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1
What is Chemometrics?

Learning objectives

• To define chemometrics
• To learn how to count with bits and how to perform arith-

metic or logical operations in a computer
• To understand the principal terminology for computer sys-

tems and the meaning of robotics and automation.

The development of the discipline chemometrics is strongly
related to the use of computers in chemistry. Some analytical
groups in the 1970s were already working with statistical and
mathematical methods that are ascribed nowadays to chemo-
metric methods. Those early investigations were connected to
the use of mainframe computers.

The notation chemometrics was introduced in 1972 by the
Swede Svante Wold and the American Bruce R. Kowalski. The
foundation of the International Chemometrics Society in 1974
led to the first description of this discipline. In the following years,
several conference series were organized, for example, Computer
Application in Analytics (COMPANA), Computer-Based Ana-
lytical Chemistry (COBAC), and Chemometrics in Analytical
Chemistry (CAC). Some journals devoted special sections to
papers on chemometrics. Later, novel chemometric journals
were started, such as the Journal of Chemometrics (Wiley) and
Chemometrics and Intelligent Laboratory Systems (Elsevier).

An actual definition of chemometrics is:

the chemical discipline that uses mathematical and statis-
tical methods, (a) to design or select optimal measurement
procedures and experiments, and (b) to provide maximum
chemical information by analyzing chemical data.

Chemometrics: Statistics and Computer Application in Analytical Chemistry, Third Edition. Matthias Otto.
© 2017 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2017 by Wiley-VCH Verlag GmbH & Co. KGaA.



2 1 What is Chemometrics?

The discipline of chemometrics originates in chemistry. Typical
applications of chemometric methods are the development of
quantitative structure activity relationships and the evalua-
tion of analytical–chemical data. The data flood generated by
modern analytical instrumentation is one reason that analytical
chemists in particular develop applications of chemometric
methods. Chemometric methods in analytics is the discipline
that uses mathematical and statistical methods to obtain relevant
information on material systems.

With the availability of personal computers at the beginning of
the 1980s, a new age commenced for the acquisition, processing,
and interpretation of chemical data. In fact, today, every scientist
uses software, in one form or another, that is related to mathemat-
ical methods or to processing of knowledge. As a consequence,
the necessity emerges for a deeper understanding of those
methods.

The education of chemists in mathematics and statistics
is usually unsatisfactory. Therefore, one of the initial aims of
chemometrics was to make complicated mathematical methods
practicable. Meanwhile, the commercialized statistical and
numerical software simplifies this process, so that all important
chemometric methods can be taught in appropriate computer
demonstrations.

Apart from the statistical–mathematical methods, the
topics of chemometrics are also related to problems of the
computer-based laboratory, to methods for handling chem-
ical or spectroscopic databases, and to methods of artificial
intelligence.

In addition, chemometricians contribute to the development of
all these methods. As a rule, these developments are dedicated
to particular practical requirements, such as the automatic opti-
mization of chromatographic separations or in prediction of the
biological activity of a chemical compound.

1.1
The Computer-Based Laboratory

Nowadays, the computer is an indispensable tool in research and
development. The computer is linked to analytical instrumenta-
tion; it serves as a tool for acquiring data, word processing, and
handling databases and quality assurance systems. In addition, the
computer is the basis for modern communication techniques such
as electronic mails or video conferences. In order to understand
the important principles of computer usage, some fundamentals
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are considered here, that is, coding and processing of digital infor-
mation, the main components of the computer, programming
languages, computer networking, and automation processes.

Analog and Digital Data

The use of digital data provides several advantages over the use of
analog data. Digital data are less noise sensitive. The only noise
arises from round-off errors due to finite representation of the
digits of a number. They are less prone to, for instance, electrical
interferences, and they are compatible with digital computers.

As a rule, primary data are generated as analog signals either
in a discrete or a continuous mode (Figure 1.1). For example,
monitoring the intensity of optical radiation by means of a
photocell provides a continuous signal. Weak radiation, however,
could be monitored by detecting individual photons by a
photomultiplier.

Usually, the analog signals generated are converted into digi-
tal data by an analog-to-digital converter (ADC) as explained as
follows.

Binary versus Decimal Number System

In a digital measurement, the number of pulses occurring within
a specified set of boundary conditions is counted. The easiest way
to count is to have the pulses represented as binary numbers. In
this way, only two electronic states are required. To represent the
decimal numbers from 0 to 9, one would need 10 different states.
Typically, the binary numbers 0 and 1 are represented electroni-
cally by voltage signals of 0.5 and 5 V, respectively. Binary numbers
characterize coefficients of the power of 2, so that any number of
the decimal system can be described.

Signal

Signal

(a)

(b)

Time

Time

Figure 1.1 Signal dependence on
time of an analog (a) and a digital
detector (b).
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Table 1.1 Relationship
between binary and
decimal numbers.

Binary
number

Decimal
number

0 0
1 1
10 2
11 3
100 4
101 5
110 6
111 7
1000 8
1001 9
1010 10
1101 13
10000 16
100000 32
1000000 64

Example 1.1 Binary Number Representation

The decimal number 77 is expressed as binary number by
1001101, that is,

1 0 0 1 1 0 1
1× 26 0× 25 0× 24 1× 23 1× 22 0× 21 1×20 =
64 +0 +0 +8 +4 +0 +1= 77

Table 1.1 summarizes further relationships between binary and
decimal numbers. Every binary number is composed of individual
bits (binary digits). The digit lying farthest to the right is termed
the least significant digit and the one on the left is the most signif-
icant digit.

How are calculations done using binary numbers? Arithmetic
operations are similar but simpler than those for decimal num-
bers. In addition, for example, four combinations are feasible:

0 0 1 1
+0 +1 +0 +1

0 1 1 10

Note that for addition of the binary numbers 1 plus 1, a 1 is
carried over to the next higher power of 2.

Example 1.2 Calculation with Binary Numbers

Consider addition of 21+ 5 in the case of a decimal (a) and of
a binary number (b):

a. 21 b. 10101
+5 101

26 11010

Apart from arithmetic operations in the computer, logical rea-
soning is necessary too. This might be in the course of an algo-
rithm or in connection with an expert system. Logical operations
with binary numbers are summarized in Table 1.2.

It should be mentioned that a very compact representation of
numbers is based on the hexadecimal number system. However,
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Table 1.2 Truth values for logical connectives of predicates p and q
based on binary numbers.

p q p AND q p OR q IF p THEN q NOT p

1 1 1 1 1 0
1 0 0 1 0 —
0 1 0 1 1 1
0 0 0 0 1 —

1 True and 0 false.

hexadecimal numbers are easily converted into binary data, so the
details need not be explored here.

Digital and Analog Converters

Analog-to-Digital Converters (ADCs)

In order to benefit from the advantages of digital data evaluation,
the analog signals are converted into digital ones. An analog sig-
nal consists of an infinitely dense sequence of signal values in a
theoretically infinitely small resolution. The conversion of analog
into digital signals in the ADC results in a definite reduction of
information. For conversion, signal values are sampled in a prede-
fined time interval and quantified in an n-ary raster (Figure 1.2).
The output signal is a code word consisting of n bits. Using n bits,
2n different levels can be coded, for example, an 8-bit ADC has a
resolution of 28 = 256 amplitude levels..

Digital-to-Analog Converters (DACs)

Converting digital into analog information is necessary if an exter-
nal device is to be controlled or if the data have to be represented
by an analog output unit. The resolution of the analog signal is
determined by the number of processed bits in the converter. A
10-bit DAC provides 210 = 1024 different voltage increments. Its
resolution is then 1/1024 or approximately 0.1%.

S
ig

n
a

l

6

5

4

3

2

1

0

Time

Figure 1.2 Digitization of an ana-
log signal by an analog-to-digital
converter (ADC).
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Computer Terminology

Representation of numbers in a computer by bits has already been
considered. The combination of 8 bits is called a byte. A series of
bytes arranged in sequence to represent a piece of data is termed
a word. Typical word sizes are 8, 16, 32, or 64 bits or 1, 2, 4, and 8
bytes.

Words are processed in registers. A sequence of operations in a
register enables algorithms to be performed. One or several algo-
rithms make up a computer program.

The physical components of a computer form the hardware.
Hardware includes the disk and hard drives, clocks, memory
units, and registers for arithmetic and logical operations. Pro-
grams and instructions for the computer, including the tapes and
disks for their storage, represent the software.

Components of Computers

Central Processing Units and Buses
A bus consists of a set of parallel conductors that forms a main
transition path in a computer.

The heart of a computer is the central processing unit (CPU). In
a microprocessor or minicomputer, this unit consists of a highly
integrated chip.

The different components of a computer, its memory, and the
peripheral devices, such as printers or scanners, are joined by
buses. To guarantee rapid communication among the various
parts of a computer, information is exchanged on the basis of a
definitive word size, for example, 16 bits, simultaneously over
parallel lines of the bus. A data bus serves the exchange of data
into and out of the CPU. The origin and the destination of the
data in the bus are specified by the address bus. For example, an
address bus with 16 lines can address 216 = 65536 different regis-
ters or other locations in the computer or in its memory. Control
and status information to and from the CPU are administrated in
the control bus. The peripheral devices are controlled by an exter-
nal bus system, for example, an RS-232 interface for serial data
transfer or the IEEE-488 interface for parallel transfer of data.

Memory
The microcomputer or microprocessor contains typically two
kinds of memory: random access memory (RAM) and read-
only memory (ROM). The term RAM is somewhat misleading
and historically reasoned, since random access is feasible for
RAM and ROM alike. The RAM can be used to read and write
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information. In contrast, information in a ROM is written once,
so that it can be read, but not reprogrammed. ROMs are needed
in microcomputers or pocket calculators in order to perform
fixed programs, for example, for calculation of logarithms or
standard deviations.

Larger programs and data collections are stored in bulk stor-
age devices. In the beginning of the computer age, magnetic tapes
were the standard here. Nowadays CD’s, DVD’ , and Blu-Ray’s are
used providing a storage capacity of several gigabytes. In addition,
every computer is equipped with a hard disk of at least several
gigabytes. The access time to retrieve the stored information is in
the order of a few milliseconds.

Input/Output Systems
Communication with the computer is carried out by
input–output (I/O) operations. Typical input devices are
keyboard, magnetic tapes and disks, and the signals of an analyti-
cal instrument. Output devices are screens, printers, and plotters,
as well as tapes and disks. To convert analog information into
digital or vice versa, the aforementioned ADCs or DACs are used.

Programs

Programming a computer at 0 and 1 states or bits is possible
using machine code. Since this kind of programming is rather
time consuming, higher level languages have been developed
where whole groups of bit operations are assembled. However,
these so-called assembler languages are still difficult to handle.
Therefore, high-level algorithmic languages, such as FORTRAN,
BASIC, PASCAL, or C, are more common in analytical chemistry.
With high-level languages, the instructions for performing an
algorithm can easily be formulated in a computer program.
Thereafter, these instructions are translated into machine code
by means of a compiler.

For logical programming, additional high-level languages
exist, for example, LISP (List Processing language) or PROLOG
(Programming in Logic). Further developments are found in the
so-called Shells, which can be used directly for building expert
systems.

Networking

A very effective communication between computers, analytical
instruments, and databases is based on networks. There are
local nets, for example, within an industrial laboratory as well as
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LIMS

Spectral

database

Robot
Atomic

absorption
HPLC

Photo-

meter
Sample

preparation

Figure 1.3 Local area network (LAN) to connect analytical instruments, a
robot, and a laboratory information management system (LIMS).

national or worldwide networks. Local area networks (LANs) are
used to transfer information about analysis samples, measure-
ments, research projects, or in-house databases. A typical LAN is
demonstrated in Figure 1.3. It contains a laboratory information
management system (LIMS), where all information about the
sample or the progresses in a project can be stored and further
processed (cf. Section 7.1).

Worldwide networking is feasible, for example, via Internet or
CompuServe. These nets are used to exchange electronic mails
(e-mail) or data with universities, research institutions, or
industry.

Robotics and Automation

Apart from acquiring and processing analytical data, the com-
puter can also be used to control or supervise automatic proce-
dures. To automate manual procedures, a robot is applied. A robot
is a reprogrammable device that can perform a task more cheaply
and effectively than a human being.

Typical geometric shapes of a robot arm are sketched in
Figure 1.4. The anthropomorphic geometry (Figure 1.4a) is
derived from the human torso, that is, there is a waist, a shoulder,
an elbow, and a wrist. Although this type of robot is mainly found
in the automobile industry, it can also be used for manipulation
of liquid or solid samples.
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(a) (b)

Figure 1.4 Anthropomorphic (a) and cylindrical (b) geometry of robot
arms.

In the chemical laboratory, the cylindrical geometry dominates
(Figure 1.4b). The revolving robot arm can be moved in horizon-
tal and vertical directions. Typical operations of a robot are as
follows:

• Manipulation of test tubes or glassware around the robotic
work area

• Weighing, for the determination of a sample amount or for
checking unit operations, for example, addition of solvent

• Liquid handling, in order to dilute or add reagent solutions
• Conditioning of a sample by heating or cooling
• Separations based on filtrations or extractions
• Measurements by analytical procedures, such as spectropho-

tometry or chromatography
• Control and supervision of the different analytical steps.

Programming of a robot is based on software dedicated to the
actual manufacture. The software consists of elements to control
the peripheral devices (robot arm, balance, pumps), to switch the
devices on and off, and to provide instructions on the basis of log-
ical structures, for example, IF–THEN rules.

Alternatives for automation in a laboratory are discrete ana-
lyzers and flowing systems. By means of discrete analyzers, unit
operations such as dilution, extraction and dialyses can be auto-
mated. Continuous flow analyzers or flow injection analyses serve
similar objectives for automation, for example, for the determina-
tion of clinical parameters in blood serum.

The transfer of manual operations to a robot or an automated
system provides the following advantages:
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• High productivity and/or minimization of costs
• Improved precision and trueness of results
• Increased assurance for performing laboratory operations
• Easier validation of the different steps of an analytical proce-

dure.

The increasing degree of automation in the laboratory leads
to more and more measurements that are available online in the
computer and have to be further processed by chemometric data
evaluation methods.

1.2
Statistics and Data Interpretation

Table 1.3 provides an overview of chemometric methods. The
main emphasis is on statistical–mathematical methods. Random
data are characterized and tested by the descriptive and inference
methods of statistics, respectively. Their importance increases
in connection with the aims of quality control and quality assur-
ance. Signal processing is carried out by means of algorithms for
smoothing, filtering, derivation, and integration. Transformation
methods such as the Fourier or Hadamard transformations also
belong in this area.

Efficient experimentation is based on the methods of experi-
mental design and its quantitative evaluation. The latter can be
performed by means of mathematical models or graphical rep-
resentations. Alternatively, sequential methods are applied, such
as the simplex method, instead of these simultaneous methods
of experimental optimization. There, the optimum conditions
are found by systematic search for the objective criterion, for
example, the maximum yield of a chemical reaction, in the space
of all experimental variables.

Table 1.3 Chemometric methods for data evaluation and interpretation.

Descriptive and inference statistics
Signal processing
Experimental design
Modeling
Optimization
Pattern recognition
Classification
Artificial intelligence methods
Image processing
Information and system theory



1.3 Computer-Based Information Systems/Artificial Intelligence 11

To find patterns in data and to assign samples, materials, or, in
general, objects, to those patterns, multivariate methods of data
analysis are applied. Recognition of patterns, classes, or clusters
is feasible with projection methods, such as principal component
analysis or factor analysis, or with cluster analysis. To construct
class models for classification of unknown objects, we will intro-
duce discriminant analyses.

To characterize the information content of analytical proce-
dures, information theory is used in chemometrics.

1.3
Computer-Based Information Systems/Artificial Intelligence

A further subject of chemometrics is the computer-based
processing of chemical structures and spectra.

There, it might be necessary to extract a complete or partial
structure from a collection of molecular structures or to compare
an unknown spectrum with the spectra of a spectral library.

For both kinds of queries, methods for representation and
manipulation of structures and spectra in databases are needed.
In addition, problems of data exchange formats, for example,
between a measured spectrum and a spectrum of a database, are
to be decided.

If no comparable spectrum is found in a spectral library,
then methods for spectra interpretation become necessary. For
interpretation of atomic and molecular spectra, in principle, all
the statistical methods for pattern recognition are appropriate
(cf. Section 1.2). In addition, methods of artificial intelligence are
used. They include methods of logical reasoning and tools for
developing expert systems. Apart from the methods of classical
logic in this context, methods of approximate reasoning and of
fuzzy logic can also be exploited. These interpretation systems
constitute methods of knowledge processing in contrast to data
processing based on mathematical–statistical methods.

Knowledge acquisition is mainly based on expert knowledge,
for example, the infrared spectroscopist is asked to contribute
his knowledge in the development of an interpretation sys-
tem for infrared spectra. Additionally, methods are required
for automatic knowledge acquisition in the form of machine
learning.

Methods based on fuzzy
theory, neural nets, and
evolutionary strategies
are denoted as soft
computing.

The methods of artificial intelligence and machine learning are
not restricted to the interpretation of spectra. They can also be
used to develop expert systems, for example, for the analysis of
drugs or the synthesis of an organic compound.
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Novel methods are based on biological analogs, such as neural
networks and evolutionary strategies, for example, genetic algo-
rithms. Future areas of research for chemometricians will include
the investigation of fractal structures in chemistry and of models
based on the theory of chaos.

General Reading

1. Sharaf, M.A., Illman, D.L., and
Kowalski, B.R. (1986) Chemo-
metrics, Chemical Analysis
Series, vol. 82, John Wiley &
Sons, Inc., New York.

2. Massart, D.L., Vandeginste,
B.G.M., Deming, S.N., Mi-chotte,
Y., and Kaufmann, L. (1988)
Chemometrics–a Textbook,
Elsevier, Amsterdam.

3. Brown, S.D., Tauler, R., and
Walczak, B. (eds) (2009)

Comprehensive Chemomet-
rics – Chemical and Biochemical
Data Analysis, 4 Volumes,
Elsevier, Amsterdam.

4. Varmuza, K. and Filzmoser, P.
(2009) Introduction to Multi-
variate Statistical Analysis in
Chemometrics, CRC Press, Boca
Raton, FL, Berlin.
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Questions and Problems

1. Calculate the resolution for 10-, 16-, and 20-bit analog-to-
digital converters.

2. How many bits are stored in an 8-byte word?
3. What is the difference between procedural and logical pro-

gramming languages?
4. Discuss typical operations of an analytical robot.
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2
Basic Statistics

Learning objectives

• To introduce the fundamentals of descriptive and inference
statistics

• To highlight important distributions such as normal, Pois-
son, Student’s t, F , and 𝜒2

• To understand the measures for characterizing location and
dispersion of a data set

• To discuss the Gaussian error propagation law
• To learn statistical tests for comparison of data sets and for

testing distributions or outliers
• To distinguish between one- and two-sided statistical tests

at the lower and upper end of a distribution
• To estimate the effect of experimental factors on the basis of

univariate and multivariate analyses of variance.

In analytical chemistry, statistics are needed to evaluate ana-
lytical data and measurements and to preprocess, reduce, and
interpret the data.

As a rule, analytical data are to some degree uncertain. There
are three sources of uncertainty:

• Variability
• Measurement uncertainty
• Vagueness.

A high degree of variability of data is typically observed with
data from living beings, reflecting the rich variability of nature. For
example, the investigation of tissue samples provides a very vari-
able pattern of individual compounds for each human individual.

Measurement uncertainty is connected with the impossibility
of observing or measuring to an arbitrary level of precision and

Chemometrics: Statistics and Computer Application in Analytical Chemistry, Third Edition. Matthias Otto.
© 2017 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2017 by Wiley-VCH Verlag GmbH & Co. KGaA.
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without systematic errors (bias). This is the type of uncertainty
the analyst has to consider most frequently.

Vagueness is introduced by using a natural or professional
language to describe an observation, for example, if the charac-
terization of a property is uncertain. Typical vague descriptions
represent sensory variables, such as sweet taste, raspberry-
colored appearance, or aromatic smell.

For description of the uncertainty due to variability and mea-
surement uncertainty, statistical methods are used. Vague circum-
stances are characterized by fuzzy methods (cf. Section 8.3).

2.1
Descriptive Statistics

Sources of uncertainty in analytical measurements are random
and systematic errors. Random errors are determined by the
limited precision of measurements. They can be diminished
by repetitive measurements. To characterize random errors,
probability-based approaches are used where the measurements
are considered as random, independent events.

Apart from descriptive
statistics, there exists
inference statistics
(cf. Section 2.2).

Systematic errors (bias) represent a constant or multiplicative
part of the experimental error. This error cannot be decreased by
repetitive measurements. In analytics, the trueness of values, that
is, the deviation of the mean from the true value, is related to a
systematic error. Appropriate measurements with standards are
used to enable recognition of systematic errors in order to correct
them at later measurements.

Measurements that are dependent on each other provide corre-
lated data. Typically, time-dependent processes, such as the time
series of glucose concentrations in blood, are of this type of data.
Correlated measurements cannot be characterized by the same
methods used for description of random independent observa-
tions. They require methods of time series analysis where it is
assumed that the measurements are realizations of a stochastic
process and where they are statistically dependent (Section 3.2).To decide on the number

of classes, their class
width, w, is used. In
dependence on the
number n of single
values and the range Rn
(Eq. (2.18)), it is valid:

w =
Rn√

n
for 30 < n ≤ 400

w =
Rn
20

for n > 400

Distribution of Random Numbers

In the following, we consider random and uncorrelated data. The
distribution of random data can be determined from their fre-
quency in a predefined interval, also called class. As an example,
we consider (Table 2.1) repetitive measurements of a sample solu-
tion in spectrophotometry. Partitioning the continuous variable
into 12 classes, the frequency of the observations in each class is
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Table 2.1 Spectrophotometric measurements (absorbances) of a sample
solution from 15 repetitive measurements.

Measurement Value Measurement Value

1 0.3410 9 0.3430
2 0.3350 10 0.3420
3 0.3470 11 0.3560
4 0.3590 12 0.3500
5 0.3530 13 0.3630
6 0.3460 14 0.3530
7 0.3470 15 0.3480
8 0.3460

Table 2.2 Frequency distribution of measurements from Table 2.1.

Range Frequency Relative frequency (%)

0.3300–0.3333 0 0
0.3333–0.3367 1 6.67
0.3367–0.3400 0 0
0.3400–0.3433 3 20.00
0.3433–0.3467 2 13.33
0.3467–0.3500 4 26.67
0.3500–0.3533 2 13.33
0.3533–0.3567 1 6.67
0.3567–0.3600 1 6.67
0.3600–0.3633 1 6.67
0.3633–0.3667 0 0
0.3667–0.3700 0 0

obtained (Table 2.2). Graphically, the frequency of observations is
represented in a histogram (Figure 2.1).

Gaussian Distribution

If the number of repetitive measurements is increased to infinity
and the class width is simultaneously decreased, then a bell-
shaped distribution for the frequency of the measurements is
obtained. It is called a Gaussian or normal distribution and is
illustrated in Figure 2.1 by a solid line.

The terms probability
density function, density
function, and frequency
function are used
synonymously.

The Gaussian distribution is expressed mathematically by

f (x) = 1
𝜎
√

2𝜋
e−

(x−𝜇)2

2𝜎2 (2.1)
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Figure 2.1 Histogram for the measurements of Table 2.1 and the theoreti-
cal distribution function according to a Gaussian distribution (solid line).
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1/σ 2π√

Figure 2.2 Probability density distribution function of the Gaussian
distribution according to Eq. (2.1) with the mean 𝜇 and the standard devi-
ation 𝜎.

where f (x) is the frequency or probability density function, 𝜎 the
standard deviation,𝜇 the mean, and x the measurement (variable).

The mean, 𝜇, characterizes the location of the data on the
variable axis. The standard deviation, 𝜎, and its square, the
variance 𝜎2, describe the dispersion of data around their mean
(cf. Figure 2.2). The Greek letters are used by the statistician for
true parameters of a population. Since only a limited number of
measurements is available, the location and variance parameters
must be estimated. The estimates are labeled by Latin letters or
by a hat, for example, ŷ. For estimations of the parameters of a
Gaussian distribution, we obtain

f (x) = 1
s
√

2𝜋
e−

(x−x)2

2s2 (2.2)

where s is the estimate of the standard deviation and x the estimate
of the mean.

Dispersion of data is also
termed variation,
scatter, or spread.
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Estimation of the arithmetic mean is calculated for n repetitive
measurements by

x = 1
n

n∑
i=1

xi (2.3)

The standard deviation is estimated by

s =

√√√√√√
n∑

i=1
(xi − x)2

n − 1
(2.4)

Moments of a Distribution
Mean and variance can be derived from the moments of a distri-
bution. In general, the rth central moment calculated about the
mean is

mr(x) =
∞

∫
−∞

(x − 𝜇)r f (x) dx (2.5)

For the individual moments, one obtains

• First moment: mean

m1(x) =
∞

∫
−∞

xf (x) dx = 𝜇 (2.6)

• Second central moment: variance

m2(x) =
∞

∫
−∞

(x − 𝜇)2f (x) dx = 𝜎2 (2.7)

• Third moment: skewness s (asymmetry of distribution)

s =
m3(x)
𝜎3 (2.8)

For symmetric distributions, the value of the skewness is zero.
Left-peak asymmetry reveals a value larger than zero and a
right-peaked shape smaller than zero.

• Fourth moment: kurtosis k (measure for excess)

k =
m4(x)
𝜎4 (2.9)

A flat distribution has values smaller than, and a peaked one val-
ues larger than, zero. For the normal distribution k = 3, that is,
for a peaked normal distribution, k > 3. Frequently, the peaked-
ness is defined by k values related to the normal distribution,
that is, by the expression k′ = k − 3.

k<3 flat

k>3 peaked

k = 3
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Other Distributions
Apart from the distributions used for hypothesis testing, that is,
F-, t-, and 𝜒2-distributions, to be considered in Section 2.2, there
are further models for the distribution of random numbers. Those
are the lognormal, uniform, binomial, and Poisson distributions.

