notion weaker

than derivability. In the rest of the derivations, this rule replaces the rule of

detachment.

The negationless axioms Bernays alludes to can be gathered from various

sources. One place is the first volume of the Grundlagen der Mathematik of

1934 (p. 66).
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Table 14.14 The Hilber t–Ber nays axioms

1. A → ( B → A)

2. ( A → ( A → B )) → ( A → B )

3. ( A → B ) → (( B → C ) → ( A → C ))

4. A& B → A, A& B → B

5. ( A → B ) → (( A → C ) → ( A → B &C ))

6. A → A ∨ B , B → A ∨ B

7. ( A → C ) → (( B → C ) → ( A ∨ B → C ))

8. ( A → B ) → (¬ B → ¬A)

9. A → ¬¬A

10. ¬¬ A → A

These axioms app ear beautiful to anyone w ith exp er ience in elementar y

log ic. The first three are, in ter ms of sequent calculus, axiomatic equivalents

to the r ules of weakening , cont r a c t ion, and cut. T hen fol low w hat look like

axiomatic equivalents to the r ules of natur al deduc t ion for conjunc tion and

disjunc tion, then the axioms of negation. T he implicational axioms go back

to Fre g e .

Ber nays w rote in 1918 that there is an axiom system for his neg ation-

free fr ag ment of classical propositional log ic. If so, axioms 1–7 of

Table 14.14 are not sufficient, for the y axiomatize the negationless fr ag-

ment of intuitionistic log ic that falls shor t of the cor responding classical

fr ag ment, w it ness a purely classical theorem such as ( A ⊃ B ) ∨ ( B ⊃ A).

(b) He y t ing’s intuit ionist ic log ic. Discussions about the log ic of Brouwer’s

intuitionistic mathematics were conduc ted on the pages of the Bulle t in of

the Royal Belg ian Academy dur ing the last years of the 1920s. In the midst

of these discussions, He y t ing figure d out in 1928 the prop er axiomatization

of intuitionistic propositional and predicate log ic. T here were thre e pre de-

cessors, all unknow n to him. In chronolog ical order, S kolem had found in

1919 a st r uc ture that is to day know n as He y t ing algebr a, one that re lates to

intuitionistic log ic in the same way as B oolean algebr a to classical log ic, as

discussed in S ec tion 14.2(c). T he matter was know n to Tarski and others

when the y, in the latter par t of the 1930s, figure d out the algebr aic semantics

of intuitionistic log ic (see von Plato (2007) for details). A second precursor

to Heyting was Kolmogorov in his Russian paper of 1925. A third precursor

was Bernays, who after a talk by Brouwer in Göttingen found out in 1925

that it is sufficient to leave out the law of double negation from a suitable

axiomatization of classical log ic, like the one in Table 14.14.
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Brouwer was enthusiastic towards Heyting’s work, and concluded that

he would not have to finish such a work himself. There has been for some

reason a general belief that Brouwer was somehow against the formalization

of intuitionistic logic, but this is a clearly erroneous idea.

Heyting’s axiomatization has eleven propositional axioms, not quite like

those of Principia Mathematica as has been often said, but more like the

Hilbert–Bernays axioms in which all connectives and quantifiers are present.

The original version of 1928 is lost, but the published version refers to a

paper by V. Glivenko of 1928 that has a handsome set of axioms.

Implication elimination was not the only propositional rule, but there

was also an explicit rule of conjunction introduction. It could be dispensed

with, but the proofs would then be ‘even more intricate’ (verwickelt). A little

reconstruction shows that this is the case:

Heyting’s first theorem is � · a ∧ b ⊃ a , and the proof he gives is:

[2.14] � · a ⊃ · b ⊃ a : ⊃ :

[2.12] � · a ∧ b ⊃ · b ⊃ a · ∧ b · [2.15] b [should be a]

The notation uses abbreviations and the dot notation in place of parentheses,

with the axioms referred to by numbers in square brackets. When axioms

are written, they are indicated by a double turnstile, and a more detailed

rendering of Heyting’s derivation, by his own conventions, would be:

[2.14] �� · a ⊃ · b ⊃ a

[2.12] �� · a ⊃ · b ⊃ a : ⊃ : a ∧ b ⊃ · b ⊃ a · ∧ b

� · a ∧ b ⊃ · b ⊃ a · ∧ b

[2.15] �� · b ∧ · b ⊃ a · ⊃ a

The axioms in use here are:

[2.14] �� · b ⊃ · a ⊃ b

[2.12] �� · a ⊃ b · ⊃ · a ∧ c ⊃ b ∧ c

[2.15] �� · a ∧ · a ⊃ b · ⊃ b

A complete proof without abbreviations has eleven lines, the formulas writ-

ten for clarity with parentheses. I have organized it so that each rule instance

is preceded by its premisses in a determinate order. [1.3] is implication elim-

ination, [1.2] conjunction introduction, the rest are axiom instances:

1. [2.14] � a ⊃ (b ⊃ a)

2. [2.12] � (a ⊃ (b ⊃ a)) ⊃ (a ∧ b ⊃ (b ⊃ a) ∧ b))