The Poisson distribution is quite important for the analyst to
characterize countable but rare events. Such events are typical for
procedures based on counting rates, for example, if a photomulti-
plier is applied in optical spectrometry or a proportional counter
in X-ray analysis.

A variate specifies a
random variable.

The Poisson distribution is based on the probability density
function for discrete values of a variate. This is termed a proba-
bility function. For each value of this function, f (x), a probability
for the realization of the event, x, can be defined. It is calculated
according to a Poisson distribution by

f (x) = 𝜆x e−𝜆
x!

(2.10)

The parameter 𝜆 represents the mean and the variance of the
distribution similarly, that is, 𝜆=𝜇= 𝜎2.

Figure 2.3 demonstrates the Poisson distribution for 𝜆 values
of 1 and 5, that is, the distributions for the cases that on aver-
age 1 event or 5 events are observed, respectively. The breadth
of curves, also determined by 𝜆, is only dependent on the total
number of events or the counting rate. The higher the counting
rate, the larger will be the variance or standard deviation of the
counting process. For x= n events, the variance 𝜎2 = n, or for the
standard deviation, the Poisson distribution becomes

𝜎 =
√

n (2.11)

This is true for the absolute standard deviation. In contrast, the
relative standard deviation is diminished with increasing counting
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0.18

0.15
0.12

0.09

0.06

0.03

0
0 3 6 9 12 15

f x( ) f x( )
λ = 5

Variable, x

Figure 2.3 Probability function of the Poisson distribution according to
Eq. (2.10) for two values of the parameter 𝜆.
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rate since (cf. Eq. 2.16)

𝜎r =
𝜎

n
=

√
n

n
= 1√

n
(2.12)

Central Limit Theorem
The most important distribution is the normal distribution. This
conclusion can be drawn from the central limit theorem.

The distribution of a sum, y, calculated from i= 1, p variables,
xi (Eq. (2.13)), with the means 𝜇i and the variances 𝜎2

i tends to
a normal distribution with the mean Σi𝜇i and the variance Σi 𝜎

2
i ,

if p approaches infinity, independent of the distributions of the
individual variables, xi.

y = x1 + x2 + · · · + xp (2.13)

The probability density
function of a binomial
distribution is

f (x) =
(

n
x

)
px(1 − x)n−x

with mean np and
variance np(1− p). Here
n is the number of trials
and p is the probability
of success.

The central limit theorem is illustrated in Figure 2.4. The
distribution of the population considered follows a binomial
distribution. From this population, several samples are drawn
with 2, 4, and 25 samples in each group. Then the means of those

f x( )

X

Population distribution

f x( )

f x( )

f x( )

n = 2

n = 4

n = 25

Sample distribution of x

x

x

x

Figure 2.4 Illustration of the central
limit theorem for the distribution of
means taken from a binomial distribu-
tion X .
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groups are formed and plotted as a distribution of the means.
Although the investigated population is binomially distributed,
the distribution of the means leads to a normal distribution.

Location Parameter

The only location quantity considered thus far was the arithmetic
mean (Eq. (2.3)). For some problems, different location parame-
ters are more appropriate.

A data set can be
characterized by the
following quantities:
frequency, location,
variance, skewness,
kurtosis, quantile, and
rank.

Geometric Mean
For lognormally distributed data, often the geometric mean is
reported, since it is valid:

G = n
√

x1x2 … xn or log G =

n∑
i=1

log xi

n
(2.14)

Median and interquartile
range represent a rank
order statistic. A rank
indicates the position of
an object with respect to
other objects by means
of an ordinal number.

Harmonic Mean
The harmonic mean is another parameter for characterization of
the most central and typical value of a set of data. Its definition
reads

H = n
n∑

i=1

(
1
xi

) (2.15)

When the geometric mean exists, it lies between the harmonic
and arithmetic means, that is, H ≤ G ≤ x.f(x)

Positive Negative

Variable, x

In the case of symmetric
distributions, the mean,
x, the median, and the
mode are identical.
For positive values of the
skewness,
x>median>mode is
valid; negative skewness
values result in
x<median<mode.

Median
A very robust location measure is the median. For an odd
number of values, the median is the middle-order statistic.
It lies at the position (n+ 1)/2. For an even number of mea-
surements, the median is calculated from the average of the
(n/2)th and (n/2+ 1)th order statistics. The median is not
dependent on outliers, and this is an advantage compared to the
arithmetic mean.

Quartile
Looking from a different perspective, the median represents that
point that divides the total frequency into two halves, that is, 50%
of the data are found above and below the median, respectively.
This point is also termed the middle quartile Q(0.5) or Q2. The
quartiles Q1 and Q3 are then called the lower and upper quartiles,
respectively. The lower quartile contains 25% of all measurements,
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the upper one 75%. A percentile p% divides the data range into
hundreds.

The mode is the most
frequently occurring
value in a set of data. In
the case of categorized
data, the mode is
equivalent to the class
with the highest
frequency.

Dispersion Measures

As the most common dispersion measure, we have already used
the standard deviation. Frequently, this measure is reported as rel-
ative standard deviation:

sr =
s
x

or in percent sr(%) = sr100 (2.16)

This quantity is also termed the coefficient of variation.
The standard error characterizes the averaged error of the mean

for n observations:

sx = s√
n

(2.17)

The data difference between the maximum, xmax, and minimum
value, xmin, is termed the range, R:

R = xmax –xmin (2.18)

This quantity describes the range, which contains 100% of all
observations. If a range is of interest that contains just 50% of
all the observations, then the interquartile range should be cal-
culated:

I50 = Q3 –Q1 (2.19)

The interquartile range is obtained from the difference between
the lower and upper quartiles.

A quantile divides a set
of observations in two
groups, such that one
fraction falls above and
the complementary
fraction below, the value
specified by the quantile.
The most frequently
applied quantiles are
quartiles and percentiles.

Confidence Interval

The confidence interval characterizes the range about the mean of
a random variable, in which an observation can be expected with
a given probability P or risk 𝛼 = 1−P. As a statistical factor, the t
value from Student’s distribution should be used in the case of a
normal distribution (cf. Section 2.2). The confidence interval for
the mean, x, is calculated for f degrees of freedom by

Δx = t(1 − 𝛼∕2; f ) sx (2.20)

Inserting the standard deviation for the mean according to
Eq. (2.17) reveals:

Δx =
t(1 − 𝛼∕2; f ) s√

n
(2.20a)

The following example provides an overview of the quantities
of descriptive statistics discussed.
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Example 2.1 Descriptive Statistics

Table 2.3 summarizes the results for calculating the descriptive
statistics for the spectrophotometric data given in Table 2.1.

Table 2.3 Descriptive statistics for the spectrophotometric measure-
ments in Table 2.1.

Sample number, n 15
Arithmetic mean, x 0.3486
Median 0.347
Geometric mean, G 0.3485
Variance s2 0.000053
Standard deviation, s 0.00731
Relative standard deviation, %sr 2.096
Standard error, sx 0.00189
Confidence interval, Δx at 𝛼 = 0.05 0.00405
Minimum value, xmin 0.335
Maximum value, xmax 0.363
Range, R 0.028
Lower quartile, Q1 0.343
Upper quartile, Q3 0.353
Interquartile range, I50 0.01
Skewness 0.259
Kurtosis 0.0452

Descriptive Statistics Graphically Illustrated: Box-and-Whisker Plots

Graphically, the most important details of descriptive statistics of
data can be represented in a box-and-whisker plot or, for short,
box plot (Figure 2.5). Along the variable axis, here the ordinate,
a box is drawn, with the lower and upper quartile being the bot-
tom and top of the box, respectively. The width of the box has no
meaning.

0.375

0.365

0.355

0.345

0.335

Figure 2.5 Box-and-whisker plot
for the data in Table 2.1 with an
additional outlier at an absorbance
of 0.373.
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The whiskers are obtained as follows: the upper adjacent value is
equal to the upper quartile plus 1.5 times the interquartile range:

Upper adjacent value = Q3 + 1.5(Q3 –Q1) (2.21)

The lower adjacent value is obtained from the lower quartile
minus the 1.5 times the interquartile range:

Lower adjacent value = Q1 − 1.5(Q3 –Q1) (2.22)

Values outside the adjacent values are considered outliers. They
are plotted as individual points. Box-and-whisker plots are not
restricted to illustrating the univariate statistics of a single vari-
able. Plots of several variables enable their different distribution
characteristics easily to be compared.

X1 X2 X3
Error Propagation

The uncertainty of analytical measurements originates from dif-
ferent sources. Among those are the following:

• Sampling
• Instrumental deviations, for example, a wrongly calibrated bal-

ance
• Reagent impurities
• Measuring conditions, for example, influence of temperature or

humidity
• Matrix effects
• Round-off errors
• Contamination from the environment or between individual

samples
• Operator effects
• Random influences.

In order to estimate the uncertainty of analytical results, the
propagation of error cannot be considered alone for a single
effect, for example, the reproducibility of the instrumental
measurement, but all sources of uncertainty are to be taken into
account for all steps of the analytical procedure.

The uncertainty of an analytical result is obtained from the
Gaussian law of error propagation. Assuming a general analytical
observation, y, that is dependent on m factors xi according to a
function f:

y = f (x1, x2,…, xm) (2.23)

The uncertainty of the final result based on the deviation from
the mean can then be described in dependence on the uncertainty
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of the factors by

dy = f (dx1, dx2,… , dxm) (2.24)

As a local approximation of the unknown function f, the partial
derivatives with respect to all factors are formed by calculating the
total differentials:

dy =
(

δy
δx1

)
x2 ,…,xm

dx1 +
(

δy
δx2

)
x1 ,…,xm

× dx2 …+
(

δy
δxm

)
x1 ,x2 ,…

dxm (2.25)

To link this quantity to the variance, the deviations are squared
on both sides of Eq. (2.24):

(dy)2 =

[(
δy
δx1

)
x2,…,xm

dx1 +
(

δy
δx2

)
x1,,…,xm

× dx2 …+
(

δy
δxm

)
x1 ,x2,…

dxm

]2

(2.26)

In squaring Eq. (2.26), two types of terms emerge from the right-
hand side of the equation: squared terms and crossed terms for
example,(

δy
δx1

)2

dx2
1 and

(
δy
δx1

)(
δy
δx2

)
dx1dx2

The square terms must always be considered, since they come
out as positive terms independent of the sign of the partial
derivatives. The cross terms may be either positively or negatively
signed. As long as the factors are independent of each other, the
cross terms will approximately cancel out so that they can be
neglected. If the factors are dependent on each other, then the
cross terms are to be included in calculating the uncertainty of
the whole procedure.

The computation of the uncertainty on the basis of the variances
is carried out after appropriate reshaping (normalization to n− 1
measurements) without accounting for the crossed terms accord-
ing to

s2
y =

(
δy
δx1

)2

s2
x1
+
(

δy
δx2

)2

s2
x2
…+

(
δy
δxm

)2

s2
xm

(2.27)

Frequently, the uncertainty is given as the standard deviation sy,
that is, the square root of Eq. (2.27).

The propagation of error is exemplified in Table 2.4 for typi-
cal cases. As can be seen, the variance for the observation y is
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Table 2.4 Examples of error propagation for different dependencies of
the analytical observation, y, on the factors, x.

Relationship Calculation of uncertainty

y = x1 + x2
y = x1 − x2

}
s2

y = s2
x1

+ s2
x2

y = x1 ⋅ x2
y = x1∕x2

}
s2
y

y2 =
( sx1

x1

)2
+
( sx2

x2

)2

y = xa s2
y

y2 =
(

a sx
x

)2

y = log10 x s2
y =

(
0.434 sx

x

)2

y = antilog10 x
s2
y

y2 = (2.303sx)2

Table 2.5 Important areas according to the error integral.

Limits at the x-axis Area under the total area P (%) Tail area 𝜶 (%)

x1 x2

𝜇− 1𝜎 𝜇+ 1𝜎 68.3 31.7
𝜇− 2𝜎 𝜇+ 2𝜎 95.4 4.6
𝜇− 3𝜎 𝜇+ 3𝜎 99.7 0.3
𝜇− 1.96 𝜎 𝜇+ 1.96𝜎 95.0 5.0
𝜇− 2.58 𝜎 𝜇+ 2.58𝜎 99.0 1.0
𝜇− 3.29 𝜎 𝜇+ 3.29𝜎 99.9 0.1

dependent on the absolute values of the variances of the individual
quantities, if the factors obey an additive or subtractive relation-
ship. For multiplicative or divisive relationships, the final variance
is determined by the relative variances.

For reporting an error interval with a given statistical certainty,
the expression in Eq. (2.27) is to be multiplied by a factor k, for
example, k = 2 for a 95% probability (cf. Table 2.5) to find the
results in this interval.

Uncertainty and Error

At the end of this section, the difference between error and uncer-
tainty is to be stated. The error describes the difference between
a measured and a true or expected value. It is expressed by a sin-
gle value for a given measurement. In principle, an error can be
corrected for.
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The uncertainty of a result characterizes a range and is valid for a
group of measurements or for all measurements considered. Cor-
rection of uncertainty is basically not feasible.

2.2
Statistical Tests

In Section 2.1, we used statistics only for the description of data.
In many cases, however, it is necessary to draw conclusions from
comparisons of data at a given statistical significance. These test
methods are part of inferential statistics. For testing hypotheses,
we need to learn about some more distributions, such as the t-, F-,
and 𝜒2-distributions.

The Standard Normal Distribution

For testing hypotheses, the probability density function of the
Gaussian distribution is standardized to an area of 1 and a
mean of 0. This is done by introducing a deviate (the standard
normal variate), z, which is obtained from the deviation of
the observations, x, from the mean, 𝜇, related to the standard
deviation, 𝜎:

z = x − 𝜇
𝜎

(2.28)

Transforming all x values into values of the deviate z results in
a density function of the standard normal distribution according
to the following model:

f (z) = 1√
2𝜋

e−
z2
2 (2.29)

As seen already in Figure 2.2, the probability of the occurrence
of an observation decreases with increasing variance or standard
deviation, 𝜎. The probability for which an observation is contained
in a given range of z is denoted by P (cf. Figure 2.6).

This probability can also be derived from the distribution
curve – the error integral F(x) – of the Gaussian distribution
(Figure 2.7). An analog consideration leads to the risk 𝛼 = 1−P.

Important ranges for the error integral are given in Table 2.5 in
connection with the related percentage and tail areas in units of
the standard deviation.
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Figure 2.6 Examples for the integration of the Gaussian distribution in
the ranges for the deviate z from 0.25 to 1.25 (a) and for z=±2 (b).
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Figure 2.7 Distribution function (error integral) for the Gaussian
distribution.

Example 2.2 Normal Distribution

Determination of phenol in wastewater revealed normally dis-
tributed values with a mean of 𝜇= 0.6 μg l−1 and a standard
deviation of 𝜎 = 0.04 μg l−1. How large is the probability that in
a subsequent measurement, the phenol concentration is con-
tained in the range 0.61–0.65 μg l−1?

According to Eq. (2.28), the value for the deviate z is calcu-
lated at the upper and lower limits by

z1 = 0.61 − 0.6
0.04

= 0.25 z2 = 0.65 − 0.6
0.04

= 1.25

For the areas under the Gaussian curve, Table A.2
gives values(the curve covers values between 0 and +z) of
F(z1)= 0.0987 and F(z2)= 0.3944. The difference between the
areas provides the probability for the occurrence of the mea-
surements, that is, the probability is 0.3944− 0.0987= 0.296
or 29.6% (cf. Figure 2.6a).
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Frequently employed areas under the Gaussian curve corre-
spond to probabilities of 95% and 99% and the corresponding risk
values of 5% and 1% (cf. Table 2.5). They are commonly used as
significance levels in hypothesis testing.

The aforementioned probability-based considerations may
serve as the most important foundations for derivation of sta-
tistically assured decisions. In general, in inferential statistics,
the first step is the statement of a hypothesis, the significance of
which is tested against a given risk 𝛼.

Testing Hypotheses

In general, the test of a hypothesis consists of five steps. First,
the null hypothesis, H0 and alternative hypothesis, H1 are defined.
Second, a test statistic is chosen. Third, the significance level is
specified. Fourth, a decision rule is set up, based on the signifi-
cance level and the distribution of the test statistics. Finally, the
test statistic from the sample is calculated and the decision on the
decision rule is made.

For example, the null hypothesis may postulate the randomness
of samples in a group of observations. If the null hypothesis, H0,
is rejected, the alternative hypothesis H1 is accepted. Since with
practical measurements, only a limited number of samples out of
the population will be available, the statistical tests usually can-
not be directly based on the Gaussian distribution, but have to be
performed on distributions derived from the normal distribution.

Comparison of a Mean with a True Value: One-Variable t-Test
Testing a sample mean, x, obtained in an experimental measure-
ment against a population mean, 𝜇, from a normal distribution is
carried out on the basis of a Gaussian or t test. In analytics, this is
applied to compare an experimental mean with a true value.

The null hypothesis (H0) reads: both samples belong to the same
population, that is, the difference between the sample and the true
value is random, or x = 𝜇.

The significance level
represents the
probability that the null
hypothesis is falsely
rejected. If the null hypothesis is rejected, the alternative hypothesis (H1)

is valid, x ≠ 𝜇, which suggests that the sample mean is different
from the true value.

Before performing the test, the significance level is defined.
Typically, the risk 𝛼 is chosen to be 0.05 or 0.01 (cf. Table 2.5).

If the standard deviation 𝜎 of the population is known, the test-
ing procedure can be based on the Gaussian test. The test statistic
z is calculated for n parallel measurements by

z = |x − 𝜇|
𝜎

√
n (2.30)
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The comparison of z with the quantile of the standard normal
distribution (Table A.2) gives the result: If z is smaller than the
quantile for a given risk level, 𝛼, and the number of degrees of free-
dom is f = n− 1, then the null hypothesis is accepted. Otherwise,
if z is larger than 𝛼, the alternative hypothesis is accepted.

In practice, the population standard deviation, 𝜎, is usually
unknown, and the comparison of a sample mean with the true
mean must be based on Student’s t test. The test statistic is
derived from Student’s t-distribution as follows:

t = |x − 𝜇|
s

√
n (2.31)

where s is the estimate of the standard deviation and n the number
of parallel measurements.

A comparison of the calculated test value t with the tabulated
value of the t distribution (Table 2.6) at a given risk level 𝛼 for the
degree of freedom f = n− 1, t(1− 𝛼/2; f ), provides the decision on
the test.

In the case that t< t(1− 𝛼/2; f ), the test is not significant, that
is, the null hypothesis (x = 𝜇) is accepted. In other words, the
sample mean is only randomly different from the true one. For
t> t(1−𝛼/2; f ), the test comes out as statistically significant and
the alternative hypothesis is accepted (x ≠ 𝜇).

Example 2.3 Two-Sided t-Test

The phenol concentration of wastewater was determined from
n= 3 parallel determinations giving a mean of= 0.513 μg l−1

and a standard deviation of 0.05 μg l−1. It is to be determined
at a risk level of 5%, or 𝛼 = 0.05, whether a reference value of
𝜇= 0.520 μg l−1 is statistically different.

Null hypothesis H0: x = 𝜇

Alternative hypothesis H1: x ≠ 𝜇

Inserting the values into Eq. (2.31) gives

t = |0.513 − 0.520|
0.05

√
3 = 0.242

The value of the t-distribution in Table 2.6 is t(1− 𝛼/2= 0.975;
f= 2)= 4.303. Since t< t(1− 𝛼/2= 0.975; f= 2), the differences
between the sample mean and the true value are not
significant, that is, the differences are random.

Nonparametric
(distribution free) tests
do not require
assumptions about the
distribution of the
population of the
features to be tested. An
example is the Wilcoxon
test.

In the aforementioned example, a two-sided t-test was applied.
A one-sided test is valid if, for example, if the test is whether a
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Table 2.6 Quantile of the one-sided Student’s t distribution for three sig-
nificance levels 𝛼 and different degrees of freedom f . Note how the dis-
tribution approaches the Gaussian distribution if the degrees of freedom
tend to infinity (cf. Table 2.5).

α

0 t

f 𝜶= 0.05 𝜶= 0.025 𝜶= 0.01 f 𝜶= 0.05 𝜶= 0.025 𝜶= 0.01
1 6.314 12.706 31.821 21 1.721 2.080 2.518
2 2.920 4.303 6.965 22 1.717 2.074 2.508
3 2.353 3.182 4.541 23 1.714 2.069 2.500
4 2.132 2.776 3.747 24 1.711 2.064 2.492
5 2.015 2.571 3.365 25 1.708 2.060 2.485
6 1.943 2.447 3.143 26 1.706 2.056 2.479
7 1.895 2.365 2.998 27 1.703 2.052 2.473
8 1.860 2.306 2.896 28 1.701 2.048 2.467
9 1.833 2.262 2.821 29 1.699 2.045 2.462

10 1.812 2.228 2.764 30 1.697 2.042 2.457
11 1.796 2.201 2.718 40 1.684 2.021 2.423
12 1.782 2.179 2.681 50 1.676 2.009 2.403
13 1.771 2.160 2.650 60 1.671 2.000 2.390
14 1.761 2.145 2.624 70 1.667 1.994 2.381
15 1.753 2.131 2.602 80 1.664 1.990 2.374
16 1.746 2.120 2.583 90 1.662 1.987 2.369
17 1.740 2.110 2.567 100 1.660 1.984 2.364
18 1.734 2.101 2.552 300 1.650 1.968 2.339
19 1.729 2.093 2.539 800 1.647 1.963 2.331
20 1.725 2.086 2.528 ∞ 1.645 1.960 2.326

sample mean does not exceed a regulated value 𝜇 at a significance
level 𝛼. This question is tested for by the following steps:

Null hypothesis H0: x ≤ 𝜇

Alternative hypothesis H1: x > 𝜇

The tabulated value of the t-distribution is taken at the upper
end of the t-distribution, that is, the value is t(1− 𝛼; f ). If
t< t(1− 𝛼; f ), then the statistical test is not significant and the
regulated value is not exceeded.

Example 2.4 One-Sided t-Test

Consider the determination of nitrate in drinking water. From
four repetitive measurements, the following concentration
values were obtained: 51.0, 51.3, 51.6, and 50.9 mg nitrate l−1.
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The maximum concentration allowed for nitrate concen-
tration under European Union regulations is 50 mg l−1. To
determine whether this regulated value is not exceeded, we
perform a one-sided t-test at the upper end. By using the
mean of x= 51.2 and the standard deviation of s= 0.316, we
calculate the t-value according to Eq. (2.31):

t = 51.2 − 50
0.316

√
4 = 7.59 (2.32)

The tabulated t-value at an 𝛼 level of 0.05 at the upper end
of the t-distribution is t(1 – 𝛼 = 0.95; f= 3)= 2.353. Because
t> t(1− 𝛼 = 0.95; f= 3), the null hypothesis is rejected and the
alternative hypothesis is accepted, that is, the sample mean is
greater than the limiting value.

The analogous question of whether a regulated value of
50 mg l−1 nitrate is exceeded also leads to a one-sided test.
The hypotheses are as follows:

• Null hypothesis H0: x ≥ 𝜇

• Alternative hypothesis H1: x < 𝜇.

The critical value is now to be taken at the lower end
of the distribution, that is, t(𝛼 = 0.05; f= 3)=−2.353 and
the null hypothesis is to be accepted, if t> t(𝛼; f ). Since by
calculation according to Eq. (2.31), t> t(𝛼 = 0.05; f= 3), the
null hypothesis is accepted, that is, the regulated value is
indeed exceeded.

Note: although the used tabulated t-value of −2.353 is not given
in Table 2.6, it can be derived from the table since

t(1–𝛼; f ) = –t(𝛼; f ) (2.33)

Also, it should be mentioned that in the case of the one-sided
test in Eq. (2.31), the actual value, and not the absolute value, is
used. To aid the understanding of the different hypothesis tests in
more detail, summaries are provided in Table 2.7 and illustrations
in Figure 2.8.

The principles of one- and two-sided tests are also applicable to
tests based on other distributions.
Table 2.7 Overview on hypothesis testing based on Student’s t-test.

t-test Null hypothesis Alternative
hypothesis

t-Value for the acceptance
of H0

Figure

One-sided at the upper end H0: x ≤ 𝜇 H1: x > 𝜇 t< t (1− 𝛼 ; f=n− 1) Figure 2.8a
One-sided at the lower end H0: x ≥ 𝜇 H1: x < 𝜇 t> t (𝛼; f=n− 1) Figure 2.8b
Two-sided H0: x = 𝜇 H1: x ≠ 𝜇 | t| < t (1− 𝛼/2; f=n− 1) Figure 2.8c
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f z( ) f z( ) f z( )

–3 –2 –1 0 1 2 3
Variable, z

–3 –2 –1 0 1 2 3
Variable, z

–3 –2 –1 0 1 2 3
Variable, z(a) (b) (c)

Figure 2.8 Illustration of critical areas for one-sided tests at upper (a) and
lower (b) end and for two-sided tests (c).

p-Level Instead of Comparing Test Quantities In statistical software,
it is rather unusual to carry out statistical tests the way we have
done it earlier. The programs usually compute the specific level
of significance at which the test is actually rejected. This value is
called p-level or level attained. If the p-level is lower than or equal
to the adjusted level, then the null hypothesis is rejected; other-
wise, it is accepted.

The p-level is the
right-tail significance
level for the null
hypothesis.

A statistical test makes
only sense if the
significance level is fixed
in advance, even if the
p-level will be calculated
after the test.

Example 2.5 p-Level

In Example 2.4, we evaluated the nitrate concentration of
drinking water using a one-sided t-test at the upper end and
testing the hypothesis that the regulated value of 50 mg l−1

nitrate is not exceeded (H0: x ≤ 𝜇H1: x > 𝜇). The computed t-
value corresponds to a significance level (p-level) of 0.002373.
This value is lower than the specified level of 𝛼 = 0.05, so that
the null hypothesis is rejected as before.