3. [1.3] � a ∧ b ⊃ (b ⊃ a) ∧ b

4. [2.11] � (b ⊃ a) ∧ b ⊃ b ∧ (b ⊃ a)
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5. [1.2] � (a ∧ b ⊃ (b ⊃ a) ∧ b) ∧ ((b ⊃ a) ∧ b ⊃ b ∧ (b ⊃ a))

6. [2.13] � ((a ∧ b ⊃ (b ⊃ a) ∧ b) ∧ ((b ⊃ a) ∧ b ⊃ b ∧ (b ⊃ a))

⊃ (a ∧ b ⊃ b ∧ (b ⊃ a))

7. [1.3] � a ∧ b ⊃ b ∧ (b ⊃ a)

8. [2.15] � b ∧ (b ⊃ a) ⊃ a

9. [1.2] � (a ∧ b ⊃ b ∧ (b ⊃ a)) ∧ (b ∧ (b ⊃ a) ⊃ a)

10. [2.13] � ((a ∧ b ⊃ b ∧ (b ⊃ a)) ∧ (b ∧ (b ⊃ a) ⊃ a)) ⊃ (a ∧ b ⊃ a)

11. [1.3] � a ∧ b ⊃ a

A reader who undertakes to turn Heyting’s proof outlines into formal deriva-

tions will soon notice two things:

1. There is so much work that one lets it be after a while.

2. The way to proceed instead becomes clear, because one starts to read

Heyting’s axioms and theorems in terms of their intuitive content.

Formally, axioms or previously proved theorems of the forms a ⊃ b and a

lead to another theorem b by a step of implication elimination. In practice,

one sees implications a ⊃ b as rules by which b can be concluded whenever

a is at hand, as Heyting seems to have done, considering his very sketchy

derivations. The situation is particularly tempting if the major premiss is an

axiom such as a ⊃ a ∨ b. The step to deleting the axiom and implication

elimination, to conclude a ∨ b directly from a , is short, as in:

1. �� a ⊃ a ∨ b

2. � a

3. [1.3] � a ∨ b

It would suffice to delete line 1 (as Frege’s notation does) and to change

the reference to rule [1.3] into an explicit disjunction introduction rule.

Thus, with the experience of actually using Heyting’s logical calculus for

the construction of formal proofs, one reads his first theorem a & b ⊃ a

as: From a & b follows a . Axioms such as a ⊃ a ∨ b, b ⊃ a ∨ b, and

(a ⊃ c) ⊃ ((b ⊃ c) ⊃ (a ∨ b ⊃ c)) turn into what are now the familiar

natural deduction rules of disjunction. With these observations, we have

arrived in our survey of deductive systems at the precise point at which

Gentzen began his development of natural deduction.



Suggestions for the use of this book

Basic design: This book is based on lecture courses I have held during

many years at the University of Helsinki. Most students have come from the

humanities and experienced their one and only contact with the modes of

thinking of the exact sciences in this first logic course. Others came from

the natural sciences and often had an easier time, but practically all students

have learned to master the basic proof systems of propositional and predicate

logic, with the capacity to do almost any standard proofs by themselves.

Formal work has been complemented by epistemological discussions of

what comes first in conceptual order in logic, and in philosophy more

generally, namely, truth or proof, and by occasional glimpses into the history

of logic.

There is very little in the beginning by the way of connections between

logical and natural language. The teaching moves, instead, at once into

logical arguments in basic propositional logic that the students learn to

read and understand through a couple of examples. This design feature has

been surprisingly unproblematic.

The idea with the logical systems is to start with linear derivations for

conjunction, implication, and negation, because it is so easy for the student.

Next these derivations are translated into a tree form that shows, contrary

to the linear one, what depends on what. The purely algorithmic nature of

the translation is emphasized.

The trees of standard natural deduction grow in the wrong way, down

from their leaves. Proof strategies are needed that are only partly supported

by the notation. A further step to a sequent notation is made, with a final

form of the logical calculus in which the construction of formal deriva-

tions in the root-first way is enjoyable. Experience has shown that the

sequent form would not be a good starting point, because the content of

the logical rules would remain unclear. That form is too far removed from

intuitive logical reasoning and can, in my experience, be taken into use only

gradually.

The view of logic here is that it codes modes of demonstrative argument.

The presentation of classical logic and especially its ‘truth table’ semantics

is postponed as far as possible. In my experience, the early introduction 253
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of t r uth tables impairs ser iously the lear ning of log ic. My presentation

of classical t r uth value semantics builds on the wonder ful fully inver tible

classical sequent calculus for prop ositional log ic, and one gets a dire c t

touch of the connec t ion b etwe en syntac tic der ivabilit y and log ical t r uth in

Sec t ion 7.4.

The emphasis in the for mal wor k is on the side of the intuitionistic and

classical propositional calculi. My exp er ience is that when the y are mastere d,

predicate log ic w ill be easily lear nt. T he basic ideas about quantification

are presented in detail, esp ecially the meaning of universal quantification

throug h Fre ge’s idea of eigenv ar iables. T he semantics of predicate log ic,

esp e cially completeness, which t r a ditionally is be yond a first course, is dis-

cussed only br iefly.