Comparison of Two Means: Two-Variable t-Tests

A comparison of two sample means x1 and x2 is performed as fol-
lows:

t =
|x1 − x2|

sd

√ n1n2
n1 + n2

(2.34)

where n1 and n2 are the numbers of parallel determinations for the
means x1 and x2, and sd is the weighted averaged standard devia-
tion:

sd =

√
(n1 − 1) s2

1 + (n2 − 1) s2
2

n1 + n2 − 2
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The null hypothesis is accepted if the two means x1 and x2 differ
only randomly at risk level 𝛼, that is, if the calculated t value is
lower than the tabulated value for t(1 – 𝛼/2; f= n1 + n2 − 2).

The assumption for this so-called extended t-test is the com-
parability of the variances of the two random samples, s2

1 and s2
2.

Comparability here means that the two variances are equal at a
given statistical significance level. The significance of the differ-
ences between the two variances is tested by means of an F-test
(see the following discussion).

Where differences between the variances are not negligible, the
general t-test, for example, after Welch, has to be applied:

t =
|x1 − x2|√

s2
1

n1
+ s2

2
n2

(2.35)

The degrees of freedom f for the test statistics t(P; f ) is calcu-
lated according to the equation:

f =

(
s2

1
n1

+ s2
2

n2

)2

(s2
1∕n1)2

n1−1
+ (s2

2∕n2)2

n2−1

(2.36)

Comparison of Variances: F-Test
To compare the variances of two random samples or their stan-
dard deviations, Fisher’s F-test is applied. The F-value is calcu-
lated from the variances s2

1 and s2
2 by

F =
s2

1

s2
2

(2.37)

where s2
1 > s2

2. The null hypothesis is accepted, if the variances s2
1

and s2
2 differ only randomly, that is, if the calculated F-value is

lower than the value of the F-distribution at risk level 𝛼 and the
degrees of freedom f 1 = n1 − 1 and f 2 = n2 − 1. The values of the
F-distribution at significance levels of 0.95 and 0.99 are tabulated
in Table 2.8.

Determination of
titanium contents
(absolute percentage) in
two laboratories.

Laboratory 1 Laboratory 2

0.470 0.529
0.448 0.490
0.463 0.489
0.449 0.521
0.482 0.486
0.454 0.502
0.477 —
0.409 —

Example 2.6 Extended t-Test and F-Test

The titanium content in steel is determined in two laborato-
ries by means of atomic absorption spectrometry. The data are
given in the table in the margin. After estimation of the vari-
ances for the determinations in the two laboratories, the means
should be compared on the basis of the appropriate t-test.
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Do not confuse “sided”
and “tailed,” that is, the
F-distribution is
one-tailed (asymmetric
probability density
function), but both one-
or two-sided tests might
be appropriate.

For comparison of the variances, the F-test is carried out
according to Eq. (2.37). Based on the standard deviations:

Lab. 1 ∶ s1 = 0.0229
Lab. 2 ∶ s2 = 0.0182

the following F-value from the corresponding variances is
obtained:

F =
s2

1

s2
2
= 0.02292

0.01822 = 1.58

The critical F-value is taken from Table A.4 to be F(1− 𝛼/2;
f 1, f 2)= F(0.975; 7, 5)= 6.85

The calculated F-value is lower than the tabulated one,
that is, the test is not significant and the variances differ only
randomly.

For comparing the means, the extended t-test can be applied
two-sided for comparable variances according to Eq. (2.34).
Using the mean values

Lab 1 ∶ x1 = 0.467
Lab 2 ∶ x2 = 0.503

and the aforementioned standard deviations, we calculate

sd =

√
(8 − 1) 0.02992 + (6 − 1) 0.01822

8 + 6 − 2
= 0.0211.

for the test quantity

t =
|x1 − x2|

sd

√ n1n2
n1 + n2

= |0.467 − 0.503|
0.0211

√
6 • 8
6 + 8

= 4.07

The critical t-value is (according to Table 2.6) t(1− 𝛼/2;
n1 + n2 − 2)= t(1− 0.05/2; 12)= 2.18. This means that the
calculated t-value is greater than the critical value, that is, the
two-sided test is significant. The differences in the titanium
determination in the two laboratories cannot be explained by
random errors.

Testing for Distributions
The previous tests served the purpose of detecting differences
between means or variances. The goodness of fit between
an observed and a hypothetical distribution is done by two
additional tests, the 𝜒2 and the Kolmogorov–Smirnov tests.
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Table 2.8 F-quantiles for 𝛼 = 0.05 (normal) and 𝛼 = 0.01 (bold) and for dif-
ferent degrees of freedom f 1 and f 2.

α

F

f 2 f 1 = 1 2 3 4 5 6 7 8 9 10

1 161 200 216 225 230 234 237 239 241 242
4052 4999 5403 5625 5764 5859 5928 5981 6022 6056

2 18.51 19.00 19.16 19.25 19.30 19.33 19.36 19.37 19.38 19.39
98.49 9900 99.17 99.25 99.30 99.33 99.36 99.37 99.39 99.40

3 10.13 9.55 9.28 9.12 9.01 8.94 8.88 8.84 8.81 8.78
34.12 30.82 29.46 28.71 28.24 27.91 27.67 27.49 27.34 27.23

4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96
21.20 18.00 16.69 15.98 15.52 15.21 14.98 14.80 14.66 14.54

5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.78 4.74
16.26 13.27 12.06 11.39 10.97 10.67 10.45 10.29 10.15 10.05

6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06
13.74 10.92 9.78 9.15 8.75 8.47 8.26 8.10 7.98 7.87

7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.63
12.25 9.55 8.45 7.85 7.46 7.19 7.00 6.84 6.71 6.62

8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.34
11.26 8.65 7.59 7.01 6.63 6.37 6.19 6.03 5.91 5.82

9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.13
10.56 8.02 6.99 6.42 6.06 5.80 5.62 5.47 5.35 5.26

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.97
10.04 7.56 6.55 5.99 5.64 5.39 5.21 5.06 4.95 4.85

𝝌
2-Test The 𝜒2 goodness-of-fit test is used to test whether the

observations of a population are sampled from a hypothetical dis-
tribution density function, for example, the normal distribution,
at a given significance level 𝛼. The null and alternative hypotheses
correspond to the following:

• H0: the population is normally distributed with the mean and
the variance s2.

• H1: the population is not normally distributed.

For performing the test, the interval for the observations is
divided into k classes. The test quantity 𝜒2 is then obtained by
comparing the theoretically expected distribution density with
the observed frequency distribution according to (cf. Figure 2.9):

𝜒2 =
k∑

i=1

(hi − fi)2

fi
(2.38)
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Frequency
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Figure 2.9 Schematic plot of the observed frequency, hi, and the theoreti-
cally expected frequency, f , according to a normal distribution.

where hi is the observed frequency in class i and fi the theoretically
expected frequency in class i.

By comparison of the calculated 𝜒2-value with the tabulated
value of the 𝜒2-distribution, the null hypothesis is accepted if it
is valid:

𝜒2 ≤ 𝜒2(1 − 𝛼; k − 1 − 2)

and is rejected in the case

𝜒2 > 𝜒2(1 − 𝛼; k − 1)

Presuppositions for the applicability of the 𝜒2-test are that

• the frequency in the middle classes is at least 5;
• the frequency in the tail classes is at least 1.

The test is not restricted to testing for normal distribution.

Kolmogorov–Smirnov’s Test for Small-Sample Collectives In
practice, the 𝜒2-test often cannot be used because of the afore-
mentioned presuppositions. An alternative here is the test by
Kolmogorov–Smirnov, where a hypothetical distribution func-
tion F0(x) is used (cf. Figure 2.7) and not the density function of
the distribution as with the 𝜒2-test.

In the null hypothesis, the distribution function observed F0(x)
is tested by

H0 ∶ F(x) = F0(x) (2.39)

versus the alternative hypothesis

H1 ∶ F(x) ≠ F0(x) (2.40)
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For this comparison, a test statistics that characterizes the
distance between the hypothetical and observed distribution
function is used. This distance is computed from the maximum
difference between the two distribution curves as dmax and is
compared to the critical value of the quantity d(1− 𝛼, n). If
dmax < d(1− 𝛼, n) the assumed distribution is accepted. Critical d
values for testing for the normal distribution are given in Table
A.6. Again, in practice, it is easier to evaluate the p level (see the
previous discussion) provided by the common software packages
in order to decide on the significance of the test.

Example 2.7 Kolmogorov–Smirnov’s Test

The spectrophotometric measurements in Table 2.1 are
to be tested versus a normal distribution by means of
Kolmogorov–Smirnov’s test at a significance level of 𝛼 = 0.05.
In the first step, the empirical distribution function, F(x), is
evaluated as shown in Figure 2.10. For comparison of the
hypothetical distribution function, the cumulative frequency
by using the mean and the standard deviation of the data in
dependence on the (standard normal) deviate z are plotted
(cf. Eq. (2.28)).
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Figure 2.10 Determination of the
test statistics of Kolmogorov–
Smirnov’s test as the maximum dif-
ference dmax between the empirical

cumulative frequency distribution
of the data and the hypothetical
distribution function F0(x).

After evaluation of the hypothetical distribution function
F0(x), the difference between both distributions is computed.



40 2 Basic Statistics

The maximum difference amounts to

dmax = 0.133

From Table A.6, a critical value of d(0.95, 15)= 0.220 results.
Since dmax < d(1− 𝛼, n), it can be assumed that the photomet-
ric data belong to a normal distribution.

Errors of the First and Second Kind

The risk 𝛼 corresponds to the error of the first kind, that is, the null
hypothesis is rejected, although it is true. The risk, however, can-
not be chosen arbitrarily because of the error of the second kind
(the null hypothesis being accepted although it is false), which
then would considerably increase (see Table 2.9).

Figure 2.11a illustrates the relationship between the error of the
first kind, also called 𝛼 error, and the error of the second kind
(𝛽 error) for the comparison of two means. An error of the first
kind is that the means are taken to be different, although they devi-
ate from each other randomly. The error of the second kind is that
it is wrongly stated that the two means are comparable.

The error of the first kind
is also termed 𝛼 error,
type I error, or rejection
error. Other names for
the error of the second
kind are 𝛽 error, type II
error, or acceptance
error. A shift of the critical values to lower 𝛼 values is related to an

increase in the 𝛽 error. A simultaneous decrease in the 𝛼 and
𝛽 errors is only feasible if the number of measurements, n, is
increased. Since the width of the distribution is proportional to
𝜎∕

√
n, a larger number of measurements leads obviously to a

narrower distribution (cf. Figure 2.11b).
In conclusion, the actual situation dictates the costs that the two

kinds of error cause and whether an increase in the number of
measurements is advantageous.

The failure to recognize a disease, for example, is much more
critical than the precautionary therapy of a patient. In the latter
case, an error of the first kind is valid, that is, from the clinical
data, a healthy person is diagnosed as having a disease. Failure to
recognize a disease from clinically abnormal data is an error of the

Table 2.9 Relationship between testing hypotheses and the errors of the
first and second kind.

Decision for Given

H0 H1

H0 Correct decision P= 1− 𝛼 Error of the second kind P= 𝛽
H1 Error of the first kind P= 𝛼 Correct decision P= 1− 𝛽
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Range for accepting H0 Range for rejecting H0

f x( )

f x( )

Range for accepting H0 Range for rejecting H0

β α

β α

μ1 μ2

μ1 μ2

Variable, x

Variable, x

(a)

(b)

Figure 2.11 Errors of the first and second kind at larger (a) and smaller
(b) standard deviation of the distribution.

second kind. In this instance, the data from a diseased patient lead
to the diagnosis that the patient is healthy.

Tests for Outliers

An important application of statistical tests is the recognition
of outliers. Here, we only consider outliers in a series of mea-
surements. Outlier tests for methods of pattern recognition and
modeling are introduced in Chapters 5 and 6, respectively.

Outliers are extraordinarily small or large observations in
a series of measurements compared to the bulk of the data.
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Before an outlier test is applied, reasons should be sought for
these striking measurements, although uncritical elimination of
outliers may lead to wrong conclusions. Think about the average
age. A very high age of, say, 120 years would definitely be rejected
as an outlier by the test to be discussed in the following.

Dixon’s Q-Test
Testing for an outlier under the assumption of normal distribution
can be carried out by the Dixon’s test. This test uses the range of
measurements and can be applied even in cases where only few
data are available. The n measurements are arranged in ascending
order. If the very small value to be tested as an outlier is denoted
by x1 and the very large striking value by xn, then the test statistics
is calculated by

Q1 =
|x2 − x1||xn − x1| (2.41)

Qn =
|xn − xn−1||xn − x1| (2.42)

The null hypothesis that the considered measurement is not an
outlier is accepted if the quantity Q≤Q(1 – 𝛼; n). Q values for a
selected significance level of 0.99 are given in Table 2.10.

Table 2.10 Critical
values for the Q-test
at the 1% risk level.

n Q (0.99; n)

3 0.99
4 0.89
5 0.76
6 0.70
7 0.64
8 0.59
9 0.56

10 0.53
11 0.50
12 0.48
13 0.47
14 0.45
15 0.44
20 0.39
25 0.36
30 0.34

Example 2.8 Q Outlier Test

Trace analysis of polycyclic aromatic hydrocarbons (PAH) in a
soil revealed for the trace constituent benzo[a]pyrene the fol-
lowing values (in milligrams per kilogram dry weight):

5.30, 5.00, 5.10, 5.20, 5.10, 6.20, 5.15

By using the Q-test, whether the smallest and the largest
values might correspond to outliers will be determined. The
measurements arranged in ascending order are as follows:

x1 x2 x3 x4 x5 x6 xn= 7

5.00 5.10 5.10 5.15 5.20 5.30 6.20

Inserting the data into Eq. (2.41) results in the following Q-
values for the corresponding smallest and largest values:

Q1 = |5.10 − 5.00||6.20 − 5.00| = 0.083
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Qn = |6.20 − 5.30||6.20 − 5.00| = 0.75

From Table 2.10, we obtain Q(1− 𝛼 = 0.99; n= 7)= 0.64
as critical values at 𝛼 = 0.01. For the smallest value of 0.50,
we obtain Q1 <Q(1− 𝛼; n), that is, the value cannot be
marked as an outlier. For the largest value, 6.20, the test gives
Qn >Q(1− 𝛼; n) significance, that is, it is an outlier.

Grubbs’s Test
This test is also based on the assumption of a normally distributed
population. It can be applied to series of measurements (3–150
measurements). The null hypothesis that x* is not an outlier within
the measurement series of n values is accepted at level 𝛼, if the test
quantity T is

T = |x − x ∗|
s

< T(1 − 𝛼; n) (2.43)

where the mean and the standard deviation s are calculated over
all values. The distance of the suspicious values to the mean is
determined by the test quantity T and related to the standard
deviation of the measurements. Critical values for the quantity of
Grubbs’ test are given in Table 2.11.

Table 2.11 Critical
values for Grubbs’ test
at two significance
levels.

n T (0.95; n) T (0.99; n)

3 1.15 1.16
4 1.46 1.49
5 1.67 1.75
6 1.82 1.94
7 1.94 2.10
8 2.03 2.22
9 2.11 2.32

10 2.18 2.41
12 2.29 2.55
15 2.41 2.71
20 2.56 2.88
30 2.75 3.10
40 2.87 3.24
50 2.96 3.34

Example 2.9 Grubbs’ Outlier Test

The data for trace analysis of benzo[a]pyrene from Example
2.8 are to be investigated by the Grubbs’ test. First, the mean
(x = 5.29) and the standard deviation (s= 0.411) of the data are
calculated. Next, the smallest and largest values are inserted
into Eq. (2.43) giving

T1 = |5.29 − 5.00|
0.411

= 0.71

Tn = |5.29 − 6.20|
0.411

= 2.21

The critical test value at level 𝛼 = 0.01 is T(1− 𝛼 = 0.99;
n= 7)= 2.10. As a consequence, the test is not significant
[T1 <T(1− 𝛼; n)] for the smallest value but significant
[Tn >T(1− 𝛼; n)] for the largest one. The largest value (6.20)
is therefore confirmed as an outlier.
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2.3
Analysis of Variance

One-Way Analysis of Variance

Analysis of variance (ANOVA) is used to analyze observations
that depend on the operation of one or more effects. These effects
are caused by factors the levels of which are also called groups, for
example, different laboratories.

Let us start with an ANOVA in case of a single factor, termed a
one-way analysis of variance. Table 2.12 demonstrates the general
scheme of the measurements of this type of ANOVA.

To test for systematic differences between the groups, it is
assumed that each measurement, yij, can be described by the
sum of the total mean, ytotal, the group mean, yj, and the residual
random error, eij, according to the following:

yij = ytotal + (yj − ytotal) + eij (2.44)

where yij is the measurement of repetitions i in group j, (yj − ytotal)
the laboratory bias estimated by the group mean yj of group j, and
eij the random error (residual).

The total variance, expressed as the sum of squares of devia-
tions from the grand mean, is partitioned into the variances within
the different groups and between the groups. This means that the
sum of squares corrected for the mean, SScorr, is obtained from
the sum of squares between the groups or factor levels, SSfact, and
the residual sum of squares within the groups, SSR:

SScorr = SSfact + SSR (2.45)

with

SScorr =
q∑

j=1

nj∑
i=1

(yij − ytotal)2 (2.46)

SSfact =
q∑

j=1
nj(yj − ytotal)2 and yj =

1
nj

nj∑
i=1

yij (2.47)

Table 2.12 Data scheme for a one-way analysis of variance.

Repetition Group

1 2 … q

1 y11 y12 y1q
2 y21 y22 y2q
⋮ ⋮ ⋮ ⋮
n yn11 yn22 ynqq
Mean y1 y2 ytotal
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SSR =
q∑

j=1

nj∑
i=1

(yij − yj)2 (2.48)

ytotal =
1
n

q∑
j=1

nj∑
i=1

yij (2.49)

where q is the number of groups (factor levels), nj the number of
repetitive determinations per group j, and n the number of total

measurements, that is, n =
q∑

j=1
nj.

For deciding on the acceptance of the null hypothesis – that
the groups belong to the same population and differ only
randomly – an F test is performed (see Eq. (2.37)):

F =
SSfact
(q−1)
SSR
(n−q)

(2.50)

The calculated F-value is compared to the critical value. If the
calculated F-value is lower than the critical one, the test is not
significant, that is, the groups differ only randomly.

Example 2.10 One-Way Analysis of Variance

For the determination of the potassium concentration of
water, parallel determinations are carried out in four labora-
tories. Before aggregation of the determined values, the data
is tested using a one-way analysis to see whether there are
systematic differences between the laboratories’ results.

Each laboratory performs triple determinations giving
concentrations for potassium as summarized in Table 2.13,
together with their means. The mean values of the different
laboratories range between 10.20 and 10.77 mg potassium l−1.

Table 2.13 Potassium concentration in mg⋅l−1 from triple determina-
tions in four different laboratories.

Repetition Laboratory (group)

1 2 3 4

1 10.2 10.6 10.3 10.5
2 10.4 10.8 10.4 10.7
3 10.0 10.9 10.7 10.4
Mean 10.20 10.77 10.47 10.53
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The results for the sums of squares within and between
the laboratories based on the potassium determinations in
Table 2.13 are given in Table 2.14. This representation of data
is called an ANOVA table.

Table 2.14 Results of a one-way analysis of variance for the potassium
determinations as in Table 2.13.

Source of variation Degrees of freedom Sum of squares

Between laboratories, SSfact 3 0.489
Within laboratories, SSR 8 0.260
Corrected for the mean, SScorr 11 0.749

The F-value is calculated according to Eq. (2.50):

F =
0.489
(4−1)
0.260
(12−4)

= 5.02

The value for F = 5.02 is greater than the tabulated one
F(1− 𝛼 = 0.95; f 1 = 3; f 2 = 8)= 4.07 (see Table A.4). The test
is therefore significant, that is, the differences between the
laboratories cannot be considered to be different at random.
The potassium determinations of at least one laboratory
deviate systematically from each other.

By means of a one-way ANOVA, the effect of one factor can
be investigated at different levels. In our example, the effect of a
laboratory on the results of determinations was tested. In many
applications, several factors have to be evaluated simultaneously.
For example, apart from the laboratory effects, influences by the
operator and the quality of the instrumentation are to be expected.
These effects can be studied by using the two- or multiway analysis
of variance.

Two-Way and Multiway Analysis of Variance

Consider the situation where two effects on analytical data are
to be investigated simultaneously. This is done by a two-way
ANOVA. Given the two factors, A and B, the following model
can be assumed:

yij = ytotal + (yA
i − ytotal) + (yB

j − ytotal) + eij (2.51)
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Table 2.15 Data design for a two-way analysis of variance.

Factor A Factor B Mean

1 2 … q yi

1 y11 y12 y1q yA
1

2 y21 y22 y2q yA
2

⋮
p yp1 yp2 ypq yA

p

Mean yB
i yB

1 yB
2 yB

q ytotal

where yij is the measurement of row i and column j, yA
i the mean

of factor A in row I, yB
j the mean of factor B in column j, and eij

the random error (residual).
The data are ordered such that the effects of the one factor form

the rows, and those of the other factor the columns, of a matrix
(Table 2.15).

Calculation of the means is based here on the following
formulae:

yA
i = 1

q

q∑
j=1

yij (2.52)

yB
j = 1

p

p∑
i=1

yij (2.53)

ytotal =
1

pq

q∑
j=1

p∑
i=1

yij (2.54)

For the total sum of squares, Eq. (2.45) is again valid, that is, the
total sum of squares corrected for the mean is obtained as sum
of squares of factor A, SSA, factor B, SSB, and a residual sum of
squares, SSR:

SScorr = SSA + SSB + SSR (2.55)

with

SScorr =
q∑

j=1

p∑
i=1

(yij − ytotal)2 (2.56)

SSA = q
p∑

i=1
(yA

i − ytotal)2 (2.57)

SSB = p
q∑

j=1
(yB

j − ytotal)2 (2.58)

SSR = SScorr − SSA − SSB (2.59)
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In addition, measurements could be repeated for all factor com-
binations, as was shown for one-way ANOVA (see. Table 2.12). All
sums must then be indexed over the repetitions for computation
of the means (Eqs. 2.52–2.54).

Example 2.11 Two-Way Analysis of Variance

For preparation of a standard reference sample for determina-
tion of manganese in alloyed steel, a round-robin test is carried
out. Four laboratories participate, each using three different
analytical principles. Testing whether there are systematic dif-
ferences between the laboratories and the principles of analy-
sis is done by means of a two-way analysis. The results of the
chemical analyses are given in Table 2.16.

Table 2.16 Analytical determinations of manganese (percentage mass)
in steel carried out in four different laboratories based on three analyti-
cal principles.

Analytical principle Laboratory Mean

1 2 3 4 y
A

i

1 2.01 1.96 1.99 2.03 2.00
2 1.97 2.05 2.04 1.99 2.01
3 2.05 2.06 2.11 2.12 2.09
Mean yB

i 2.01 2.02 2.05 2.05 ytotal = 2.03

The result of a two-way ANOVA according to Eqs.
(2.55)–(2.59) is summarized in Table 2.17. Calculation of the
F-values is done separately for the two factors.

• Effect of the factor analytical principle:

FA =
SSA
(p−1)
SSR

(p−1) (q−1)

=
0.0175

3−1
0.00788

(3−1) (4−1)

= 6.67

For the critical F-value at a significance level of 𝛼 = 0.05 from
Table 2.8, the value is F(1− 𝛼 = 0.95; f 1 = 2; f 2 = 6)= 5.14.
Since FA > F(1− 𝛼; f 1; f 2), the test is significant, that is, the
differences in the analytical principle are of a systematic
nature.

• Effect of the factor laboratory:

FB =
SSB
(q−1)
SSR

(p−1) (q−1)

=
0.00297

4−1
0.00788

(3−1) (4−1)

= 0.753
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Here, the critical F-value at a significance level of 𝛼 = 0.05
is F(1− 𝛼 = 0.95; f 1 = 3; f 2 = 6)= 4.76. The comparison of
the calculated F-value with the tabulated one provides
FB < F(1− 𝛼; f 1; f 2), that is, the test is statistically not
significant. The differences among the laboratories are
random.

Table 2.17 ANOVA for two-way analysis of variance of the data in
Table 2.16.

Source of variation Degrees of
freedom

Sum of
squares

p level F value Ftab

value

Principle, SSA 2 0.01752 0.0299 6.67 5.14
Laboratory, SSB 3 0.00297 0.559 0.753 4.76
Residual, SSR 6 0.00788 — — —
Corrected for the
mean, SScorr

11 0.02837 — — —

In Table 2.17, the p-level, as well as the F-value, is given. For
the significant effect of the analytical principle, this value is
smaller than the previously assumed level of 𝛼 = 0.05. In the
case of the nonsignificant effect of the laboratory, the p-level
is larger than 0.05.

In principle, the ANOVA is not restricted to two factors. Com-
mon software usually offers multiway analysis where the tests can
be performed for as many factors as the problem to be solved
requires.

The effects of the different factors can be investigated inde-
pendently of each other, or the interactions of factors can be
considered in the ANOVA. The data for multiway ANOVA are
ordered in a matrix, such that the rows represent the individual
runs and the columns contain the factor levels as well as the
responses (Table 2.18). This treatment of data corresponds to
those used in experimental designs (see Section 4.2).

MANOVA: Multidimensional Analysis of Variance

The aforementioned treatment was limited to the study of factors
on a single response or measurement, that is, only one dependent
variable was investigated. In our examples, this was the potassium
concentration in water or the manganese content in steel. More
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Table 2.18 Schematic representation of factors and the response for a
multiway (multifactor) analysis of variance at factor levels 1–4.

Experiment Factor A Factor B Factor C … Response

1 1 1 4 y1
2 2 1 3 y2
:
n 4 2 3 yn

generally, it can be of interest to estimate the effects of factors on
a complete spectrum or on an elemental pattern. For this purpose,
an ANOVA is needed that can handle several responses, that is, a
multidimensional ANOVA or MANOVA.

The data to be studied are arranged analogously to the design in
Table 2.18, with the difference that several columns for the differ-
ent dependent variables, for example, the wavelength of an optical
spectrum, become necessary.

As the test statistics of a MANOVA, the Wilks 𝜆 value can
be applied. This value is defined by the i eigenvalues of the data
matrix 𝜆i as follows:

𝜆 =
∏

i

(
𝜆i

1 + 𝜆i

)
(2.60)

For Wilks 𝜆-values close to 0, the null hypothesis is rejected
according to which the effect of the factors can be attributed to
random effects. For 𝜆-values close to 1, no factor effect can be
deduced. The significance of the tests is again derived from test-
ing the Wilks 𝜆-value against a theoretical distribution. At least
for large n, this distribution is the 𝜒2-distribution. In practice, the
p-level is given by common software packages and compared with
the risk level 𝛼.
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Questions and Problems

1. Calculate the following descriptive statistics for the data
on water hardness (mmol l−1) given as follows: arithmetic
mean, median, standard deviation, variance, standard
error, confidence interval at a significance level of 0.01,
range, and the interquartile distance – 8.02; 7.84; 7.98;
7.95; 8.01; 8.07; 7.89.

2. Characterize the data in Problem 1 graphically by a box-
and-whisker plot.

3. Determination of vitamin E in salad oil was carried out by
a routine voltammetric method and by flow injection anal-
ysis (FIA). The following results (% mass) were obtained:

Sample Photometric FIA

1 32.1 31.9
2 32.3 31.8
3 31.9 31.7
4 32.1 31.8
5 32.0 31.6
6 32.1 31.9
7 31.8 31.8

Compare the precision of the two methods by means of an
F-test at a significant level of 𝛼 = 0.05.

4. Decide on the basis of the result in Problem 3 by use of an
appropriate t-test whether the different results of the two
methods are significant at a level of 𝛼 = 0.05.

5. Use Dixon’s and Grubbs’ methods to test for outliers in the
water hardness data in Problem 1.

6. Five charges of gasoline (A, B, C, D, E) must be compared
with respect to their octane rating. To account for con-
founded effects from the analyst and the day of analysis,
a 5× 5 Latin square is used in the experimental design.

Day Analyst

1 2 3 4 5

1 A B C D E
2 B C D E A
3 C D E A B
4 D E A B C
5 E A B C D
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The octane ratings obtained were as follows:

Day Analyst

1 2 3 4 5

1 96.6 96.6 95.7 96.1 97.0
2 96.2 96.2 95.3 96.5 95.9
3 96.2 96.0 95.8 95.8 95.8
4 94.9 96.6 95.9 96.3 95.7
5 96.0 96.2 96.1 95.2 95.9

Use a commercial software package enabling multifactor
ANOVA to decide whether there are systematic differ-
ences between the five charges at a significance level of
𝛼 = 0.05.
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3
Signal Processing and Time Series Analysis

Learning Objectives

• To learn about digital filters, such as the nonrecursive
moving-average and polynomial filters, as well as the
recursive Kalman filter

• To apply filters for smoothing, derivation, and integration of
signals

• To introduce signal manipulation based on Fourier and
Hadamard transformations and their appropriate usage
for filtering, convolution, deconvolution, integration, data
reduction, and background correction

• To understand interpolating and smoothing splines
• To characterize correlated data by autocorrelation and

cross-correlation functions.

In this chapter, we first learn about methods that can be used
for signal processing. Analytical signals are recorded as spectra,
chromatograms, voltammograms, or titration curves. These sig-
nals are monitored in the frequency, wavelength, or time domains.
Typical aims are smoothing and filtering, derivation, area deter-
mination, transformation, or deconvolution of signals.

Methods for evaluation
of analytical signals are
as follows:
transformation,
smoothing, correlation,
convolution,
deconvolution,
derivation, and
integration.

Second, we investigate time series, for example, pH values mea-
sured in a lake over 1 year. In contrast to the independent random
data considered in Chapter 2, here we deal with correlated data.
The observations are assumed to be realizations of a stochastic
process, where the observations made at different time points are
statistically dependent. In order to recognize drifts, periodicities,
or noise components in a time series, the correlation within the
time series must be investigated.

Chemometrics: Statistics and Computer Application in Analytical Chemistry, Third Edition. Matthias Otto.
© 2017 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2017 by Wiley-VCH Verlag GmbH & Co. KGaA.
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3.1
Signal Processing

Digital Smoothing and Filtering

The extensive use of computers in the analytical laboratory is
responsible for the fact that data are usually processed digitally
(cf. Section 1.1). As a consequence, further processing of the
digital signals is carried out by software rather than by hardware
as previously.

Digital filters therefore dominate analog filters, possessing
many advantages compared to analog ones:

• The digitized data can be immediately further processed.
• Temperature- or time-dependent noise does not exist. The only

noise components to be accounted for are round-off errors.
• Digital filters are easier to modify and usually easier to under-

stand.
• The filters implemented as software can be transferred to other

computers.
• The filters can be easily optimized and tailor-made to specific

processes.

Preprocessing of analytical signals by filtering serves the follow-
ing purposes:

• Enhancement of the signal versus noise.
• Derivation of signals for subtraction of background and for

improvement of visual resolution.
• Integration for quantitative signal evaluation.

Moving-Average Filter

The simplest filter operates on the basis of moving averages
(Figure 3.1). Within a predefined window, a weighted linear
combination of all the signal values is formed. The window
determines the filter width and is moved successively along the
equally spaced data. For calculation of the filtered value, y∗k , from
the raw signal values, yk , the following relationship holds:

y∗k = 1
2m + 1

j=m∑
j=−m

yk+j (3.1)

where k is the index for the actual data point, 2m+ 1 represents
the size of the window (filter width), and m is the variable to adjust
the filter width.

Averaging is one means
for smoothing of data.
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Signal, y

0.5

0.4

0.3

0.2

0.1

yk

yk*

2m+1

1 2 3 4 5 6 7
0

k

Figure 3.1 Moving-average filter for
a filter width of 2m+ 1= 3, that is,
m= 1. Note that for the extreme
points, no filtered data can be cal-
culated, since they are needed for

computing the first and last aver-
age. • Original signal value, ⚬ fil-
tered signal value.

After applying the moving-average filter, the data contain less
noise. In the case of structured data, the filter width has to be cho-
sen such that the structure of the data, for example, of a peak, is
not distorted.

Figure 3.2 demonstrates the filtering of raw data by using a 5-
point moving-average filter (curve 1). In this example, the filter
width of 5 points leads already to the distortion of peaks. This
effect is enhanced if the filter width is further increased as demon-
strated here for an 11-point filter (Figure 3.2, curve 2). The appro-
priate choice of the filter width is discussed as follows.

Too large a filter width
decreases the original
height of a peak and
leads simultaneously to
its broadening.

Polynomial Smoothing: Savitzky–Golay Filter

Very efficient smoothing of data is obtained with filters that weight
the raw data differently. In the case of the moving-average filter,
all the data were weighted by the same factor, that is, 1/(2m+ 1)
(cf. Eq. (3.1)). A better fit results if weights are used that

3

2
4

1

Figure 3.2 Filtering of a discrete
analytical signal consisting of k data
points with different filters: (1) A 5-
point moving-average filter, (2) an

11-point moving-average filter, (3) a
5-point Savitzky–Golay filter, and (4)
interpolated signal.
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approximate the data by a polynomial of higher order
(Savitzky–Golay filter). The filter coefficients are identical
for polynomials of second and third order.

After deciding on the filter width, the filtered value for the kth
data point is calculated by

y∗k = 1
NORM

j=m∑
j=−m

cjyk+j (3.2)

where NORM is a normalization factor obtained from the sum of
the coefficients cj.

The filter coefficients cj are tabulated in Table 3.1 for different
filter widths. Figure 3.2, curve 3, demonstrates the effect of a
Savitzky–Golay filter with a filter width of 5 points applied to
the raw data. Compared to the 5-point moving-average filter, the
obviously better fit can be seen.

Filter Selection
For selecting the most appropriate filter, some rules are followed:

• If the filter is applied to the data repetitively, the largest smooth-
ing effect (>95%) is observed in the first application. Therefore,
single smoothing is usually sufficient.

• The filter width should correspond to the full width at half max-
imum of a band or a peak. Too small a filter width results in
unsatisfactory smoothing. Too large a filter width leads to dis-
tortion of the original data structure (cf. Figure 3.2).

• Distortion of data structure is more severe with respect to the
area than to the height of peaks. Therefore, the filter width cho-
sen is smaller if the height rather than the area is evaluated.

The influence of the filter width on the distortion of peaks can be
quantified by means of the relative filter width, brelative, according
to

brelative =
bfilter
b0.5

(3.3)

where bfilter is the filter width and b0.5 is the full width at half max-
imum.

To illustrate the influence of the filter width on the distortion
of the peak shape, the error of evaluating the height and area by
polynomial smoothing of Gaussian and Lorentz peaks is shown in
Figure 3.3 (cf. Figure 3.4).

If the peak area is measured, distortions become important only
at relative filter widths greater than 1. In contrast, in the case of
measuring the peak height, the relative filter width chosen should
not be much larger than 0.5.
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Figure 3.3 Relative error for
smoothing Gaussian and Lorentz
peaks in dependence on the rela-
tive filter width (Eq. (3.3)).
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Gaussian peak y = b1 exp

b3
2

(x – b2)2

(b)

Lorentz peak y =
b1

1 + b2 (x – b3)2

Variable, x Variable, x

Figure 3.4 Shape of a Gaussian peak (see Eq. (2.2)) and a Lorentz peak.
b1, b2, and b3 are constants.

From Figure 3.3, it can also be understood that the distortion of
peaks is dependent on their shape. Lorentz peaks are less distorted
than Gaussian peaks.

Example 3.1 Savitzky–Golay Filter

The following data are to be smoothed by a quadratic 5-point
polynomial filter:

Data
point k

1 2 3 4 5 6 7 8 9 10 11

Signal
value yk

0.11 0.52 0.49 0.41 0.30 0.27 0.16 0.15 0.12 0.08 0.02
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By using the coefficients from Table 3.1, we obtain the fol-
lowing for the smoothing polynomial of the kth data point:

y∗k = − 3
35

yk−2 +
12
35

yk−1 +
17
35

yk +
12
35

yk+1 −
3

35
yk+2

As the first smoothed value, the third data point can be cal-
culated, that is,

y∗3 = − 3
35

y3−2 +
12
35

y3−1 +
17
35

y3 +
12
35

y3+1 −
3

35
y3+2

= − 3
35

0.11 + 12
35

0.52 + 17
35

0.49 + 12
35

0.41 − 3
35

0.30

= 0.522

After moving the filter by one data point to the right, a value
of 0.398 is obtained for the fourth data point and so on.

Recursive Filter: Kalman Filter

The aforementioned filters exploit only the raw data. They operate
in a nonrecursive way. Recursive filters also use smoothed data.
They were developed for smoothing fast processes in real time.
The most popular of the recursive filters is the Kalman filter,
which was developed to control the height of a missile skimming
across the waves over sea and land.

A Kalman filter is based on a dynamical system model

x(k) = Fx(k − 1) + w(k − 1) (3.4)

and the measurement model

y(k) = HT(k)x(k) + v(k) (3.5)

where x represents the state vector, y is the measurement, F is
the system transition matrix, and H represents the measurement
vector (or matrix). System noise is characterized by the vector w
and measurement noise by the vector v. The index k again denotes
the actual measurement or time.

The recursive algorithm for Kalman filtering operates according
to the scheme in Table 3.2.

For the system noise Q and the measurement noise R, the fol-
lowing assumptions are valid:

Q(k) = E[w(k)wT(k)] (3.11)
R(k) = E[v(k)vT (k)] (3.12)

Sequential estimation of the filter parameters requires initial
values to be set for x and the covariance matrix P. The latter
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Table 3.2 Kalman filter algorithm.

Propagation of the filter states with time

x(k) = F(k)x(k − 1) (3.6)

Propagation of the state covariance with time

P(k|k − 1) = F(k)P(k − 1|k − 1)FT(k) + Q(k) (3.7)

Kalman gain

K (k) = P(k|k − 1)H(k)

× [HT(k)P(k|k − 1)P(k|k − 1)H(k) + R(k)]−1 (3.8)

State estimate update

x(k|k) = x(k|k − 1) + K (k)[y(k) − HT(k)x(k|k − 1)] (3.9)

Error covariance update

P(k|k) = P(k|k − 1) − K (k)HT(k)P(k|k − 1) (3.10)

quantity is chosen in the sense of a measure of the uncertainty
of the initial estimate for x. With correct models, the sequential
estimates x(k) quickly become independent of the initial guess
x(0), provided that sufficiently large values for P(0) are chosen,
for example, 1–100 times x(0) works well for the diagonal
values of P(0); the off-diagonal elements may be set to zero. A
system error is specified only if the matrix F is not the identity
matrix.

The Kalman filter can be applied for filtering, smoothing, and
prediction. Additional applications for corrections of drift and in
multicomponent analysis are known.

Signal Derivatives

The Savitzky–Golay filter can also be used for derivation of signal
curves. For this, appropriate filter coefficients are inserted as given
in Table A.7 for the first derivative and in Table A.8 for the second
derivative.
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Figure 3.5 Second derivative of a peak based on a Lorentz function.

For example, the first derivative, y′k , is obtained on the basis of
a 5-point quadratic polynomial filter by

y′k = − 2
10

yk−2 −
1

10
yk−1 +

0
10

yk +
1

10
yk+1 +

2
10

yk+2

Derivatives are useful for eliminating the background of a signal,
determining the peak position, and improving the visual resolu-
tion of peaks.

0. Derivative

1. Derivative
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Derivative of a peak
calculated by means of
the Savitzky–Golay
coefficients for the first
derivative.

In Figure 3.5, the second derivative of a peak is shown. At the
peak maximum, the derivative has a pronounced minimum that
is suitable for evaluation of the peak position. Compared to the
original signal, the full width at half maximum is smaller for the
peak in the second derivative. As a consequence, two peaks can
be distinguished in the second derivative although they are not
recognized in the original signal. In Figure 3.6, this is demon-
strated for two peaks with a distance of 0.4 units of full width at
half maximum.

Note that the noise increases if a signal derivative is formed.
This is especially important in the case of quantification on the
basis of derivatized signals.

Example 3.2 Noise Characteristics for Derivatives of Signals

The following y-signal values are given around an observation
point k:

yk−2 yk−1 yk yk+1 yk+2
0.2 0.5 0.7 0.4 0.1
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Figure 3.6 Visual resolution of two
Lorentz peaks with a resolution of
0.4 full width at half maximum (a)
and after formation of the second
derivative (b).

The second derivative of
a peak is easy to
interpret, since it has a
“negative peak” shape.

At this point k, the filtered value is calculated up to the sec-
ond derivative on the basis of a 5-point Savitzky–Golay filter.

To characterize the corresponding noise, we consider
the error propagation for the polynomial filter. For the
Savitzky–Golay filter (see Eq. (3.2)), the result of error
propagation (see Table 2.4) is expressed here by the standard
deviation of the smoothed signal at point k, syk∗:

syk∗ =

√√√√ 1
NORM2

j=m∑
j=−m

c2
j yk+j (3.13)

Calculation of the filtered values and their standard devia-
tions by means of the tabulated filter coefficients leads to:

y∗k = 1
35

((−3) ⋅ 0.2 + 12 ⋅ 0.5 + 17 ⋅ 0.7 + 12 ⋅ 0.4 + (−3) ⋅ 0.1)

= 0.623

Zeroth derivative:

sy∗k = 1
352 ((−3)2 ⋅ 0.2 + 122 ⋅ 0.5 + 172 ⋅ 0.7

+122 ⋅ 0.4 + (−3)2 ⋅ 0.1)1∕2

= 0.623

relative error ∶
syk∗|y∗k| = 0.522

0.623
= 0.838
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First derivative:

y′k = 1
10

((−2) ⋅ 0.2 + (−1) ⋅ 0.5 + 0 ⋅ 0.7 + 1 ⋅ 0.4 + 2 ⋅ 0.1)

= −0.03

sy′k
=
(

1
102

(
(−2)20.2 + (−1)20.5 + 020.7

+120.4 + 220.1
))1∕2

= 0.145

relative error ∶
sy′k|y′k| = 0.145

0.03
= (4.83)

Second derivative:

sy′′k
=
(

1
72

(
220.2 + (−1)20.5 + (−2)20.7 + (−1)2

0.4 + 220.1
))1∕2

= 0.316

y′′

k = 1
7
(2 ⋅ 0.2 − 1 ⋅ 0.5 − 2 ⋅ 0.7 − 1 ⋅ 0.4 + 2 ⋅ 0.1)

= −0.243

relative error ∶
sy′′k|y′′ |k = 0.316

0.243
= 1.301

A comparison of the relative error between the zeroth and
the second derivatives reveals an increase by a factor of 1.5.
The error propagation for the first derivative demonstrates the
limits of the procedure. Since the first derivative is close to zero
at the peak maximum, an unrealistically large value is obtained
for the relative error.

Integration for Area Determination

The area under a chromatographic peak, a spectroscopic band, or
in thermal analysis is often directly proportional to the analyte
concentration. Integration of signals is, therefore, important for
quantitative data evaluation.

In the simplest case, the area is obtained from the sum of signals
formed over the corresponding variable, such as time, energy, or
wavelength. It is known, however, that random variations at the
edge of a peak are much more severe than at the middle. Therefore,
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Figure 3.7 Trapezoidal rule for integration of a signal.

the integration formula should weight the middle signals higher
than those at the edges. This leads to integration formulae, which
are known as the trapezoidal and Simpson rules.

Figure 3.7 demonstrates the trapezoidal rule. The area, AT, is
calculated from the sum of the signal intensities, yk, times the dis-
tance between two successive data points at the abscissa, h, by

AT = ∫X
y dx = h

[
1
2

y1 +
1
2

yn +
n−1∑
k=2

yk

]
(3.14)

Note that the edge points (k = 1 and k = n) are counted only
once, so that they are multiplied in Eq. (3.14) by a factor of 0.5.

Still better results are obtained by the Simpson rule, which is
based on approximation by a quadratic polynomial. Here, the
area, AS, is obtained by

AS = ∫X
y dx = h

3
[y1 + 4y2 + 2y3+ · · · + 4yn−1 + yn] (3.15)

In general, the Simpson rule reads

AS = h
3

[
y1 + yn + 4

n−1∑
k=2

Iyk + 2
n−2∑
k=3

IIyk

]
(3.16)

where the sum
∑

I is to be taken over all even and the sum
∑

II
over all odd numbers.

A prerequisite for application of the Simpson rule according to
Eq. (3.6) is an odd number n of data points, that is, an even num-
ber of equidistant intervals. In the case of an odd number of data
intervals, integration is started on the basis of the Simpson rule
over an even number of intervals and the remaining area is cal-
culated by another method. Typically, the 3/8 rule is used as the
second method, which is based on a cubic polynomial.
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Suppose for an odd number of intervals, the signal values are
to be integrated from k = 1 to k = n− 3 by the Simpson rule. Then
the remaining area is obtained by the 3/8 rule according to

A3∕8 = 3
8
[yn−3 + 3yn−2 + 3yn−1 + yn] (3.17)

In this way, area determinations can be performed for an arbi-
trary number of data points.

Example 3.3 Integration by Means of the Simpson Rule

For the signal values in Example 3.1, the area is determined on
the basis of a quadratic polynomial. According to Eq. (3.16),
the resulting area is

AS = 1
3
[0.11 + 0.02 + 4(0.52 + 0.41 + 0.27 + 0.15 + 0.08)

+ 2(0.49 + 0.30 + 0.16 + 0.12)] = 2.66

Transformations: Fourier and Hadamard

Mathematical transformations of the original data can be used
for filtering if the transformed data are multiplied by appropriate
filter functions and are subsequently back-transformed into the
original data domain. Most frequently, the Fourier transformation
(FT) is applied. In addition, we will also learn about Hadamard
transformation (HT).

Apart from the filtering of data, transformations are also use-
ful for convolution and deconvolution of analytical signals, for
integration, for background correction, and for reduction of the
number of data points, for example, in a spectrum.

Fourier Transformation

A signal in the time domain can be represented by a combination
of periodic functions. This is shown in Figure 3.8 for the combi-
nation of two sine functions.

Transformation of the signal from the time domain, f (t), into
the frequency domain, F(𝜈), provides two frequencies at 1 and
3 s–1. Because any time-dependent or, in general, continuous sig-
nal graph can be considered a combination of sine and cosine
functions, the FT is widely applicable.

The maximum frequency
that can be observed
depends on the spacing
of Δt according to

𝜈max = 1
2Δt

This is called the Nyquist
frequency.

In the time domain, information is obtained on the total
amplitude, but not on the frequencies of the signal. The fre-
quency domain contains information on the frequencies and
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Figure 3.8 Fourier transformation: the sum signal (a) contains the sine
functions with the periods t1 = 1 s and t2 = 1/3 s (b). The intensity is given
in dependence on the frequency after Fourier transformation in (c).

their corresponding amplitudes of the signal, but information on
the total amplitude is lost.

In conventional spectroscopy, measurements are carried out
in the frequency domain. The intensity of radiation is recorded
in dependence on the frequency or reciprocal wavelength. Some
analytical methods, such as Fourier transform infrared (FT-IR)
or pulsed nuclear magnetic resonance (NMR) spectroscopies,
provide the information in the time domain. There, the opposite
transformation into the frequency domain is of interest.

Discrete FT Digitized signal values in the time domain can be
directly treated by discrete FT. For n discrete, equally spaced
signal values, we obtain

F(𝜈) = 1
n

n∑
t=1

f (t)e−(j2𝜋𝜈 t∕n) (3.18)

for the transformation into the frequency domain where j =
√
−1.

Aliased frequencies are
those that exist as
different frequencies in a
signal at the same time.

The results are complex numbers consisting of a real and an
imaginary part. The first term, F(1), is always real and corresponds
to the average of the data.

The following is used as the expression for the exponential
function:

e−[j2𝜋𝜈∕n] = cos(2𝜋𝜈t∕n) − j sin(2𝜋𝜈t∕n) (3.19)
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Inverse FT Back transformation from the frequency into the time
domain is carried out by inverse FT, that is,

f (t) =
n∑

∽=1
F(𝜈)e(j2𝜋𝜈t∕n) (3.20)

In practice, an algorithm for fast FT of data is applied. There,
the number n of the k data points must be a power of 2, that is,
n= 2k. If complex conjugated numbers are used for Eq. (3.20), for-
ward and back transformations can be performed with the same
algorithm.

Hadamard Transformation
As an alternative to FT, the HT can be applied. The latter differs
from FT in the basis function. HT is based on the Walsh function
in contrast to the sine and cosine functions in FT (cf. Eq. (3.19)).
The Walsh function, in the boundaries of ±1, is demonstrated in
Figure 3.9.

Wavelet transformations
allow the use of arbitrary
basis functions.

Transformation of the original data, y, into the transformed val-
ues, y*, can be easily represented by the following equation:

y∗ = H • y (3.21)

where H is the (n × n) HT matrix, y is the vector of the original
n signal values, and y* is the vector of the transformed n signal
values.

As for the fast Fourier transformation (FFT) (c.f. Eq. (3.8)),
in total, n of the k data points are used to represent a power
of 2, that is, n= 2k. The kth HT matrix is obtained by a simple

1

0

–1

1

0

–1

1

0

–1

1

0

–1

Figure 3.9 Walsh function as the basis function for Hadamard transforma-
tion (HT).
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iteration rule:

Hk =
(

Hk−1 Hk−1
Hk−1 −Hk−1

)
(3.22)

Example 3.4 Hadamard Transformation

Four data points are to be treated by HT. With n= 2k = 4, we
have k = 2. If we set H0 = 1, then we obtain for the matrices H1
and H2 iteratively:

H1 =
(

1 1
1 −1

)

H2 =
(

H1 H
H1 −H1

)
=
⎛⎜⎜⎜⎝
1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎞⎟⎟⎟⎠
The transformation equation is

⎛⎜⎜⎜⎝
y∗1
y∗2
y∗3
y∗4

⎞⎟⎟⎟⎠ =
⎛⎜⎜⎜⎝
1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
y1
y2
y3
y4

⎞⎟⎟⎟⎠
according to Eq. (3.21).

Multiplication of the equations for the transformed signal
values provides

y∗1 = y1 + y2 + y3 + y4 (3.23)
y∗2 = y1 − y2 + y3 − y4

and so on.
Insert your own numbers to transform your signals.

HT requires only simple arithmetical operations: addition and
subtraction. This is in contrast to FT calculations, where complex
numbers and trigonometric functions have to be processed. As
a consequence, the algorithm for fast Hadamard transformation
(FHT) is faster by a factor of about 3 than the FFT algorithm.

An additional advantage is the fact that the result of a HT is real,
that is, there is no imaginary part.

Application of FT and HT
In many applications for filtering, integration, or data reduction,
both FT and HT provide comparable results. If possible, both
transformations should be tested in the actual application.
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A particular transformation might be advantageous if one of
its specific properties is required. Thus, HT is favored over FT
if the speed of computation is important for the transformation.
Furthermore, flat graphs, for example, an empty spectral range,
are better approximated by HT than by FT, since FT models flat
segments with waves of the highest possible frequency, which are
poor substitutes for a straight line. On the other hand, FT is bet-
ter suited to describe rounded shapes, such as structured bands
or peaks. In these cases, HT reveals an undesired signal charac-
terization because of its “box”-wave-like basis function.

Selected applications for both transformations are outlined as
follows.

Signal Filtering For FT filtering, the signals are transformed
from the time domain according to Eq. (3.18) into the frequency
domain, F(𝜈). After that, multiplication by a filter function, H(𝜈),
and back transformation with the inverse FT function (Eq. (3.20))
are performed. The filtered data, G(𝜈), are obtained by

G(𝜈) = F(𝜈)H(𝜈) (3.24)

Since the signal of interest usually lies in the intermediate fre-
quency range, the filter function serves the purpose of filtering
very high or low frequencies. To suppress high frequencies, which
are typical for noise, a low-pass filter is required. For filtering low
frequencies, corresponding, for example, to a drift, a high-pass fil-
ter is used (Figure 3.10).