Chapter 11 discusses e qualit y relations, predicate log ic w ith equalit y

as an example, and axiomatic theor ies w ith lattice theor y as an example.

Chapter 12 is dedicated to elementar y ar ithmetic. It is seen how the le ve l of

difficult y r ises ste eply w ith the last one, e ven if the presentation is thoroug hly

elementar y.

Chapter 13 complements the presentation w ith topics such as st r uc tur al

induc t ion and nor malization for natur al deduc tion. T he Cur r y–Howard

cor respondence is br iefly presente d, to g ive an idea of the connec t ions

between e lementar y log ic and func tional prog r amming .

The r ule of cut of sequent calculus app ears only as a complementar y topic.

It was somewhat of a sur pr ise that the a dmissibilit y of a r ule of cont r ac tion

could b e prove d in an absolutely e lementar y way w ith ter mination of pro of

search as a result, once cut was not a concer n. There is no need of the prop er t y

of preser vation of der ivation heig ht in the e limination of cont r a c t ion and

a reader w ith good capacities of concent r ation can go throug h the proof of

Sec t ion 4.5.

A final Chapter 14 presents a histor ical over v iew of the g reat deduc tive

machinery works, beginning with the very first one, namely Aristotle’s

syllogistic. The tour ends with the high point of axiomatic logic, Heyting’s

system of intuitionistic predicate logic in 1930, right before the miraculous

emergence of Gödel’s incompleteness results that changed the course of

logic. Gentzen’s proof systems, on which this presentation of the topic is

based, were by-products in his attempt at understanding the meaning of

incompleteness. This story is told in my recent ‘Gentzen’s proof systems:

Byproducts in a work of genius’ (von Plato 2012).

Exercises are collected at the end of each chapter. Parts of them comple-

ment the main text in various ways.
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A minimum w ith op t ions: I have usually had about fift y hours available,

including exercises, so not all of the mater ials could b e presented in the

lectures. The latter parts of many chapters can be left as reading material.

All of Chapters 11 and 12, except for the mentioning of pre dicate calculus

with equality, is optional material in respect of the central aims of the course.

The book could equally well be used for a leisurely second course with

emphasis on proof systems and all of it covered.



Fur ther reading

Here are some suggestions for fur ther reading . T he book St r u c t u ra l Pro of

Theor y (2001) by Sar a Ne g r i and Jan von Plato, av ailable also in pap er back

since 2008, presents in its first half in detail the cont r a c t ion-free sequent

calculi of Chapters 4, 6, and 9. The second half de velops fur ther var iants of

sequent calculi, natural deduction, and the extension of sequent calculi by

rules that correspond to mathematical axioms. This last-mentioned topic

is the subject of another book by the same authors titled Proof Analysis: A

Contribution to Hilbert’s Last Problem (2011).

Troelstra and Schwichtenberg’s Basic Proof Theory (2000) covers a lot of

ground but gives its rewards only to those who are willing to put a lot of

work into its reading.

Jean van Heijenoort edited a collection of papers on the development

of logic, with the title From Frege to Gödel: A Source Book in Mathematical

Logic, 1879–1931 (1967). As its name indicates, it starts with Frege’s Begriffs-

schrift and ends up with Gödel’s incompleteness paper. A fresh collection

of studies is The Development of Modern Logic (ed. Haaparanta (2009)),

therein especially the concise thematic presentation of the development of

mathematical logic by Mancosu, Zach, and Badesa.

Gödel’s papers, some manuscripts, and correspondence are found in the

five-volume Collected Works of Kurt Gödel. His life is detailed in John Daw-

son’s Logical Dilemmas: The Life and Work of Kurt Gödel (1997). Gödel’s

incompleteness theorem is the topic of Peter Smith’s very readable An Intro-

duction to Gödel’s Theorems (2007). An enjoyable and accessible companion

to Gödel’s work is Torkel Franzén’s Gödel’s Theorem: An Incomplete Guide

to its Use and Abuse (2005).

Gentzen’s work is available in English translation in his Collected Papers

(ed. Szabo (1969)). Recently discovered details of his achievement can be

found chronicled in von Plato (2009, 2012). His tragic life story is told in

Menzler-Trott’s Logic’s Lost Genius: The Life of Gerhard Gentzen (2007).

Enjoyable classics include Kleene’s Introduction to Metamathematics

(1952) and Prawitz’ Natural Deduction: A Proof-Theoretical Study (1965)

(available as a Dover paperback since 2006). Kleene’s Mathematical Logic

(1967) is now similarly available.256
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The perhaps worst lacuna in logical literature is the lack of an accessible

introduction to the proof theory of arithmetic. The best one can do is to try

to work oneself through the first half of Takeuti’s Proof Theory (1975). The

recent book Proof Theory: The First Step into Impredicativity by Wolfram

Pohlers (2009) could then perhaps be tackled by the absolutely motivated

readers.
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