FTs are especially suitable if different frequency parts are
present in the original signal, or if, for example, the ac mains
frequency has to be removed. From spectral analysis in the
frequency domain, important information about the type of
noise can be derived, and as a consequence, the signal-to-noise
ratio can be systematically improved. Shot noise is recognized
by a uniform frequency spectrum. This is typical for thermal

(a) (b)

11

0–ν0 ν0 –ν0 ν0

Frequency ν Frequency ν
0

H(ν) H(ν)

Figure 3.10 Low-pass filter (a) and high-pass filter (b) in the frequency
domain.
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Figure 3.11 Decomposition (deconvolution) of a peak (solid line) into two
underlying individual peaks (dashed lines) by means of Fourier transforma-
tion (FT).

noise or quantization noise of photomultiplier tubes. A continu-
ously changing frequency spectrum is observed in the case of a
drift (1/f noise). Interference noise is characterized by a specific
frequency (range), for example, by a superposed 50 Hz power
frequency.

Convolution and Deconvolution For restoration of an analytical
signal that is distorted by an instrument function, or for decom-
position of overlapping signals (cf. Figure 3.11), the use of FT is
advantageous.

Components of an
analytical signal in
different frequency
ranges:

Frequency Component

Interme-
diate

Peak, band

Low Drift
High Noise

Let us denote the undistorted signal in dependence on time
f (t), the overlapped function, for example, instrument or Gaus-
sian function, h(t), and the observed function g(t). Convolution
(denoted by *) of the original signal with the interfering function
is then expressed by

g(t) = f (t) ∗ h(t) (3.25)

In the frequency domain, this corresponds to a simple scalar
product of the Fourier-transformed functions:

G(𝜈) = F(𝜈)H(𝜈) (3.26)

In order to evaluate the undistorted signal, f (t), Eq. (3.26) is
solved for F(𝜈), that is,

F(𝜈) = G(𝜈)
H(𝜈)

(3.27)

The result is back-transformed to the time domain according to
Eq. (3.20).

Note the similarity to signal filtering in Eq. (3.24). One
difference compared to deconvolution is the type of the
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interfering function H(𝜈). In the case of filtering, this function is
a simple step function: for deconvolution of signals, it must be
determined whether a trapezoidal, triangular, Bessel, cosine, or
Gaussian function would be the best.

Problems arise in the case of noise. If the signal noise is denoted
by N(𝜈), Eq. (3.16) is modified to

G(𝜈) = F(𝜈)H(𝜈) + N(𝜈) (3.28)

This leads to a different deconvolution in the frequency domain,
that is,

G(𝜈)
H(𝜈)

= F(𝜈) + N(𝜈)
H(𝜈)

(3.29)

and

F̂(𝜈) = F(𝜈) + N(𝜈)
H(𝜈)

(3.30)

The function estimate obtained after deconvolution, F̂(𝜈),
does not correspond to the FT of the undistorted signal, but
also contains an unwanted noise component in the frequency
domain.

An additional problem in FT deconvolution results from the
finite number of data points. Back transformation frequently
leads to wave-like curves, which cannot be attributed to real peri-
odicities of the Fourier transform. To suppress these undesired
side effects, an apodization function in the form of a triangular or
parabolic function is applied. In analogy to Eq. (3.27), the decon-
voluted signal is calculated by using an apodization function,
D(𝜈), by

F(𝜈) = D(𝜈)G(𝜈)
H(𝜈)

(3.31)

For decomposition of signals, the concrete form of the interfer-
ing signal is determined separately. So, for example, for the decon-
volution of an overlapping chromatographic signal into Gaussian
peaks (cf. Eq. (2.2)), the full width at half maximum or the standard
deviation must be known.

Integration From the equations in Example 3.3, we recognize that
the first row in the HT matrix, which leads to the first Hadamard
coefficient, y∗1, by multiplication with the original data, is equal to
the sum of all signal values (Eq. (3.13)). Based on that sum, the
integral over all signal values can be deduced, if, for example, the
trapezoidal formula according to Eq. (3.4) is applied. The area, A,
is calculated by subtraction of half of the sums of the first and last
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signal values:

A = y∗1 −
1
2
(y1 + yn) (3.32)

A similar result is obtained for FT. According to Eq. (3.8), the
first Fourier coefficient, F(1), corresponds to the average of signal
values. Multiplication with the data number n provides the sum
over all values for integration by Eq. (3.32). In the latter case, we
assumed that only the real part of FT is considered. Fortunately,
for any real function, the first coefficient, F(1), should be always
real.

Data Reduction and Background Correction Reduction of data
points is important if, for example, further processing of a spec-
trum is only feasible if the number of data points is decreased.
For reduction of measurements in the original data vector, the
data are transformed by means of FT or HT. After that, back
transformation is performed on the basis of a limited number of
Fourier or Hadamard coefficients. For back transformation, the
coefficients are sorted according to importance, and the effect of
less important coefficients is thus eliminated (cf. Zupan, Section
3.3). Practically, the number of coefficients is not changed, but
unimportant coefficients are set to zero.

If the most significant coefficient, F(2) for FT or y∗2 for HT, is
set to zero, then a background correction results, explained by the
fact that the coefficients correspond to the basis function of those
transformations. Because of the box-wave-like basis function of
HT (cf. Figure 3.9), practical usage of this kind of background cor-
rection can only be recommended for FT.

In Figure 3.12, the results of forward and backward transfor-
mations of a spectrum are demonstrated. Even if only half of the
original 32 coefficients are used, that is, the 16 most important
ones, the original data are quite well reproduced. In the case of
back transformation with only few coefficients, the different basis
functions of the two transformations can be easily recognized,
that is, for FT, the trigonometric and for HT, the Walsh function.

In Figure 3.12, a filtering effect can also be seen in connection
with the reduction of coefficients. The difference from the afore-
mentioned methods of signal filtering lies only in the concrete
choice of the filter coefficients. The principle of back transforma-
tion is the same here as in the case of data reduction.

Spline Functions

In addition to the smoothing methods based on digital filters and
on transformations, some further possibilities exist for signal
smoothing. Among these are the following:
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Figure 3.12 Transformation of sig-
nals from 32 data points and back
transformation by FT and HT using
different numbers of coefficients.
The numbers correspond to the

remaining coefficients except the
first coefficient, which represents
the average (FT) or the sum (HT) of
the spectrum.

• Local approximations: here, the functional dependence or
signal curve is split into intervals, and these intervals are fitted
piecewise, for example, by straight-line models. Unfortunately,
no smooth curves result, but discontinuities emerge in the
derivatives of the curve.

• Modeling with known basis functions: if it is known, that, for
example, a spectroscopic band obeys the Lorentz function,
then signal processing (smoothing, analytical derivatives) is
feasible by estimation of the parameters of that basis function.
The parameters are commonly estimated by nonlinear regres-
sion analysis (cf. “Nonlinear Regression Analysis” Section). A
typical problem with this method is that no appropriate basis
function can be found for the entire measurement range.

• Spline functions: these represent a compromise between a poly-
gon trace and an interpolation polynomial of higher order. The
main advantage of spline functions is their differentiability in
the entire measurement domain.

The spline functions will be considered in more detail as follows.
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Interpolating Splines
To construct an interpolating spline, the x range is split into sev-
eral intervals, separated by the so-called knots. The knots may be
identical with the index points at the x variable axis.

An interpolating cubic spline S(x) for the observations at the
abscissa grid x1 < x …< xn fulfills the following conditions:

• The spline S(x) is interpolating, that is, at the knots k = 1, …, n,
the measured value, yk, is equal to the spline value S(xk).

• Within the knots k, S(x) obeys the continuity constraint on the
function and on its twofold derivatives.

• S(x) is a cubic function in each considered subrange [xk, xk+1]
for k = 1, …, n− 1.

• Outside the range from x1 to xn, S(x) is a straight line.

Splines with variable
knot locations are
termed adaptive splines.

A spline function that fulfills the aforementioned conditions is
shown in Figure 3.13.

The cubic function is defined by

y = Ak(x − xk)3 + Bk(x − xk)2 + Ck(x − xk) + Dk (3.33)

where Ak, Bk, Ck, and Dk are the spline coefficients at data point k.
For a fixed interval between the data points xk and xk+1, the fol-

lowing is valid for the signal values and their derivatives:

yk+1 = Ak(x − xk)3 + Bk(x − xk)2 + Ck(x − xk) (3.34)
yk = Dk

y′k = Ck

y′k+1 = 3Ak(x − xk)2 + 2Bk(x − xk) + Ck

y′′

k = 2Bk

y′′

k+1 = 6Ak(x − xk) + 2Bk

By additional reshaping, the spline coefficients can be deter-
mined from Eq. (3.34).

XK X K+1

Yk
Yk+1
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Figure 3.13 Interpolating spline function.



78 3 Signal Processing and Time Series Analysis

Smoothing Splines
The spline coefficients can also be determined in such a way that
the data are smoothed simultaneously. For this, the ordinate val-
ues ŷk are calculated such that the differences from the observed
values yk are positive proportional jumps rk in their third deriva-
tive at point xk:

rk = f ′′′

k (xk) − f ′′′

k+1(xk+1) (3.35)
rk = pk(yk − ŷk) (3.36)

The proportionality factors pk are, for example, determined by
cross-validation (cf. “Factorial Methods” Section).

In contrast to polynomials, spline functions may approximate
and smooth any kind of curve shape.

Problems, however, arise if the intervals between the knots
are not narrow enough and the spline begins to oscillate (cf.
Figure 3.13). Also, in comparison to polynomial filters, many
more coefficients are to be estimated and stored, since in each
interval, different coefficients apply. An additional disadvantage
is valid for smoothing splines, where the parameter estimates
are not expectation-true. The statistical properties of spline
functions are, therefore, more difficult to describe than in the
case of linear regression (cf. Section 6.1).:

Wavelet Analysis

Fourier analysis is very useful to describe the signal’s frequency
content. However, it has a serious drawback. In a typical FT of a
signal, it is impossible to tell when an event has happened because
time information is lost. For all nonstationary signals that contain
drift, trends, or abrupt changes, it is important to keep the time
information in the transformation. In principle, time information
can be found in the imaginary part of a complex FT. However,
since only the real part is usually considered, the time information
will not be available.

In wavelet analysis, the concept of frequency can be replaced
by the idea of scale. Unlike sine waves known from FT analysis
(cf. Figure 3.8), a wavelet is a waveform with an average value of
zero and limited duration. Wavelets tend to be irregular and asym-
metric. In Figure 3.14, the wavelets of Classes Haar, Daubechies,
Coiflet, Symmlet, Morlet, and Mexican Hat are given as examples.

Wavelet analysis breaks up signals into shifted and stretched
versions of the analyzing wavelet. Shifting is called translation and
means delaying or hastening the onset of a wavelet. Shifting the
wavelet function 𝜓(x) by b reveals the shifted wavelet function
𝜓(x− b), as depicted in Figure 3.15. Stretching is termed a dila-
tion and is related to widening the basis wavelet with a factor a.
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Figure 3.14 Wavelets of classes Haar (a), Daubechies (b), Coiflet (c),
Symmlet (d), Morlet (e), and Mexican hat (f ).

A series of wavelets 𝜓 i,j is obtained according to

𝜓i,j =
1√
a
𝜓

(
t − b

a

)
(3.37)

where a = 2i and b = j
2i t for 1 < j < 2i.

The wavelet transform of y* could be computed by an orthonor-
mal wavelet basis matrix W, the same approach as used in FT



80 3 Signal Processing and Time Series Analysis

(a) (b)

1.5 1.5

1 1
0.5

0.5
0

0
−0.5

−1 −1

−1.5 −1.5
00 22 44 66 88 10 1012 1214 1416 1618 1820 20

Ψ(x) Ψ(x – b)

Figure 3.15 Shifting the Daubechies-7 wavelet function 𝜓 (x) (a) and by
the value b (b).
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Figure 3.16 Multilevel decomposition of a signal by discrete wavelet
transformation (DWT).

analysis, that is, y* =W Ty. Practically, a pyramidal scheme is used
to compute y* even faster than with FFT.

The continuous wavelet transformation approach is replaced by
discrete wavelet transformation (DWT), where scales and posi-
tions are computed based on the powers of 2. Filtering is per-
formed separately for the low and high frequency parts of a sig-
nal. The high-scale, low-frequency components are called approx-
imations, A, and the low-scale, high-frequency components are
details, D. The scheme is sketched in Figure 3.16 for decomposi-
tion of the original signal, S, into approximation coefficients, cA,
and detail coefficients cD up to a level of 3.

Application of this scheme is exemplified in Figure 3.17 for a
signal from mass spectrometry of a protein. Note how the approx-
imation cA3 provides a filtered signal without the distortion of the
original peaked signal that occurs with conventional digital filters.
Reconstruction of the signal is then feasible by summation over
the coefficients in the four parts cA3, cD3, cD2, and cD1.
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Figure 3.17 Signal from mass spectrometry of staphylococcus nuclease
(SNase).

Apart from filtering and smoothing, DWT can also be applied
for data compression, baseline removal, resolution enhancement,
or in combination with regression, classification, and projection
methods such as factor analysis. Extension to 2D provides impor-
tant applications in image analysis.

Example 3.5 Wavelet Transformation

A mass spectrum of the protein staphylococcus nuclease
(SNase) (Figure 3.17) is to be decomposed by the Daubechies-
3 wavelet transform at three levels and approximation A3 as
well as details D1 –D3 are to be evaluated.

As one can see in Figure 3.18, the approximation in the third
level resembles the original signal with respect to the high fre-
quencies and filtered to some extent. The details reflect the low
frequency part of the signal ranging over the whole mass-to-
charge ratio, m/z, from 500 to 3000 mass units.

Alignment Methods

The time axes in chromatograms and the energy axes in spectra
often change from one run to another. Statistical analysis of a set
of chromatograms and spectra, however, is only possible if the fea-
tures in those curves coincide at the same channel, that is, at the
same column in the signal data matrix.
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Figure 3.18 Decomposition of the signal in Figure 3.17 into approxima-
tion A3 and details D1 to D3.

To match the shifted points of signal curves, dynamic time
warping (DTW) is frequently applied. Warping stretches and
compresses the axis in order to match the signal traces. In this
kind of alignment, a reference signal curve is chosen from the
set of curves. The individual points of the reference signal,
n= 1,…, N, and those of the sample signal, m= 1,…, M, are
combined in a common set of data points, k = 1,…, K. The
warping path, W, then contains as elements the indexes of the
sample and reference signals according to

W = [n(k),m(k)] k = 1,… ,K (3.38)

If each point, c(k), is a pair of indexes, n(k) and m(k), related to
the reference and sample signals, the warping path is given by

W = {c(1), c(2),… , c(K)} (3.39)

The same signal intensities might be valid for consecutive points
of either the sample or the reference signal. As measure of match-
ing, the minimum distance or the correlation coefficient can be
chosen. Further constraints for the path are fixed begin and end
points, monotonicity, and a limited area for shifting points.
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Figure 3.19 (a) Simulated chromatogram for a reference signal (solid line)
and a sample signal (dotted line). (b) Alignment of reference and sample
signal curves by dynamic time warping.

A simple example is depicted in Figure 3.19a, for a simulated
chromatogram. In this figure, the solid line characterizes the ref-
erence signal and the dotted line the sample signal in a mirrored
representation. If DTW is applied, the two curves are perfectly
aligned as shown in Figure 3.19b. Notice that the original number
of 1000 points has increased to more common points (K = 1104).

3.2
Time Series Analysis

Characterization of a set of measurements as a time series in
the sense of a stochastic process is of interest in a different way,
that is,

• time-dependent monitoring of pH values, metal, or ion concen-
trations in waters and soils;

• determination of constituents in biological fluids over time, for
example, for controlling the blood glucose level;

• description of the time-dependent stability of a spectroscopic
source, for example, the inductively coupled plasma in atomic
emission spectroscopy;

• the judgment of a continuously or discontinuously operating
analyzer.

The methods for smoothing, derivation, integration, or trans-
formation as discussed in Section 3.1 can also be applied to time
series. In this section, we learn about correlation methods. Corre-
lations within a time series are described in the form of autocor-
relation or autocovariance. Two different time series are charac-
terized by means of cross-correlation.

Relationships between
variables can be
described by means of
correlation and
covariance.
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Typical information to be derived from such models is about
• drift;
• noise;
• periodicity of processes, for example, seasonal components;
• forecasting (prediction) of future values on the basis of the

series history.

We begin with correlations within a measurement series.

Autocorrelation and Autocovariance

Correlations of data within a time series can be found, if the data
are plotted against their successors. Consider the time series given
in Figure 3.20, where the monthly recorded sulfur concentration
per liter snow, y(t), is shown in dependence on time, t.

The correlations are obtained by plotting the measurement at
time t, y(t), against the value at time t + 1, that is, y(t + 1), at time
y(t + 2), or in general at time y(t + 𝜏), where 𝜏 represents the so-
called time lag. In Figure 3.21, the dependencies for the lags 0, 1,
7, and 12 are plotted.

A time lag of 𝜏 = 0 represents the plot of the time series against
itself. There, complete correlation is valid. With increasing time
lag, that is, with increasing distance of the data points, the corre-
lation is expected to decrease if no periodicities or drifts within
the time series are present.

As a measure of the degree of correlation, the empirical
autocorrelation is applied (cf. correlation coefficient according to
Eq. (5.12)). For autocorrelation of a function of n data points, the
empirical autocorrelation, r(𝜏), for time lag 𝜏 is defined by

r(𝜏) =

n−𝜏∑
t=1

(yt − y) (yt+𝜏 − y)

n∑
t=1

(yt − y)2

(3.40)

y(t) 1.2

0.8

0.4

0.0
8 10 12 2 4 6 8 10 12 2 4 6 8 10

199419931992

Sulfur,
(mg L−1)

t
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Year

Figure 3.20 Time series for monthly recorded concentration of sulfur as
sulfate.
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Figure 3.21 Pointwise corre-
lations for the time series in
Figure 3.20 for different time lags
of 𝜏 = 0 (a), 1 (b), 7 (c), and 12

(d) data points with the corre-
lation coefficients r(𝜏)= 1.000,
0.243, 0.0209, and 0.365,
respectively.

here, y is the arithmetic mean. The expression in the denominator
of Eq. (3.40) is a measure for the variance, s2, since

s2 =

n∑
t=1

(yt − y)2

n − 1 − 𝜏
or

n∑
t=1

(yt − y)2 = (n − 1 − 𝜏) s2

Mean and variance are considered to be constant. This assump-
tion only holds in the case of a stationary process.

A stochastic process is
termed stationary, if the
signal generating process
is time invariant. All
distributions and
statistical parameters of
a stationary process are
independent of time. A
process varying with
time is called
nonstationary.

It should be mentioned that the numerator in Eq. (3.40) contains
the autocovariance (cf. Eq. (5.10)). The empirical autocovariance
with time lag 𝜏 is defined by

c(𝜏) = 1
n

n−𝜏∑
t=1

(yt − y) (yt+𝜏 − y) (3.41)
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Figure 3.22 Autocorrelation function for the time series in Figure 3.20.
The correlation at 𝜏 = 0 (cf. Figure 3.21) is not drawn in the figure.

If one calculates the autocorrelation coefficients for the corre-
lations in Figure 3.21, then in the case of 𝜏 = 0, we obtain a value
of 1 for the correlation, since

r(0) =

n∑
t=1

(yt − y) (yt − y)

n∑
t=1

(yt − y)2

= 1 (3.42)

For increasing time lags from 1 to 7, the autocorrelations
decrease to r(1)= 0.243 and r(7)= 0.0209, respectively. For
𝜏 = 12, a higher value again for the empirical autocorrelation
results, that is, at r(12)= 0.365. This points to a periodicity in the
time series.

In order to evaluate all possible autocorrelations, r(𝜏) is plotted
against the time lag 𝜏 in a correlogram, also called an autocorre-
lation function. The autocorrelation function for the time series
of sulfur concentrations in snow is given in Figure 3.22. The time
lags 𝜏 correspond here to monthly distances.

At the beginning of the correlogram, the correlations between
the measurements decrease rapidly. At distances of 3 months or
more, the sulfur values produce a negative correlation that might
correspond to the four seasons (cf. Figure 3.22).

Example 3.6 Empirical Autocorrelation

For the time series of sulfur concentrations in snow
(Figure 3.20), the empirical autocorrelation is calculated



3.2 Time Series Analysis 87

for the time lag at 𝜏 = 12. The 27 individual data are given in
Table 3.3.

A value of y = 0.53 is obtained for the data mean. By means
of Eq. (3.27), the result for the autocorrelation is

r(12) =

27-12∑
t=1

(yt − y)(yt+12 − y)

27∑
t=1

(yt − y)2

=

(0.40 − 0.53)(0.56 − 0.53) + (0.54 − 0.53)
(0.51 − 0.53) + · · · + (0.684 − 0.53)(0.66 − 0.53)

(0.40 − 0.53)2 + (0.54 − 0.53)2 + · · · +
(0.66 − 0.53)2

= 0.365

The corresponding plot for the calculated value of 0.365 of
the autocorrelation at 𝜏 = 12 is illustrated in Figure 3.21.

Autocorrelation Functions for Typical Processes

For interpretation of the autocorrelation function, it is useful to
know the graphs of characteristic time series.

Uncorrelated Data In the first step of data analysis, it should
be checked whether the data are uncorrelated or correlated.
Uncorrelated data do not show any trends in their autocorrela-
tion function (Figure 3.23). Note how small the r(𝜏) values are
for the empirical autocorrelations in Figure 3.23. Such data can
be described by the methods discussed in Chapter 2. In other
words, uncorrelated data are a prerequisite to apply the methods
of descriptive statistics discussed in Chapter 2.

Table 3.3 Individual
values for the time
series in Figure 3.19.

t Month/Year y(t)

1 8/92 0.400
2 9/92 0.540
3 10/92 0.640
4 11/92 1.280
5 12/92 0.250
6 1/93 0.160
7 2/93 0.200
8 3/93 0.248
9 4/93 0.404
10 5/93 0.744
11 6/93 0.700
12 7/93 0.730
13 8/93 0.560
14 9/93 0.510
15 10/93 0.684
16 11/93 0.920
17 12/93 0.140
18 1/94 0.096
19 2/94 0.100
20 3/94 0.300
21 4/94 0.452
22 5/94 0.540
23 6/94 1.364
24 7/94 0.570
25 8/94 0.720
26 9/94 0.360
27 10/94 0.660

Correlated Data A random time series with low correlations
between observations provides an autocorrelation function as
shown in Figure 3.24. In the case of a stationary process of
the first order, the function can be described by the following
exponential model:

r(𝜏) = e(−𝜏∕T) (3.43)

where T is the time constant of the process.
For determination of the time constant T, nonlinear or, after

logarithmic transformation, linear regression can be applied. The
time constant can also be evaluated at the specific correlation
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Figure 3.23 Autocorrelation function of uncorrelated data.
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Figure 3.24 Autocorrelation function for weakly correlated data according
to a process of first order. The time series is based on glucose determina-
tions in urine over time.

coefficient r(T)= 0.37. At this point, 𝜏 =T , and therefore,

r(T) = e(−1) = 0.37 (3.44)

For the data in Figure 3.24, a time constant of T = 10 results
when calculated by Eq. (3.44).

Random Processes with Drift and Periodicities Theoretically, fluc-
tuation about zero is expected for a random process after a
decrease of r(t). In the case of a drifting process, the autocorre-
lation function remains at a positive or negative correlation level
(cf. Figure 3.25).

For correction of drifts, the same methods as introduced for
background correction can be applied (cf. Section 3.1).

Periodic processes show characteristic dependencies as demon-
strated in the example on the seasonal variations of sulfur concen-
trations in Figure 3.22. Periodicities or fluctuations can be recog-
nized and quantified from autocorrelation functions much better
than from the time series.
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Figure 3.25 Autocorrelation function for a time series with drift, as found
for measurements with a chemical sensor.
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Figure 3.26 Schematic
demonstration of cross-
correlation between an
input signal x and out-
put signal y. The time lag
can be derived from the
shift in the correlation
maximum.

Cross-Correlation

To describe the correlation of two different time series, y(t) and
x(t), the empirical cross-correlation at time lag 𝜏 is calculated by
the following equation:

rxy(𝜏) =

n−|𝜏|∑
t=1

xtyt+𝜏√
n∑

t=1
x2

t

n∑
t=1

y2
t

(3.45)

Cross-correlation can be used to investigate the input–output
behavior of an analytical system to compare a theoretical band
shape with an observed one. The greatest correspondence
between the two time series is observed in the correlogram at the
position where a maximum for the empirical correlation is found
(Figure 3.26).

Autoregression

A close relationship exists between correlation of data and their
regression on each other (cf. Section 6.1). It is therefore possible
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to model the successive data of a time series by a linear regression
model in order to predict future values.

For autoregression of a time series, we obtain

y(t + 𝜏) − y = r(𝜏) [y(t) − y] + e(t + 𝜏) (3.46)

The measurement at time t plus the time lag 𝜏 is predictable on
the basis of the autocorrelation coefficient, r(𝜏), and the y value
at time t. Here, e represents the random error. Note that this is
a very simple model. Good predictions can only be expected for
time series that really obey this simple autoregressive model.

Correlation methods are not restricted to the characterization
of time-dependent measurements. They can also be used if corre-
lations between spectra, chromatograms, or other correlated ana-
lytical measurement series are to be investigated.
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Questions and Problems

1. Describe the useful and interfering frequencies in an ana-
lytical signal.

2. Explain the effect of filter width on the noise and structure
of a signal trace, such as a spectrum or a chromatogram.

3. Calculate the fourth smoothed value, y4
*, for the signal

data given in Example 3.1 by means of a Savitzky–Golay
filter.

4. The Kalman filter is especially useful for real-time filtering.
Why?

5. What are the benefits of signal derivation and which
derivatives should by applied in what situation?

6. What are the base functions of FT, HT, and WT? Describe
the situations in which each would be the most suitable
for use.

7. What is the difference between a polynomial and a spline
function?

8. What information can be deduced from autocorrelation
functions?
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4
Optimization and Experimental Design

Learning Objectives

• To provide an introductory course into systematic optimiza-
tion methods in analytical chemistry

• To select the most important factors that influence a given
analytical problem based on statistical approaches of exper-
imental design as well as on evaluating the factor effects and
their interactions by means of statistical tests

• To discuss the design of experiments for modeling the
relationship between factors and to apply response surface
methods (RSMs) for locating the optimum

• To search for the optimum by sequential methods, that is, by
means of the simplex method by Nelder and Mead.

Effective experimentation and the development of optimized
methods are fundamental aims of any experimenter. Typical goals
of the analyst in this connection are as follows:

• Investigation of factors on an analytical signal for judging the
robustness of an analytical method or to test for interferences.

• Optimization of the performance of analytical methods with
respect to quality criteria, such as precision, trueness, sensitiv-
ity, detection power, or signal-to-noise ratio.

• Development of an optimal composition of a digesting agent or
of a chemical sensitive layer for the development of sensors.

Typical factors in analytical chemistry are the pH value, reagent
concentration, temperature, flow rate, solvent, elution strength,
mixture components, irradiation, atomization time, or sputtering
rate. Typical responses are the analytical figures of merit and
objective functions that consist of combinations of different
quality criteria. Objective functions and factors are considered in
Section 4.2 in detail.

Chemometrics: Statistics and Computer Application in Analytical Chemistry, Third Edition. Matthias Otto.
© 2017 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2017 by Wiley-VCH Verlag GmbH & Co. KGaA.
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In principle, two approaches in experimental optimization can
be distinguished. First, selection and testing of the most impor-
tant factors, as well as their subsequent optimization, are based
on the subjective experience of the experimenter or analytical
expert. The success will, then, be dictated by the knowledge level
of the domain expert. If the know-how is low, then the workload
might become large. In addition, as we will learn in the following,
a nonsystematic approach does not really guarantee finding the
optimum.

A systematic
optimization is always
preferable to a
trial-and-error approach.

Second, the investigation of the factors and their optimization
can be carried out in a systematic way. This systematic method is
the subject of this chapter. The most successful experimenter will
be the one able to support his expert-based policy by systematic
investigations.

4.1
Systematic Optimization

Systematic optimizations are carried out in the following
sequence:

• Choice of an objective function
• Selection of the most important factors
• Optimization.

Very often, the optimization criterion is simply an analytical
signal or the analysis time. In more complex situations, however,
objective functions that are composed of several criteria, such
as selectivity, sensitivity, and precision, must be considered. The
combination of objective criteria to give a single function is
therefore an important topic in analytical chemistry.

Potential factors that affect a given objective function are best
selected by the domain expert in a particular analytical field. The
test for significance of the factors’ influence should be performed
on the basis of a simple experimental design, a screening design,
by means of statistical tests. Factors should not be kept or elimi-
nated solely for subjective reasons.

To find the most suitable factor combinations, we can dis-
tinguish between simultaneous and sequential optimization
approaches.

Simultaneous Methods

With simultaneous strategies, the relationship between responses
and factors is studied by running an experimental design,
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constructing a mathematical model, and investigating the rela-
tionship by the so-called RSMs. Very often, RSMs are aimed at
judging this relationship graphically and the consequences are
drawn from the plots. If the optimal point is desired, it can be
found by calculating the partial derivatives with respect to the
individual factors or by applying a grid search over the entire
response surface.

Sequential Methods

Sequential strategies of optimization are based on an initial design
of an experiment followed by a sequence of further measurements
in the direction of the steepest ascent or descent. That is, no quan-
titative relationship between factors and responses is evaluated,
but the response surface is searched along an optimal (invisible)
path. The two strategies are exemplified in Figure 4.1.

Simultaneous methods
are based on a
mathematical model for
the response area,
whereas sequential
approaches represent
search methods.

4.2
Objective Functions and Factors

A prerequisite for any optimization is the definition of one or
several objective criteria (figures of merit). For computer-aided
or automatic optimizations, the objective functions need to

F
ac

to
r 

2

Factor 1

Figure 4.1 Response versus factors
plot: In the case of response surface
methods (RSMs), the response is
described by a mathematical model
(dotted contour lines of the response

surface). By using search methods,
the response is measured along a
search path, here along a simplex
path (cf. “Analytical Performance
Characteristics” Section).
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be represented in a computer-readable format. In general, the
following types of objective criteria can be distinguished:

• Continuous or discrete continuous quantities, for example,
yield, time demand, analytical figures of merit, or deviations
between model and experiment

• Discrete (nominal scaled) quantities, for example, the number
of crystallizations or extractions

• Ordinal scaled values, for example, sensory data, such as differ-
ent degrees of sweetness of a raspberry jam, in the sense of a
ranking order.

The optimum sought of an objective function is either the
minimum, for example, minimum time demand, or the maximum,
for example, the yield of a chemical reaction.

In analytics, the analytical performance characteristics consti-
tute ever-important objective criteria that must often be consid-
ered in combination.

Analytical Performance Characteristics

Calibration Function
In connection with the calibration function performance, several
characteristics are combined, such as the sensitivity of an analyt-
ical method and its working range.

The sensitivity corresponds to the slope of the calibration curve.
The calibration function for the analytical signal, y, in dependence
on the concentration (or mass), x, is

y = b0 + b1x (4.1)

The sensitivity, b1, for this calibration function is then defined
by (cf. Figure 4.2):

b1 =
Δy
Δx

(4.2)

The intercept b0 represents an uncorrected blank or back-
ground value. If the measurement is carried out versus the blank,
a model without the term b0 would be valid.

In atomic absorption spectrometry, the use of inverse sensitivity
is commonly defined by the mass or concentration per 1% absorp-
tion (0.00436 absorbance units). The sensitivity can be given as a
constant value for the whole concentration range only in the case
of a straight-line calibration curve. In the case of curved calibra-
tion graphs, the sensitivity varies with concentration.

In the latter case, optimization is often performed with the aim
of enhancing the linear range.



4.2 Objective Functions and Factors 97

S
ig

na
l, 

y

Concentration, x

Δx

Δx
ΔyΔy

b0

b1=

Figure 4.2 Sensitivity for a straight-line calibration as functional depen-
dence of signal on concentration.

The dynamic range corresponds to the valid range of the
functional relationship between the signal and the concentration
or mass. The analytical or working range denotes the interval
between the lowest and highest concentrations, for which accu-
rate measurements are feasible for evaluation of random and
systematic errors. Outside this interval, the measurements are
considered uncertain.

In the case of curved
calibration graphs, the
sensitivity is reported
together with the
concentration
considered.

Detection Limit and Limit of Determination
The detection limit describes the concentration that can be deter-
mined with a given analytical method. For evaluation of the detec-
tion limit, the signal at the detection limit, yDL, is calculated from
the blank mean and the standard deviation as follows:

yDL = yB + 3sB (4.3)

The factor 3 provides sufficient statistical certainty to account
for the errors due to transformation from the signal to the concen-
tration domain, for the necessary assumptions on the distribution
of the blank values, and for the limited number of measurements,
which only allow an estimate of the standard deviation of the blank
value (sB).

After reshaping of the calibration function in Eq. (4.1), the con-
centration at the detection limit, xDL, is evaluated as

xDL =
yDL − b0

b1
(4.4)

To characterize a boundary at which a quantitative analysis is
still feasible, the limit of determination is used. The limit of deter-
mination is defined as the lowest analyte concentration that can
be determined with an acceptable accuracy.
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Figure 4.3 Random and systematic errors
for measurements in the signal domain.

Accuracy of Analyses: Precision and Trueness
The accuracy of an analysis is determined by its precision and
trueness. Precision corresponds to the fraction of random errors
and trueness to that of systematic errors (bias). In Figure 4.3, the
two error types for measurements of a signal, y, are illustrated.

In the concentration domain, we obtain

e = (x − x)
⏟⏟⏟

random error

+ (x − xw)
⏟⏟⏟

bias

(4.5)

where e is the error for the accuracy of analysis, x the determined
concentration, x the concentration mean, and xw the true concen-
tration.

Accuracy is the term
placed over precision and
trueness.

Precision characterizes the repeatability of measurements. For n
independent random measurements, it can be described by using
the standard deviation as the dispersion measure. In the concen-
tration domain, x, is calculated according to Eq. (2.4) by

s =

√√√√√√
n∑

i=1
(xi − x)2

n − 1
(2.4)

The trueness for characterization of systematic errors is speci-
fied by the rate of recovery. This is the ratio of the observed mean
and the true value given as a percentage by

RR(%) = x
x

100 (4.6)

Specificity and Selectivity
The selectivity of an analytical method is a measure of the
degree to which the determination of an analyte is interfered
with by accompanying analytes or matrix components. A fully
selective analytical method enables the analytes to be selected for
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Figure 4.4 Illustration of the analytical resolution for differently separated
peaks or bands.

determination without interference. One says that the method is
specific with respect to the individual analytes.

A prerequisite for an undisturbed quantitative analysis is the
existence of interference-free signals for each component to be
determined. Signals related to several components are only avail-
able for the so-called two-dimensional analytical methods. The
signals are monitored in dependence on a second dimension, z,
such as wavelength, time, or electrode potential (cf. Figure 4.4).
As a measure for the estimation of selectivity, the analytical reso-
lution, N, is used. The analytical resolution is defined as the ratio
of the signal location at the z-axis and the signal full width at half
maximum, Δz:

N = z
Δz

(4.7)

The larger the resolution, the higher is the selectivity of the
method.

If an analytical method operates fully selectively, optimization
of its selectivity would be superfluous. A baseline-separated chro-
matogram of all components of a sample is one example of a fully
selective analytical method.

An unselective or partially selective method is characterized
by overlapping analyte signals. The aim of optimization of such
methods is improvement of their selectivity, if possible, up to the
development of a fully selective method. Often, however, signal
overlap can only be decreased to some extent and methods of mul-
ticomponent analysis have to be used to correct for the remaining
interferences computationally (cf. “Applications for Multicompo-
nent Analysis” Section).

For characterization of
limited selectivity, the
notions of interference,
cross-sensitivity, and
overlap are common.

To characterize incomplete selectivity, measures are applied
that consider only two adjacent signals related to the correspond-
ing two components. Table 4.1 provides selectivity measures
from different areas of analytics. By appropriate aggregation of
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Table 4.1 Selectivity measures in analytics.

Selectivity measure Analytical principle Formula

Selectivity coefficient, Kpot
ij Potentiometry Kpot

ij = ai
aj

Separation factor, 𝛼 Chromatography 𝛼 =
k′1
k′2

Resolution, RS Chromatography RS =
√

N
4 (𝛼 − 1) k′

1+k′

ai, aj activities of ions i or j; k′
i capacity factor; N plate number.

the selectivity measures, multicomponent systems can also be
described, for example, in chromatography (cf. Table 4.2).

More general selectivity measures can be derived if the prin-
ciples of multicomponent analysis are explored. A consequent
application of the laws of error propagation enables selectivity
criteria to be derived for the general case of multicomponent
analysis, which can even cope with different concentration ratios
of analytes in the sample.

Since the principles of multicomponent analysis are only intro-
duced in Section 6.2, the corresponding selectivity criteria will be
discussed there.

Other figures of merit
are the signal-to-noise
ratio and the
signal-to-background
ratio. A measure for the
signal-to-noise (S/N)
ratio is the quotient
of the signal means, y,
and the standard
deviation of the signal
noise, sy:

S
N

=
y
sy

Time, Cost, and Risk

Minimization of the time demand or cost of analyses might also
constitute an objective function. To optimize an entire analytical
procedure, methods of operational research might be needed in
addition to the systematic approaches considered in this section.
This is especially important in cases where risk assessment is
required in connection with the analytical procedure.

Accounting for Several Performance Characteristics

In practice, it is very often important to optimize several objective
criteria. The simultaneous optimization of an analytical method
with respect to selectivity and time demand is a typical example
of this situation.

Aggregation of Performance Characteristics

Multicriteria decision making is feasible in two ways. First, the dif-
ferent performance characteristics are aggregated to an objective
function, most easily by a weighted sum. The objective function,
Z, is obtained from the p individual objective criteria, zi, by

Z = w1z1 + w2z2 + · · · + wpzp =
p∑

i=1
wizi (4.8)
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Table 4.2 Aggregation of performance characteristics to an objective
function (explanation in text).

Objective function Analytical principle Formula

Chromatographic
response function,
CRF

Chromatography CRF = 1
t

m−1∏
i=1

fi
gi + 2Ni

Leary criterion, ZAES Atomic emission
spectrometry

ZAES = p
p∑

i=1

(
Ii

IB
i

)−1

Signal-to-background
ratio, ZXRF

X-ray fluorescence
analysis

ZXRF = 1
t

p∑
i=1

Ii − IB
i

IB
i

where wi is the weight of objective criterion i.
The weights are adjusted in such a way that they reflect the real

influence of the performance characteristics on the total result.
This is not usually easy to do. In addition, with this method, the
type of aggregation has to be decided in advance and optimization
is carried out with respect to a single point.

Different aggregations of objective criteria have been developed
for particular analytical methods. Table 4.2 gives examples of
objective functions for chromatography and spectroscopy. The
objective function for chromatography, the chromatographic
response function (CRF) accounts for all m peaks of the chro-
matogram, the time t for elution of the last peak, the noise,
Ni, at the measurement point of peak i, and the selectivity
of peak separation based on Kaiser’s measure for peak sepa-
ration f /g (see Figure 4.5). For optimal separations, the CRF
is maximized.

Signal, y

Retention time, tR

g
f

Figure 4.5 Peak separa-
tion according to Kaiser.For judging multielement determination by means of atomic

emission spectrometry (AES) or X-ray fluorescence analysis
(XRF), the evaluation of the signal-to-background ratio, I to IB,
for all p signals is proposed.

Advantages and disadvantages of those objective functions are
to be tested in the actual application of the particular method. A
general disadvantage for these methods is that the weighting of
the objective criteria is done by a fixed weight.

A more flexible evaluation is feasible by using cost or utility
functions. They can be constructed on the basis of conven-
tional mathematical functions or by means of fuzzy functions
(Section 8.3).
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Figure 4.6 Goal region
for the simultaneous
investigation of two
objective criteria, for
example, selectivity and
analysis time. The bold
line characterizes Pareto
optimal points.

The preliminary decision on the aggregation of the criteria does
not allow for compromise solutions, which are possible if methods
of polyoptimization are applied.

Polyoptimization

To find compromise solutions, the entire region is investigated
without aggregating the individual criteria in advance.

A prerequisite is here being feasible to describe the relationship
between the objective criteria and the factors by a mathematical
model. The objective criteria can then be computed for all the fac-
tor combinations, and if not more than three criteria are to be
considered, they can be plotted or they can be computationally
investigated. In that way, the compromise set of all Pareto optimal
points can be found (Figure 4.6). Pareto optimal points are those
points or factor combinations for which a change of one of the
objective criteria would result in worsening of at least one other
criterion.

As can be seen in Figure 4.6, the objective criteria cannot
assume any arbitrary value. Depending on the experimental
constraints for the factors, the objective criteria lie in a bounded
region. On the basis of the mathematical model, the objective
region can be investigated by calculation of the criteria at as many
points as needed.

4.3
Experimental Design and Response Surface Methods

Fundamentals

Ceteris Paribus Principle

Optimization of an analytical problem or of an analytical pro-
cedure has to be carried out by studying a limited number of
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factors. Very often, it is easy to select the most important factors
from prior and common knowledge about a given problem, for
example, in developing a new spectrophotometric method, the
factors pH and reagent concentration would have to be studied,
or in HPLC, important factors are the constituents of the mobile
phase and their actual concentrations.

In a screening
experiment, the factor
range is evaluated for the
subsequent studies.

Sometimes, the effect of a factor can only be presumed and its
effect would have to be assured by suitable screening experiments.
Because of the complexity of most of the analytical problems,
there will be additional factors that are either unknown or cannot
be controlled by the experimenter. Uncontrolled factors might
be the impurity of reagents, intoxication of an electrode surface,
the instability of a plasma source, and the changing quality of a
laboratory assistant’s work.

Since the study of all potential factors is usually prohibitive, the
effect of selected factors will be investigated and the remaining
factors should be kept as constant as possible. This general prin-
ciple is known as the ceteris paribus principle.

Replication

Replication of measurements at a given factor combination is nec-
essary for estimation of the experimental error. Furthermore, the
error can be decreased with repetitive measurements by averag-
ing, that is, by a factor of 1∕

√
n if n repetitive measurements have

been carried out.

Randomization

Randomization means running the experiments in a random
order. Randomized experiments are obligatory if systematic
errors (bias) cannot be avoided and should be detected. Imagine
the construction of a calibration graph. If the concentrations are
measured in ascending order, it would not be possible to detect
a systematic error such as a positive signal drift correlated with
time. All experimental observations might lie on a straight line,
but the measured slope of the calibration graph is shifted sys-
tematically from the true slope (Figure 4.7a). On the other hand,
if the concentrations are measured in a random sequence, then
you will notice that something is wrong because the variation of
observations will be exceptionally high (Figure 4.7b).

In the present example, we have examined only one factor: the
component concentration. In the case of studying several factors,
randomization is similarly necessary. In multifactor experiments,
the experimental design must be run in a randomized order, as we
will see.
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Figure 4.7 Experimental observations for constructing a calibration graph
in systematic (a) and randomized order (b).

One of the basic prerequisites of all statistical tests is the exis-
tence of random and independent data. This assumption is also
valid for statistical tests in connection with experimental designs,
so that randomized experimentation is obligatory in this context.
Carrying out the experiments in a random sequence will be one of
the suppositions for being able to measure independent, uncorre-
lated, and usually normally distributed data.

Random sequences should be read from random number tables
or, nowadays, these are read from a random number generator.
This guarantees the genuine randomness of the sequence instead
of subjective selections.

Blocking
Uncontrolled factors lead to higher experimental errors, which
will also decrease the sensitivity of the experiments with respect
to the factors to be studied. Therefore, the experiments should be
designed such that uncontrolled factors can be detected and, in a
further step, can be kept constant or eliminated.

There are two categories of uncontrolled factors. Uncontrolled
influences might arise from either unknown factors or known
factors that cannot be controlled. The eventual impurity of a
reagent is an example of an unknown factor. The changing quality
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of a‘ laboratory assistant’s work is an agreed factor that is difficult
to control. Completely unknown factors cannot be accounted for
at all.

Known or presumably known factors can be detected by
blocking the experiments. The idea is to run the experiments
in blocks that show a minimum experimental variance within
one block. For example, if a systematic investigation requires 12
experiments and you could run only 4 experiments a day, the
experiments should be arranged in 3 blocks with 4 experiments
each day. Day-to-day effects could then be detected by consid-
ering the block effects with an adequate mathematical model as
given as follows.

Of course, the experiments within a block should be run at
random. Randomized experimentation with respect to some fac-
tors and blocking of the experiments with respect to some other
factors exclude each other. Therefore, in practice, a compromise
between randomized runs and blocked experiments has to be
found.

Factorial Experiments

Factorial experiments are based on varying all factors simultane-
ously at a limited number of factor levels. This kind of experimen-
tation is especially important in the beginning of an experimental
study, where the most influential factors, their ranges of influence,
and factor interactions are not yet known. Factorial experiments
allow experiments to take place in the whole range of the fac-
tors’ space. They reveal high precision at a minimum experimental
effort, and they enable factor interactions to be detected, such as
the dependence of enzyme activity on both pH value and coen-
zyme concentration.

Confounding

Confounding of parameter estimations for different factors occurs
if the factor combinations are highly correlated and, therefore, no
difference between the factor effects can be detected. Confound-
ing depends highly on the concrete experimental design. If, for
example, the levels of two factors are changed in a constant ratio,
it would not be possible to distinguish between the effects of those
two factors.

Symmetry

Factorial experiments should be partitioned in the whole factor
space in a balanced manner. The same is true for replications in the
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experimental space. One reason for performing symmetric exper-
iments is the avoidance of confounded factor effects. In addition,
symmetric experiments might simplify data evaluation.

Two-Level Designs: Screening Designs

Full Factorial Designs
Designs on the basis of two levels for each factor are called screen-
ing designs. The most general design is a full factorial design at two
levels. These designs are described as 2k-designs where the base 2
stands for the number of factor levels and k expresses the number
of factors.

Example 4.1 23 Design

As an example, a two-level three-factorial design, 23, is given
in Table 4.3 and Figure 4.8. The factor levels are scaled here to
−1 for the lower level and+1 for the higher level. Other coding
schemes are also used, for example, 0 and 1, − and +, or A and
B for the low and high levels, respectively. One advantage of
working with scaled factor levels is the feasibility of applying
the same design to several investigations. Another advantage
can be seen if we model the relationship between responses
and factors quantitatively. With coded levels, the size of the
parameters will become comparable. Of course, the original
variables can also be used in a study.

Table 4.3 Full factorial design at two levels, 23 design.

Experiment Factors Response

x1 x2 x3

1 −1 −1 −1 y1
2* +1 −1 −1 y2
3 +1 +1 −1 y3
4* −1 +1 −1 y4
5* −1 −1 +1 y5
6 +1 −1 +1 y6
7* +1 +1 +1 y7
8 −1 +1 +1 y8

The star-labeled experiments represent the half-fraction factorial design
of Figure 4.8.
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Figure 4.8 Full fac-
torial design at two
levels, 23 design. x1,
x2, and x3 represent
the three factors.

Fractional Factorial Designs

As long as the number of factors is small, full factorial designs
can easily be run. At higher factor numbers, however, the number
of experiments will increase dramatically. For example, for the
study of 7 factors in a 27 design, 128 experiments in total will
be necessary. At this point, we have to discuss the objectives
of running a factorial experimental design. One reason is the
estimation of factor effects. As we will see in the section on
linear models (Section 6.2), it will not be necessary to evaluate
the effects of 7 factors by running 128 experiments. Another
aim is to model the responses in dependence on the factors. For
modeling dependences of responses on two factor levels, we
would use a polynomial of first order. So in our case, we would
have to estimate seven parameters linked to the effects of the
seven factors and perhaps an additional parameter that models
the intercept at the ordinate axis. For computing this statistical
model, we deduce 128− 8= 120 degrees of freedom, which are
obviously too many to test for the adequacy of a simple first-order
polynomial model.

The number of experiments can be reduced if fractional
factorial designs are used. For fractional factorial designs, the
number of experiments is reduced by a number p according to
a 2k−p design. In the case of p= 1, the so-called half-fraction
designs result.

Example 4.2 23−1 Design

For the example of three factors at two levels (cf. Figure 4.8),
the half-fraction design consists of 23−1 = 4 experiments as
given in Figure 4.9. In Table 4.4, the points of this design are
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labeled by an asterisk. The experiments can be run either at
the given points or at the complementary corner points.
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Figure 4.9 Fractional fac-
torial design at two levels,
23−1 half-fraction design.
x1, x2, and x3 represent the
three factors.

Table 4.4 Factorial design for four factors at two levels.

Run Factor

x1 x2 x3 x4

1 −1 −1 −1 −1
2* +1 −1 −1 +1
3 −1 +1 −1 +1
4* +1 +1 −1 −1
5* −1 −1 +1 +1
6 +1 −1 +1 −1
7* −1 +1 +1 −1
8 +1 +1 +1 +1

24−1 – half-cell design.

Apart from saturated designs such as those in Tables 4.4 and
4.5, numerous other fractional factorial designs can be used if the
effect of many factors is to be studied. Concrete designs can be
taken from tables (cf. Table A.9) and can be generated with most of
the software packages given in the Appendix. Special designs for
estimating only the main effects have been tabulated by Plackett
and Burman. As an example in Table 4.6, their fractional factorial
design for 11 factors at two levels is represented.

A special case of a two-level factorial design is the Latin square
design, which was introduced very early on to eliminate more than
one blocking variable. A Latin square design for two factors is
given in Table 4.7 along with the representation as a fractional
factorial design.
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Table 4.5 Factorial design for five factors at two levels.

Run Factor

x1 x2 x3 x4 x5

1 −1 −1 −1 −1 +1
2 +1 −1 −1 −1 −1
3 −1 +1 −1 −1 −1
4 +1 +1 −1 −1 +1
5 −1 −1 +1 −1 −1
6 +1 −1 +1 −1 +1
7 −1 +1 +1 −1 +1
8 +1 +1 +1 −1 −1
9 −1 −1 −1 +1 −1
10 +1 −1 −1 +1 +1
11 −1 +1 −1 +1 +1
12 +1 +1 −1 +1 −1
13 −1 −1 +1 +1 +1
14 +1 −1 +1 +1 −1
15 −1 +1 +1 +1 −1
16 +1 +1 +1 +1 +1

25−1 – half-cell design.

Table 4.6 Plackett and Burman fractional factorial design for estimating
the main effects of 11 factors at 2 levels.

Run Factors Response

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

1 + + − + + + − − − + − y1
2 − + + − + + + − − − + y2
3 + − + + − + + + − − − y3
4 − + − + + − + + + − − y4
5 − − + − + + − + + + − y5
6 − − − + − + + − + + + y6
7 + − − − + − + + − + + y7
8 + + − − − + − + + − + y8
9 + + + − − − + − + + − y9
10 − + + + − − − + − + + y10
11 + − + + + − − − + − + y11
12 − − − − − − − − − − − y12
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Table 4.7 A 2× 2 Latin square design in different representations.

Conventional representation
Blocking variable 1 Blocking variable 2

Low High

Low A B
High B A

Factorial representation
Blocking variable 1 Blocking variable 2 Blocking variable 3

Low Low A
Low High B
High Low B
High High A

Example 4.3 Latin Square

Four formulations of a drug are to be studied with respect
to bioequivalence by treating four subjects at four periods.
A 4× 4 Latin square is constructed as given in Table 4.8. The
formulations are coded by A, B, C, and D.

Table 4.8 4× 4 Latin square.

Subject no. Period

1 A B D C
2 D C A B
3 B D C A
4 C A B D

Note the balance of the Latin square. All four drugs are given
at each period to each person.

Estimation of Factor Effects
Screening designs are mainly used to estimate the effects of
factors in an analytical investigation on a statistical basis. To
understand the test procedure, we will consider an example from
kinetic–enzymatic determinations.
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Example 4.4 Factor Effects Estimation

The determination of the enzyme ceruloplasmin based on
spectrophotometric measurements of the initial rate of
p-phenylenediamine (PPD) oxidation is investigated at a
constant enzyme concentration of 13.6 mg/l. In the first step,
a screening 23 design is used to study the effects of the factors
pH value, temperature, and substrate concentration PPD.

The factor levels are given in Table 4.9 along with the exper-
imental design and the measured initial rates. Based on the 23

design, both main factor effects and interactions can be stud-
ied. The levels for factor interactions are calculated as products
of the actual factor level combinations.

Table 4.9 A 23 screening design and factor levels for estimation of the
factors pH value, temperature (T), and p-phenylenediamine concentra-
tion (PPD).

Factor Level

−1 +1

T (∘C) 35 40
PPD (mM) 0.5 27.3
pH 4.8 6.4

Run Coded factor levels y (min−1)

Main effects Interaction effects

T PPD pH T ×PPD T ×pH PPD×pH

1 +1 −1 −1 −1 −1 +1 6.69
2 +1 +1 −1 +1 +1 −1 11.71
3 +1 +1 +1 +1 −1 +1 14.79
4 +1 −1 +1 −1 +1 −1 8.05
5 −1 −1 −1 +1 −1 +1 6.33
6 −1 +1 −1 −1 +1 −1 11.11
7 −1 +1 +1 −1 −1 +1 14.08
8 −1 −1 +1 +1 +1 −1 7.59

The factor effects are calculated as the absolute difference,
|D|, between the responses of a factor at high and low levels.
For example, for the factor, x1, of the full factorial 23 design in
Table 4.4, we obtain

Dx1
=

y2 + y4 + y6 + y8
4

−
y1 + y3 + y5 + y7

4
(4.9)
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These differences are then tested against the experimental
error expressed by the standard deviation s multiplied by the
Student’s t value:

|D| ≥ t(P, f ) s (4.10)

DT =
y1 + y2 + y3 + y4

4
−

y5 + y6 + y7 + y8
4

= 6.69 + 11.71 + 14.79 + 8.05
4

− 6.33 + 11.11 + 14.08 + 7.59
4

= 0.53

DPPD = 11.71 + 14.79 + 11.11 + 14.08
4

− 6.69 + 6.33 + 8.05 + 7.59
4

= 5.76

DpH = 14.79 + 14.08 + 8.05 + 7.59
4

− 6.69 + 6.33 + 11.71 + 11.11
4

= 2.17

DT∗PPD = 11.71 + 14.79 + 6.33 + 7.59
4

− 6.69 + 8.05 + 11.11 + 14.08
4

= 0.123

DT∗pH = 14.79 + 8.05 + 6.33 + 11.11
4

− 6.69 + 11.71 + 14.08 + 7.59
4

= 0.053

DPPD∗pH = 6.69 + 14.79 + 6.33 + 14.08
4

− 11.71 + 8.05 + 11.11 + 7.59
4

= 0.858
(4.11)

With a standard deviation of 0.24 and a degree of freedom
of f = 3 measured at factor level of run 3, we calculate for the
experimental error

t(0.95, 3) s = 3.18 • 0.24 = 0.76 (4.12)

The comparison of the experimental error with the absolute
differences reveals that the main factors pH and PPD concen-
tration show a significant effect (DPPD and DpH are higher than
0.76) while the effect of the temperature can be neglected in
the range studied: 35–40 ∘C (DT < 0.76).
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Graphical inspection of the main factor effects can be
carried out as in Figure 4.10. As found by the calculations,
there is minimal influence by the temperature. If the enzy-
matic reaction is run at a common 37 ∘C, the method will
be rugged against temperature fluctuations. Note that all
measured initial rates are slightly higher at 40 ∘C than at
35 ∘C. Compared to the general experimental error, however,
this effect has been found to be statistically insignificant.
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Figure 4.10 Factor effects in the kinetic–enzymatic oxidation of
p-phenylenediamine (PPD) by the enzyme ceruloplasmin.
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The enhancing effect of the substrate concentration PPD and
of the pH on the rate can also be seen in Figure 4.10. As a
general rule, main effects will give parallel straight lines in the
factor effects plot. In the case of factor interactions, the slope
of the straight line will differ if the levels of the alien factors
change. The latter is the case for interactions of the pH and
PPD factors. As can be seen from Figure 4.10, the changes of
rates between the lower and higher levels of PPD are more pro-
nounced, if the factor pH is at a high level (points ◾ and x). A
similar effect is observed if the rate changes in dependence on
pH are compared at high (points ◾ and x) and low (points ⧫
and ▴) PPD concentrations.

The calculated interaction effects are significant for
the interaction of the substrate PPD and the pH value
(DPPD*pH > 0.75).

In contrast to the simultaneous factorial design study, experi-
mentation by variation of one variable at a time is limited to the
estimation of main effects, and no interactions, as are common
in analytical chemistry, can be found. What cannot be evaluated
with screening designs are curved dependences, that is, for more
complicated relationships between responses and factors, designs
at three or more factor levels are needed.

Three-Level Designs: Response Surface Designs

In order to describe the relationship between responses and
factors quantitatively, we will use mechanistic (physicochemical)
or empirical models, for example, polynomial models. These
mathematical models should be able to describe linear and
curved response surfaces similarly. Curved dependences can be
modeled if the factor levels have at least been investigated at
three levels.

Three-level factorial designs are known, therefore, as response
surface designs. Full-factorial three-level designs can be formal-
ized in the same way as known for two-level designs, that is, a 3k

design means k factors at three factor levels. Figure 4.11 gives an
example for a 32 design.

The degree of freedom of
a factorial design is the
number of runs minus
the number of
independent factor
combinations. Full-factorial three-level designs are sometimes used for

investigating few factors (two or three) although their statistical
properties with respect to symmetry or confounding of parame-
ter estimates are less favorable than those known for the two-level
designs. In the case of many factors, the same problem as with
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Figure 4.11 Full-factorial three-level
design for two factors, 32 design.

two-level designs arises, that is, the number of experiments gets
very high. These disadvantages led to the development of the
so-called optimal designs, of which the central composite design
and the Box–Behnken design are the most important ones.

Central Composite Design
Composite designs consist of a combination of a full or fractional
factorial design and an additional design, often a star design. If the
centers of both designs coincide, they are called central composite
designs. Consider a design that consists of a full-factorial two-level
design linked to a star design. For the number of runs r, we obtain

r = 2k –p + 2k + n0 (4.13)

where k is the number of factors, p the number for reduction of
the full design, and n0 the number of experiments in the center of
the design.

Example 4.5 Runs in a Central Composite Design

For a design with three factors, one gets 15 for the number of
experiments r according to Eq. (4.13): r = 23 + 2 × 3 + 1 = 15

A complete three-factor central composite design is depicted
in Table 4.10 and Figure 4.12. The distance of the star points 𝛼
from the center can be differently chosen. For a uniformly rotat-
able design,

𝛼 = 2(k−p)∕4 (4.14)

for example, for three factors, 𝛼 = 2(3−0)/4 = 1.682.
To estimate the experimental error, replications of factor com-

binations are necessary. Usually, the center point is run thrice.
The total number of runs in a central composite design with three
factors amounts then to 17.

Replication here means
carrying out a given
factor combination
several times.
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Table 4.10 Central composite design for three factors consisting of a
full-factorial two-level design and star design.

Run Factors Response

x1 x2 x3

23 Kernel design
1 −1 −1 −1 y1
2 +1 −1 −1 y2
3 +1 +1 −1 y3
4 −1 +1 –1 y4
5 −1 −1 +1 y5
6 +1 −1 +1 y6
7 +1 +1 +1 y7
8 −1 +1 +1 y8
2k Star points
9 −𝛼 −0 −0 y9
10 +𝛼 −0 −0 y10
11 −0 −𝛼 −0 y11
12 −0 +𝛼 −0 y12
13 −0 −0 −𝛼 y13
14 −0 −0 +𝛼 y14
Center point
15, 16, 17 −0 −0 −0 y15, y16, y17

+1

–1

0

0

0

–1
–1

+1

+1

X3

X1

X2

Figure 4.12 Central composite design for three factors.
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Figure 4.13 Box–Behnken design for three factors.

Apart from good statistical properties of the central composite
design, there is one experimental disadvantage. Because the star
points are outside the hypercube, the number of levels that have
to be adjusted for every factor is actually five instead of the three
in a conventional three-level design. If the adjustment of levels is
difficult to achieve, an alternative response surface design would
be the design introduced by Box and Behnken.

Box–Behnken Design

In a Box–Behnken design, the experimental points lie on a
hypersphere equidistant from the center point as exemplified for
a three-factor design in Figure 4.13 and Table 4.11. In contrast
to the central composite design, the factor levels have only to
be adjusted at three levels. In addition, if two replications are
again performed in the center of the three-factor design, the total
number of experiments is 15 compared to 17 with the central
composite design.

In a Box–Behnken design, the experimental points lie on a
sphere rather than on a cube.

In general, the Box–Behnken design requires few factor combi-
nations, as is given in Table 4.12. The usage of the design is further
explained in “Response Surface Methods” Section.

One disadvantage of Box–Behnken designs might be the
representation of responses in dependence on a single factor.
This is because the corner points of the cube are not measured
but have to be computed by an appropriate response surface
model.

Response

Factor

–1 0 +1
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Table 4.11 Box–Behnken design for three factors.

Run Factors Response

x1 x2 x3

1 +1 +1 −0 y1
2 +1 −1 −0 y2
3 −1 +1 −0 y3
4 −1 −1 −0 y4
5 +1 −0 +1 y5
6 +1 −0 −1 y6
7 −1 −0 +1 y7
8 −1 −0 −1 y8
9 −0 +1 +1 y9
10 −0 +1 −1 y10
11 −0 −1 +1 y11
12 −0 −1 −1 y12
13, 14, 15 −0 −0 −0 y13, y14, y15

Table 4.12 Number of factors and experimental points for the
Box–Behnken design with three replications in the center of
each design.

Number of factors Number of experiments

3 15
4 27
5 46
6 54
7 62

Mixture Designs
A special problem arises if additional relationships hold between
the factors in an analytical investigation. This is true if mixtures,
such as eluents in liquid chromatography or formulations in the
pharmaceutical and textile industry, are under investigation. The
constituents of a mixture given in portions of weight, volume, or
mole are confined to the assumption that the amounts of the N
constituents sum up to 100% or (normalized) to 1, that is,

N∑
i=1

xi = 1 for xi ≥ 0 (4.15)
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The most important mixture design for an analyst is based on
a so-called (k,d) lattice. For the k factors, the lattice describes
all experimental points having the factor levels 0, 1/d, 2/d,… ,
(d − 1)/d or 1. In total, the (k, d) lattice has the following number
of points:(

d + k − 1
d

)
(4.16)

Water

THF ACN

10

1 3 4

567

8

2

9

Ternary mixtures of
water, tetrahydrofuran
(THF), and acetonitrile
(ACN) as mobile-phase
compositions in HPLC.

Example 4.6 Lattice Design

Consider a (3,3) lattice design as given in Figure 4.14. The num-
ber of points is calculated by(

3 + 3 − 1
3

)
=
(

5
3

)
= 5!

(5 − 3)!3!
= 5 • 4 • 3 • 2 • 1

2 • 1 • 3 • 2 • 1
= 10

X2

X1

X3

1

1

0.67 

0.33

0
Figure 4.14 Mixture
design for three factors
at 10 levels based on a
(3,3)-lattice design.

The factor levels are 0, 1/3, 2/3, 1, that is, 0, 0.33, 0.66, 1.00,
respectively. In HPLC, the three constituents could be the
solvents methanol, ACN, and water of the mobile phase.

Response Surface Methods
RSMs are very useful in order to quantify and interpret the
relationships between responses and factor effects. In analyt-
ical chemistry, the relationships can be based on physical or
physicochemical models that are generalized by statisticians
as the so-called mechanistic models. Another way is empirical
modeling, where the parameters have no mechanistic meaning.
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General empirical models are polynomials of the second order,
where the response y is related to the variables (factors) x as
follows:

y = b0 +
k∑

i=1
bixi +

k∑
1≤i≤j

bijxixj +
k∑

i=1
biix2

i (4.17)

where k is the number of variables (factors), b0 the intercept
parameter, and bi, bij, bii the regression parameters for linear,
interaction, and quadratic factor effects, respectively.

To estimate all parameters in Eq. (4.17), the experiments have
to be carried out at three factor levels, as discussed earlier for
the response surface designs. The responses of experiments
based on two factor levels can also of course be explored by
RSM. However, no parameter estimates can then be obtained for
curved (quadratic) factor effects, but only linear and interaction
effects can be visualized.

The estimation of the empirical parameters is a general prob-
lem of least squares estimation by linear models. The basics are
introduced in Section 6.2. With the parameters in hand, the model
can be used to plot the response in dependence on the individual
factors. The RSM is explained here by further exploring the enzy-
matic determination of ceruloplasmin from the previous section
about screening designs.

Small deviations from the factor levels −1, 0, and +1 will not
significantly alter the statistical properties of a design.

Example 4.7 Response Surface Methods

In the aforementioned study, the factors pH value and PPD
were found to significantly influence the enzyme catalyzed
oxidation of the substrate PPD. To study the relationship
between the response (initial reaction rate) and the significant
factors quantitatively, a design at three levels, a Box–Behnken
design, is run at a temperature of 37 ∘C. The concentration of
the enzyme ceruloplasmin (CP) is included as a third factor in
order to investigate the response characteristics of the analyte
ceruloplasmin. Details of the Box–Behnken experiments are
outlined in Table 4.13. The three levels for each factor are
given along with the concrete experimental design and the
results of rate measurements.
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Table 4.13 Factor levels and Box–Behnken design for studying the
ceruloplasmin (CP) determination by RSM.

Factor Level

−1 0 +1

PPD (mM) 0.5 14.3 27.3
pH 4.8 5.6 6.4
CP (mg l−1) 0.7 13.6 26.0

Run Factors Rate y (min−1)

Systematic Randomized PPD pH CP

1 2 +1 +1 0.02 20.67
2 12 +1 −1 0.02 12.67
3 13 −1 +1 0.02 8.21
4 4 −1 −1 0.02 6.58
5 6 +1 0 +1 37.2
6 7 +1 0 −1 5.27
7 1 −1 0 +1 14.95
8 9 −1 0 −1 1.87
9 11 0.03 +1 +1 33.63
10 14 0.03 +1 −1 4.4
11 10 0.03 −1 +1 26.02
12 15 0.03 −1 −1 1.06
13 5 0.03 0 0.02 23.86
14 3 0.03 0 0.02 24.43
15 8 0.03 0 0.02 23.29

Parameter estimation with a polynomial of second order
reveals the following final model:

y = 22.13 + 5.48PPD + 2.54pH + 12.3CP
+ 4.73PPD • CP − 6.32PPD2 − 5.02pH2 (4.18)

From the empirical model, it can be concluded that the
three factors pH, PPD, and the enzyme concentration (CP)
show main and quadratic effects (cf. Eq. (4.18)) on the rate
of the reaction. In addition, there is a statistically significant
interaction between the factors substrate (PPD) and enzyme
(CP). In analytical terms, this means that for determinations
of the enzyme, the substrate concentration should be kept
constant with high precision.
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Figure 4.15 Surface (a) and contour (b) plots of enzymatic rate versus
the factors PPD concentration and pH. The contour lines in b represent
iso-rate lines.

Based on the mathematical model, the response surfaces
can be explored graphically. An example plot of the response
rate in dependence on PPD concentration and pH is shown in
Figure 4.15a. The curved dependences in the direction of both
factors lead to a maximum rate at coded levels of PPD of about
0.4 and of pH at 0.2. This relates to decoded levels of 16.6 mM
PPD and a pH value of 5.95. Maxima are best found from the
contour plots as represented in Figure 4.15b.

Coding of Factor Levels To convert factor levels between original
and coded levels, the corresponding formulas will be given here.
The coded level in the interval −1 to +1, x∗i , is calculated from the
original factor level, xi, by

x∗i =
xi − M

H
(4.19)



4.3 Experimental Design and Response Surface Methods 123

where M is the midrange and H the half-range of factor i:

M =
high + low

2
(4.20)

H =
high − low

2
(4.21)

Decoding of a factor level is carried out by converting Eq. (4.19)
to the original factor level:

xi = x∗i • H + M (4.22)

Example 4.8 Coding and Decoding of Factors

• For PPD concentrations in the range 0.5–27.3 mM, the
coded level for a concentration of 14.3 mM is to be deter-
mined (cf. Table 4.13). The midrange and half-range are
obtained according to Eqs. (4.20) and (4.21):

M = 27.3 + 0.5
2

= 13.9

H = 27.3 − 0.5
2

= 13.4

• The resulting coded value for the PPD concentration is
according to Eq. (4.19):

x∗ = 14.3 − 13.9
13.4

= 0.03

• Based on the coded value of a PPD concentration of 0.2, the
original concentration is to be computed by means of the
data in Table 4.13. For this, we apply Eq. (4.22) and the con-
centration value sought is calculated as

x = 0.2 • 13.4 + 13.9 = 16.6 mM

Factor Effects versus Regression Parameters Although we have
considered factor effect calculations and regression parameter
estimation independently, it is important to understand that
both concepts are linked together. More exactly, the following
relationship holds:

regression_coefficient = factor_effect
factor_range

(4.23)
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Consider our enzyme example. Modeling the rate dependence
by a polynomial that accounts for the same factors as in the
screening design in Table 4.9, we will obtain the regression
equation

y = 10.04 + 2.88PPD + 1.084pH + 0.4288PPD • pH (4.24)

The insignificant regression parameters have been eliminated in
this equation. If you now compare the factor effects D in Eq. (4.11)
with the regression coefficients, you will find that the latter are half
as large as the factor effects, that is,

DPPD = 5.76
DpH = 2.17

DPPH⋅pH = 0.858

This is because the coded factor range is equal to 2 (from −1
to +1) for all three factors and is therefore within rounding-off
errors. In this example, the factor effects should be two times
larger than the regression parameters.

Blocking of Experiments If a large number of experiments is to be
carried out, it will be difficult to run the experiments under iden-
tical conditions. During experimentation, reagent charges might
change or the activity of an enzyme might deteriorate. Often, it
will be necessary to interrupt experimentation during the night
so that important changes in the experimental conditions may
result.

To reflect systematic changes in such situations, the sequence
of experiments has so far been randomized. Strong systematic
changes, however, will increase the overall experimental error to
a large extent. Elimination of these systematic changes can be
accounted for if the changes are taken as a discrete event and the
estimation of the time-dependent effects are confounded with
the estimation of unimportant interactions such as a three-factor
interaction.

The experimental design is then divided into blocks.

Example 4.9 Blocking of Experiments

Considering the 23 design of Table 4.4, the blocks could be
designed as the half-fraction designs given in Table 4.14.
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Table 4.14 Full factorial 23 design arranged in two blocks.

Experiment Factors Response

x1 x2 x3 x*(x1 x2 x3)

Block 1
1 –1 −1 −1 +1 y1
2 +1 +1 −1 +1 y2
3 +1 −1 +1 +1 y3
4 −1 +1 +1 +1 y4
Block 2
5 +1 −1 −1 −1 y5
6 −1 +1 −1 −1 y6
7 −1 −1 +1 −1 y7
8 +1 +1 +1 −1 y8

Estimation of parameters for, for example, the main effects
would be performed by the following polynomial:

y = b0 + b1x1 + b2x2 + b3x3 + b∗x∗ (4.25)

Because of the orthogonality of the experimental design, the
changes between the blocks will not influence the estimation
of the parameters b0 and b3. In addition, an averaged measure
for the changes between the two blocks can be derived from
the size of 2b*.

4.4
Sequential Optimization: Simplex Method

“Change and hope” is the name sometimes given to an opti-
mization procedure where the individual factors are changed
independently of each other. As long as no interaction effects
of factors are valid, the single-factor-at-a-time approach will
succeed. In Figure 4.16a, this situation is explored for a response
surface including curved factor effects. If one starts with variation
of factor 2, keeping factor 1 at the coordinate value labeled (1), an
optimal value will be found at the coordinate (2) for factor 2. In
the next step, factor 1 would be investigated at a constant factor
2 value at label (2) and the optimum would be found.

However, if interaction effects become valid, the single-factor-
at-a-time approach does not guarantee that the optimum is
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Figure 4.16 Sequential optimization with single-factor-at-a-time strategy
in the case of a response surface without factor interactions (a) and for a
surface with interactions (b).

reached. As seen in Figure 4.16b, the change in factor 2 will
result in an optimal coordinate at label (2) that would be fixed for
changing factor 1. In this case, the real optimum will never be
found and the result remains suboptimal. The reason is that the
ridge in Figure 4.16b does not lie parallel to the factors axis; thus,
changes in factor 1 are not independent of factor 2. Instead, both
factors interact and have to be considered simultaneously.

The most common sequential optimization method is based on
the simplex method by Nelder and Mead. A simplex is a geomet-
ric figure having a number of vertices equal to one more than the
number of factors. A simplex in one dimension is therefore a line,
in two dimensions a triangle, in three dimensions a tetrahedron,
and in multiple dimensions a hypertetrahedron.
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Figure 4.17 Fixed-size simplex according to Nelder and Mead along an
unknown response surface.

Fixed-Size Simplex

To find the steepest path along a response surface by means of the
simplex method, an algorithm has to be followed that consists of
designing an initial simplex, running the experiments at the initial
vertices, and calculating the new vertex point by reflection of the
vertex with the worst response. Movement with steps of fixed size
is called the fixed-size simplex.

The algorithm works as follows (cf. Figure 4.17):

• Generate the initial simplex according to the coded levels of the
factors as given in Table 4.15.

• Run the experiments at the initial simplex coordinates.
• Decide from the responses which vertex represents the best

response (vector b), the next-to-best (n), and the worst
response (w).

• Calculate the new experimental point by

r = p + (p − w) (4.26)

where p is the centroid of the face remaining if the worst vertex
w has been eliminated from the full simplex.

The centroid is calculated according to

p = 1
n

n∑
j≠i

vj (4.27)

where n is the number of factors, i the index of the worst vertex
to be eliminated, and j the index of the considered vertex.

These steps are repeated until the simplex begins to rotate
around the optimum or the response satisfies the experimenters’



128 4 Optimization and Experimental Design

Table 4.15 Choice of initial simplexes for up to nine variables coded in
the interval between 0 and 1.

Experiments x1 x2 x3 x4 x5 x6 x7 x8 x9

1 0 — — — — — — — —
2 1 0 — — — — — — —
3 0.50 0.87 0 — — — — — —
4 0.50 0.29 0.82 0 — — — — —
5 0.50 0.29 0.20 0.79 0 — — — —
6 0.50 0.29 0.20 0.16 0.78 0 — — —
7 0.50 0.29 0.20 0.16 0.13 0.76 0 — —
8 0.50 0.29 0.20 0.16 0.13 0.11 0.76 0 —
9 0.50 0.29 0.20 0.16 0.13 0.11 0.094 0.75 0
10 0.50 0.29 0.20 0.16 0.13 0.11 0.094 0.083 0.75

needs. The fixed step width of the fixed-size simplex may reveal
problems if the step width chosen is either too large or too small.
In the former case, the optimum might be missed, and in the
latter case, the number of required experiments becomes very
large. These disadvantages can be circumvented if the step width
is tunable as with the variable-size simplex.

Variable-Size Simplex

With the variable-size simplex, the step width is changed
by expansion and contraction of the reflected vertices. The
algorithm is modified as follows (cf. Figure 4.18):

r = p + (p − w) (4.26)

• If r is better than b, expand the simplex

e = p + 𝛼(p − w) (4.28)

with 𝛼 > 1, for example, 1.5 for all directions or 𝛼 is chosen
differently for each direction.

• If r lies between b and n, keep the simplex bnr.
• If r is worse than n, contract the simplex according to

r is worse than n but better than w, then contract in the
“positive” direction:

c+ = p + 𝛼(p − w) with 0 < 𝛽 < 0.5 (4.29)

r is worse than w, then contract in the “negative” direction:

c− = p − 𝛼(p − w) with 0 < 𝛽 < 0.5 (4.30)
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Figure 4.18 Variable-size simplex.

• At the experimental boundaries, the simplex is reflected into
the space of the experimental variables.

• Stop the simplex if the signal change is less than the experimen-
tal error or if the step width is less than a given threshold.

In practice, the simplex method is the experimental optimiza-
tion algorithm used most often. The main advantages are its
simplicity, speed, and good convergence properties. Problems
with the simplex method arise if multimodal response surfaces
are investigated, that is, if several local optima exist. In this case,
the simplex will climb the nearest local maximum or minimum
and the global optimum might be missed. Mathematical theory
provides more efficient optimization methods, such as the
conjugate gradient method or Powell’s method. These methods,
however, are mainly used in locating optima of mathematical
functions and are scarcely used in experimental optimization.

Local optima are typical for optimization of selectivity in HPLC
separations. This is caused by changes of elution order of peaks in
different mobile phases.

Example 4.10 Simplex Optimization

In this example, the performance of the variable-size simplex
is demonstrated for the enzyme determination based on the
problem in Examples 4.4 and 4.7. For a fixed enzyme concen-
tration of 13.6 mg⋅l−1 ceruloplasmin (coded 0), the concentra-
tion of the substrate PPD and the pH value are sought for the
maximum rate of the reaction, y. Since the simplex searches
for a minimum, the rate as the objective criterion has to be
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transformed. Here we use the difference of 100 min−1, that is,
the objective criterion is 100− y.

The initial simplex is chosen according to the scheme
in Table 4.15 in coded levels. The responses for the initial
simplex are as follows:

Vertex Coded variable 100− y

PPD pH

1 0.0 0.0 76.547
2 1.0 0.0 77.550
3 0.5 0.87 76.450

The initial simplex is shown by bold lines in Figure 4.19.
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Figure 4.19 Simplex search for optimum PPD concentration and
pH value for the enzymatic determination of ceruloplasmin
(cf. Example 4.7).

The best (minimum) response is found for vertex 3 (best
response b), the next-to-best response is 1, (vertex n), and the
worst response is found for vertex 2 (w). The latter vertex is
eliminated, and a new (reflected) vertex 4 is calculated based
on the centroid (Eq. (4.27)) according to Eq. (4.26):

centroid:

p = 1
2
[(0, 0) + (0.5, 0.87)] = (0.25, 0.435)
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reflection:

r = p + (p − w) = (0.25, 0.435) + [(0.25, 0.435) − (1, 0)]
= (−0.5, 0.87)

The new simplex consists now of the vertices 1, 3, and 4 hav-
ing the following responses:

Vertex Coded variable 100− y

PPD pH

1 0.0 0.0 76.547
3 0.5 0.87 76.450
4 −0.5 0.87 83.317

The vertex 4 (r) produces a worse response than the next-to-
best vertex 1 and is even worse than w. Therefore, the simplex
is contracted according to Eq. (4.30). At first, the centroid is
calculated without the worst vertex 4. Here the centroid is the
same as in the first step:

centroid:

p = 1
2
[(0, 0) + (0.5, 0.87)] = (0.25, 0.435)

contraction:

c− = p − 𝛽(p − w) = (0.25, 0.435)
− 0.5 [(0.25, 0.435) − (−0.5, 0.87)] = (0.625, 0.218)

The new simplex is 1, 3, and 5. The coordinates of this sim-
plex and the measured responses are as follows:

Vertex Coded variable 100− y

PPD pH

1 0.000 0.000 76.547
3 0.500 0.870 76.450
5 0.625 0.218 75.131
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After contraction, the simplex is reflected to point 6 and
again contracted to vertex 7 (cf. Figure 4.19). If the calculation
is continued, the simplex moves in the direction of the opti-
mum as given in the figure. After 20 iterations, the following
optimum is found in coded levels:

• PPD= 0.46
• pH= 0.316
• 100− y= 74.88

Thus, the maximum rate y= 100− 74.88= 25.12 min−1. This
optimum compares well with the results from the response
surface study in Figure 4.15.
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Questions and Problems

1. Specify the following characteristics with a standard
statistical software package:
• Number of experiments
• Specific design
• Randomized run sequence
• Possible blocking
• Alias structures
for the two-level designs 29, 27−3, 210−5, as well as for
central composite designs based on three and six factors.

2. Give definitions for the following terms: unimodal; multi-
modal; replication of experiments; factor level; coding of
factors; local and global optimum; randomization; screen-
ing designs; factor effects.

3. Graphical inspection of response surfaces is restricted
to three-dimensional plots. How do you plot response
surfaces if more than two factors are included in the
study?

4. How can one avoid factors and their parameter estimates
being confounded?

5. How can one account for interactions of factors in a poly-
nomial model?

6. What difficulties may arise if experimental factors are
changed, one by one?

7. Why do chemists run their experiments mostly by one-
factor-at-a-time methods?
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5
Pattern Recognition and Classification

Learning Objectives

• To evaluate and interpret analytical data from full chro-
matograms, spectra, depth profiles, or electroanalytical
records, from multidimensional detectors, and from
samples for which concentrations of several chemical
constituents or other properties have been measured

• To learn about methods for data preprocessing and for cal-
culating distances and similarity measures

• To introduce grouping of analytical data based on unsu-
pervised learning methods, that is, projection methods and
cluster analysis

• To handle multivariate data for which their class member-
ship is determined by means of supervised pattern recogni-
tion approaches.

Modern analytical instrumentation generates a vast amount
of data. A digitized spectrum in the infrared (IR) spectral
range consists of about 2000 wavenumber points. In a gas
chromatography–mass spectrometry (GC-MS) experiment, it
is not difficult to provide in a single run 600 000 items of data
that amount to about 2.4 MB of digital information. There are
different methods for dealing with this extensive amount of infor-
mation. One approach is ignorance. This means that quantitative
analysis in spectroscopy is restricted to data evaluation at a single
wavelength or the GC-MS trace is followed at a single mass
unit. However, with the invention of computers in the analytical
laboratory, most of the multidimensional data are stored in
instrument computers or external databases, so that important
information might be wasted if only small fractions of data are
evaluated. Nowadays, the extensive use of chemometrics enables

Chemometrics: Statistics and Computer Application in Analytical Chemistry, Third Edition. Matthias Otto.
© 2017 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2017 by Wiley-VCH Verlag GmbH & Co. KGaA.
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the evaluation and interpretation of these data to be carried out
efficiently as will be examined in this chapter.

The main objectives for application of multivariate methods in
analytical chemistry are aimed at the grouping and classification
of objects (samples, compounds, or materials) as well as at mod-
eling relationships between different analytical data. Some typical
examples include the following:

• Grouping or clustering of rock samples according to similar ele-
mental patterns or of material samples with respect to compa-
rable chemical composition and technological properties.

• Classification of samples, such as rocks, materials, or chemi-
cal compounds, by means of analytical data (spectrum, chro-
matogram, or elemental pattern) on the basis of known class
membership of those objects.

• Calibration of a single chemical constituent by means of full
spectrum, or calibration of several components by means of
mixture calibration techniques. In mathematical terms, these
are problems of parameter estimation where the parameters
represent the calibration coefficients.

Clustering and
classification methods
are summarized by the
notion pattern
recognition.

To understand the multidimensionality of analytical problems,
let us consider a practical example. In connection with the elu-
cidation of a crime, a hair saved at the scene of the crime is to
be assigned to a subject. Apart from the common morphologi-
cal investigations, the hair is analyzed for the elements copper,
manganese, chlorine, bromine, and iodine. For comparison, the
elemental contents of hair of three other (suspicious) subjects are
available (Table 5.1).

Initially, it is determined whether the hair of the three subjects
can be distinguished on the basis of their elemental patterns. For

Table 5.1 Elemental contents of hair of different subjects in parts per
million.

Hair Cu Mn Cl Br I

1 9.2 0.30 1730 12.0 3.6
2 12.4 0.39 930 50.0 2.3
3 7.2 0.32 2750 65.3 3.4
4 10.2 0.36 1500 3.4 5.3
5 10.1 0.50 1040 39.2 1.9
6 6.5 0.20 2490 90.0 4.6
7 5.6 0.29 2940 88.0 5.6
8 11.8 0.42 867 43.1 1.5
9 8.5 0.25 1620 5.2 6.2
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this, chemometric methods for grouping of samples are needed.
If grouping of the samples is feasible, then the found hair has to be
assigned to a subject based on the construction of class models for
the three subjects with subsequent classification of the unknown
sample.

Feature variables may be
defined on different
scales. The nominal scale
characterizes qualitative
equivalence, for example,
male and female. The
ordinal scale describes
ordering or ranking. The
interval scale measures
distances between values
of the features. The ratio
scale also enables
quotients between
feature values to be
evaluated.

In general, the analytical data can be arranged as a data matrix
X of n objects (rows) and p features (columns). The objects might
be samples, molecules, materials, findings, or fertilizers. Typical
features or variables of those objects will be elemental patterns,
spectra, structural features, or physical properties. The n× p data
matrix X can be written as follows:

X =

⎛⎜⎜⎜⎜⎝
x11 x12 … x1p
x21 x22 … x2p
∶

xn1 xn2 … xnp

⎞⎟⎟⎟⎟⎠
(5.1)

For some problems, these data are divided columnwise into
dependent and independent variables, for example, for calibrat-
ing concentrations on spectra. The dependent variables are then
renamed, for example, by the character y.

A class comprises a collection of objects that have similar fea-
tures. The pattern of an object is its collection of characteristic fea-
tures. For multivariate data evaluation, not all objects and features
are necessarily used. On the other hand, some of the available data
cannot be used as they are reported. Therefore, pretreatment of
data is a prerequisite for efficient multivariate data analysis.

5.1
Preprocessing of Data

Missing Data, Centering, and Scaling

In the first step, the data have to be reviewed with respect to com-
pleteness. Missing data do not hinder mathematical analysis. Of
course, missing data should not be replaced by zeros. Instead, the
vacancies should be filled up either by the column/row mean or, in
the worst case, by generating a random number in the range of the
considered column/row. Features and/or objects can be removed
from the data set if they are highly correlated with each other, or
if they are redundant or constant.

Coded data are obtained
by multiplying, dividing,
adding, and/or
subtracting a constant in
order to convert the
original data into more
convenient values.

To eliminate a constant offset, the data can be translated along
the coordinate origin. The common procedure is mean centering,
where each variable, xik , is centered by subtracting the column
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mean, xk , according to

x∗ik = xik − xk (5.2)

where i is the row index, k the column index, and xk is the column
mean calculated from

xk = 1
n

n∑
i=1

xik (5.3)

Very often, the features represent quite different properties of a
sample or of an object, so that the metric might differ from column
to column to a great extent. This may imply different absolute val-
ues of the variables as well as different variable ranges (variances).
Both types of distortions will affect most of the statistically based
multivariate methods. Elimination of these differences can be car-
ried out by scaling the data to similar ranges and variances. Two
scaling methods that scale the data by range or by standard devi-
ation (autoscaling) are important, range scaling:

x∗ik =
xik − xk(min)

xk(max) − xk(min)
∈ 0 ≤ x∗ik ≤ 1 (5.4)

and autoscaling:

x∗ik =
xik − xk

sk
(5.5)

Dividing each variable by
the square root of the
standard deviation is
called Pareto scaling. with sk =

√√√√√√
n∑

i=1
(xik − xk)

n − 1
(5.6)

where n is the number of objects. Autoscaling reveals data with
zero mean and unit variance. The length of the vectors is scaled to√

n − 1.

Normalization to Length 1
In some cases, normalization of a data vector to length 1 is an
important preprocessing procedure:

x∗ik =
xik‖xk‖ (5.7)

where

‖xk‖ =
√

x2
1k + x2

2k + · · · + x2
nk (5.8)

Usually, the autoscaling method is the method of choice for scal-
ing data. Figure 5.1 gives a graphical illustration for centering and
autoscaling.
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(a) (b) (c)

Figure 5.1 Demonstration of trans-
lation and scaling procedures: the
original data in (a) are centered in
(b) and autoscaled in (c). Notice
that the autoscaling decreases the

between-groups distance in the
direction of greatest within-groups
scatter and increases it in perpen-
dicular direction in the sense of
sphericization of groups.

Variance–Covariance Matrix and Correlation Matrix

Transformation of the original data to a new coordinate system
is another possibility of data pretreatment. The methods are
based on principal component analysis (PCA) or factor analysis
(FA). The first step for these transformations is the formation of
a data matrix that is derived from the original data matrix and
that reflects the relationships among the data. Such derived data
matrices are the variance–covariance matrix and the correlation
matrix.

Variance–Covariance Matrix
The variance–covariance matrix or simply covariance matrix is
computed from the data matrix, X, in Eq. (5.1) from the variances
of all p variables after Eq. (5.9) and their covariances according to
Eq. (5.10).

s2
ij =

1
n − 1

n∑
i=1

(xij − xj)2 for j = 1… p (5.9)

cov(j, k) = 1
n − 1

n∑
i=1

(xij − xj)(xik − xk) j, k = 1… p; j ≠ k (5.10)

For the variance–covariance matrix, it is valid that

C =

⎛⎜⎜⎜⎜⎝
s2

11 cov (1, 2) … cov(1, p)
cov(2, 1) s2

22 cov(2, p)
∶ ∶

cov(p, 1) cov(p, 2) … s2
pp

⎞⎟⎟⎟⎟⎠
(5.11)

As a result, a symmetric matrix is obtained. The covariance
matrix is used in cases where the metric of the variables is
comparable. If widely different metrics are valid, for example, in



140 5 Pattern Recognition and Classification

the case of simultaneous data treatment of main and trace con-
stituents, the variables are scaled. If the variables are autoscaled
(cf. Eq. (5.5)), the correlation matrix automatically results, as
given in Eq. (5.14).

At this point, only one possibility for computing the variance–
covariance matrix has been introduced. Another one we learn
about in Section 5.2 in connection with FA.

Correlation Matrix

To calculate the correlation matrix, the correlation coefficients are
required according to

rjk =
cov(j, k)

sjsk
=

n∑
i=1

(xij − xj)(xik − xk)[ n∑
i=1

(
xij − xj

)2 n∑
i=1

(xik − xk)
2]1∕2 j ≠ k (5.12)

In analogy to Eq. (5.9), the standard deviations sj and sk are cal-
culated by

sj =

√√√√√√
n∑

i=1
(xij − xj)2

n − 1
sk =

√√√√√√
n∑

i=1
(xik − xk)2

n − 1
(5.13)

The correlation matrix reads as follows:

R =

⎛⎜⎜⎜⎜⎝
1 r12 … r1p

r12 1 r2p
∶ ∶

r1p r2p … 1

⎞⎟⎟⎟⎟⎠
(5.14)

Computations of the covariance and correlation matrix are pre-
requisites for the application of factorial methods.

5.2
Unsupervised Methods

Grouping of analytical data is possible either by means of clus-
tering methods or by projecting the high-dimensional data onto
lower dimensional space. Since there is no supervisor in the sense
of known membership of objects to classes, these methods are
performed in an unsupervised manner.
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Factorial Methods

These methods are aimed at projecting the original data set
from a high-dimensional space onto a line, a plane, or a three-
dimensional coordinate system. Perhaps the best way would be
to have a mathematical procedure that allows you to sit before
the computer screen pursuing the rotation of the data into all
possible directions and stopping this process when the best
projection, that is, optimal clustering of data groups, has been
found. In fact, such methods of projection pursuits already exist
in statistics and are tested within the field of chemometrics.

At present, data projection is performed mainly by methods
called PCA, FA, singular value decomposition (SVD), eigenvector
projection, or rank annihilation. The different methods are linked
to different science areas. They also differ mathematically in the
way the projection is computed, that is, which dispersion matrix
is the basis for data decomposition, which assumptions are valid,
and whether the method is based on eigenvector analysis, SVD,
or other iterative schemes.

The dispersion matrix
describes the scatter of
multivariate data around
the mean. For centered
data, the dispersion
matrix equals XTX.

Principal Component Analysis
Here, an explanation of projection methods is based on PCA in
comparison to SVD. Similar methods, such as FA, are covered
later in the section.

The key idea of PCA is to approximate the original matrix X
by a product of two small matrices – the score and loading matri-
ces – according to

X = T LT (5.15)

X T
d

d

nn

p p

LT

where X is the original data matrix consisting of n rows (objects)
and p columns (features); T is the scores matrix with n rows and d
columns (number of principal components (PCs)); L is the loading
matrix with d columns and p rows; and T is the transpose of a
matrix.

In other words, the projection of X down on a d-dimensional
subspace by means of the projection matrix LT gives the object
coordinates in this plane, T. The columns in T are the score vec-
tors and the rows in P are called loading vectors. Both vectors are
orthogonal, that is, pi

Tpj = 0 and ti
Ttj = 0, for i ≠ j.
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t1

X2

i

X1

Figure 5.2 Projection of a swarm of objects from the original two dimen-
sions onto one dimension, that is, the score vector t1, according to the
criterion of maximum variance.

In contrast to FA, the data are reconstructed such that new,
uncorrelated variables are obtained. The PCs are determined on
the basis of the maximum variance criterion (Figure 5.2). Each
subsequent PC describes a maximum of variance that is not mod-
eled by the former components. According to this, most of the
variance of the data is contained in the first PC. In the second
component, there is more information than in the third one and
so on. Finally, as many PCs are computed as are needed to explain
a preset percentage of variance (cf. Eq. (5.22)).

The PCs can be considered projections of the original data
matrix, X, onto the scores, T. For this, Eq. (5.15) is to be converted
to the scores on the left side by

T = X L (5.16)

XT
L

d d

n n p

p

The new coordinates are linear combinations of the original
variables. For example, the elements of the first PC read as

t11 = x11l11 + x12l21 + · · · + x1plp1

t21 = x21l11 + x22l21 + · · · + x2plp1

⋮

tn1 = xn1l11 + xn2l21 + · · · + xnplp1 (5.17)
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Since, as a rule, a large fraction of the variance can be described
by means of one, two, or three PCs, the data can be visualized by
plotting the PCs against each other (cf. Example 5.2).

The simplest method for PCA used in analytics is the iterative
nonlinear iterative partial least squares (NIPALS) algorithm
explained in Example 5.1. More powerful methods are based on
matrix diagonalization, such as SVD, or bidiagonalization, such
as the partial least squares (PLS) method.

Principal components in
PCA or common factors
in factor analysis are
sometimes called latent
variables.

Example 5.1 Iterative PCA by the NIPALS Algorithm

Determine PCs for the following data matrix based on the iter-
ative NIPALS algorithms:

X =
⎛⎜⎜⎝
2 1
3 2
4 3

⎞⎟⎟⎠
0. Scaling by the mean and normalizing to length 1:

X =
⎛⎜⎜⎜⎝
− 1√

2
− 1√

2
0 0
1√
2

1√
2

⎞⎟⎟⎟⎠
1. Estimation of the loading vector lT. Usually, the first row

of the X matrix is used:

lT =
(
− 1√

2
− 1√

2

)
2. Computation of the new score vector t:

t = Xl =
⎛⎜⎜⎜⎝
− 1√

2
− 1√

2
0 0
1√
2

1√
2

⎞⎟⎟⎟⎠
(
− 1√

2
− 1√

2

)
=

⎛⎜⎜⎝
1
0
−1

⎞⎟⎟⎠ (5.18)

Comparison of the new t vector with the old one. If the
deviations of the elements of the two vectors are within a
given threshold of 10−z, for example, z= 5, then continue
at step 5, else go to step 3.

3. Compute new loadings lT:

lT = tTX =
(
1 0 −1

) ⎛⎜⎜⎜⎝
− 1√

2
− 1√

2
0 0
1√
2

1√
2

⎞⎟⎟⎟⎠ =
(
− 2√

2
− 2√

2

)
(5.19)
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Normalize the loading vector to length 1:

lT = lT

‖lT‖ =
(
− 1√

2
− 1√

2

)
(5.20)

4. Continue at 2 if the number of iterations does not exceed
a predefined threshold, for example, 100; else go to step 5.

5. Determine the matrix of residuals:

E = X − tlT =
⎛⎜⎜⎜⎝
− 1√

2
− 1√

2
0 0
1√
2

1√
2

⎞⎟⎟⎟⎠ −
⎛⎜⎜⎝

1
0
−1

⎞⎟⎟⎠
(
− 1√

2
− 1√

2

)

=
⎛⎜⎜⎝
0 0
0 0
0 0

⎞⎟⎟⎠ (5.21)

If the number of PCs is equal to the number of previously
fixed PCs or of cross-validated components, then go to
step 7. Otherwise, continue at step 6.

6. Use the residual matrix E as the new X matrix and com-
pute additional PCs t and loadings lT at step 1.

7. As a result, the matrix X is represented by a PC model
according to Eq. (5.15), that is,

X = TLT =
⎛⎜⎜⎝

1
0
−1

⎞⎟⎟⎠
(
− 1√

2
− 1√

2

)

The actual two-dimensional data can be described by just
one PC.

With real data, more PCs are necessary. Therefore, there are
more columns of scores in the T matrix and more rows in the
LT matrix representing the loadings.

The factorial methods in
this chapter are also
called second-order
transformations, because
only two moments,
mean and covariance, are
needed to describe the
Gaussian distribution of
the variables. Other
second-order
transformations are FA,
independent component
analysis (ICA), and
multivariate curve
resolution (MCR).

Estimating the Number of PCs The use of all PCs after decompo-
sition of the data matrix is usually not justified. For example, the
number of pure components must be separated from the noise
components in a spectrochromatogram.

To decide on the number of components in a PCA, several
heuristic and statistical criteria exist:

• Percentage of explained variance
• Eigenvalue-one criterion
• Scree test
• Cross-validation.
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The percentage of explained variance is applied in the sense of a
heuristic criterion. It can be used if enough experience is gained by
analyzing similar data sets. The fraction of explained (cumulative)
variance, s2

e , is calculated from the ratio of the sum of d important
eigenvalues and the sum of all p eigenvalues by

s2
e =

d∑
i=1

𝜆i

p∑
i=1

𝜆i

(5.22)

If all possible PCs are used in the model, 100% of the variance
can be explained. Usually, a fixed percentage of explained variance
is specified, for example, 90%. Equation (5.22) is then multiplied
by the factor 100.

In our example of the hair data in Table 5.1, 90.7% of the data
variance can be explained by two PCs (Table 5.2).

The eigenvalue-one criterion is based on the fact that the average
eigenvalue of autoscaled data is just one. This results from the fact
that for standardized data, the sum of all eigenvalues of the corre-
lation matrix is exactly the number of all features p (cf. Eq. (5.15)).
Only components with eigenvalues greater than one are consid-
ered important. According to this criterion, the eigenvalues of the
hair data in Table 5.2 reveal two significant PCs.

The scree test is based on the phenomenon of the residual
variance leveling off when the proper number of PCs is obtained.
Visually, the residuals, or more often the eigenvalues, are plotted
against the number of components in a scree plot. The com-
ponent number is then derived from the leveling off in this
dependence. Figure 5.3 demonstrates the scree plot for the hair
data. The slope can be seen to change between the second and
third components.

The fourth method for deciding on the number of PCs is cross-
validation. In the simplest case, every object of the X matrix is

Table 5.2 Eigenvalues and explained variances for the hair data in
Table 5.1.

Component Eigenvalue 𝝀 Explained variance (%) Cumulative variance (%)

1 3.352 67.05 67.05
2 1.182 23.65 90.70
3 0.285 5.70 96.40
4 0.135 2.70 99.10
5 0.045 0.90 100.00
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Figure 5.3 Scree plot for the principal component model of the hair data
in Table 5.1.

removed from the data set once, and a model with the remaining
data is computed. Then the removed data are predicted by means
of the PCA model and the sum of the square root of residuals over
all removed objects is calculated. The number of significant PCs
is obtained from the minimum residual error.

In the case of large data sets, the leave-one-out method can be
replaced by leaving out groups of objects. Other criteria for decid-
ing on the number of PCs or factors are introduced as follows.

Graphical Interpretation of PCs Interpretation of the results of a
PCA is usually carried out by visualization of the component
scores and loadings. Sometimes, the data can be interpreted
from a single component. Commercial software provides two-
or three-dimensional plot facilities. The following example
demonstrates the general procedure.

Example 5.2 Principal Component Analysis

The hair data in Table 5.1 on elemental contents are to be inves-
tigated by PCA. First, the grouping of the samples is recog-
nized, and second, the importance of different elements for
discrimination between the groups is discussed.

PCA on the basis of the correlation matrix of the data
provides the results given in Figure 5.4 for the scores and
Figure 5.5 for the loadings. Since the preliminary tests revealed
only two significant PCs (cf. Table 5.1 and Figure 5.3), plots of
the first two PCs are sufficient.
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Figure 5.4 Principal component scores for the hair data in Table 5.1.
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Figure 5.5 Principal component loadings of the hair data in Table 5.1.

In the score plot, the linear projection of objects is found to
be representing the main part of the total variance of the data.
As can be seen, there are three clusters with three objects (hair)
each. These objects belong to the hair of different subjects.

The correlation and importance of feature variables are
decided from plots of the PC loadings. Figure 5.5 demon-
strates the loading plot of the first two components for the
hair data of Table 5.1.

Karhunen–Loève
expansion is
synonymous with PCA.

The loading plot provides the projection of the features onto
the PCs. From this plot, information about the correlation of
feature variables can be deduced. The correlation of features
is described by the cosine of the angle between the loading
vectors. The smaller the angle, the higher is the correlation
between features. Uncorrelated features are orthogonal
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to each other. If variables are highly correlated, then it is
sufficient to measure only one of the correlated variables.

The size of the loadings in relation to the considered PC is a
measure of the importance of a feature for the PC model. Load-
ings in the origin of the coordinate system represent unimpor-
tant features.

In our hair data example (Figure 5.5), the elements Cu and
Mn are more highly correlated than the halogens Br, Cl, and
I. For Cu and I, anticorrelation is observed. All elements are
important for describing the first PC. The second component
is mainly characterized by the elements I and Br.

A joint interpretation of scores and loadings is possible if the
loadings are properly scaled and superimposed on the score
plots. The so-called biplot is given for the present example in
Figure 5.6. From the loading direction, the discriminating abil-
ity of variables can be deduced. In our example, the features
Cu, Mn, I, and Cl separate the object clusters into the groups
(2,8,5) and (3,6,7), whereas the feature Br separates the left
cluster (2,5,8) from the rest of the objects. The neighborhood
of objects to a loading vector reflects the importance of that
variable for building the PC model.

Second
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–2.5 –1.5 –0.5 0.5 1.5 2.5
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Figure 5.6 Biplot for the simultaneous characterization of the cores and
loadings of two principal components of the hair data in Table 5.1.

The computation of PCs in Example 5.2 was based on SVD.
Where the same task is solved by the NIPALS algorithm (Example
5.1), the projection of data onto the first two PCs reveals the
result given in Figure 5.7. Apart from these two methods, many
additional possibilities exist for decomposition of the original
data matrix, including FA, which will be looked at later in this
section.
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Figure 5.7 Biplot for the simultaneous characterization of the scores and
loadings of two principal components of the hair data in Table 5.1 com-
puted on the basis of the NIPALS algorithm.

To understand the relationship between PCA and FA, it is useful
to outline the method of SVD in more detail here.

SVD – Singular Value Decomposition
SVD is based on the decomposition of a symmetric matrix, for
example, the correlation matrix, into a threefold diagonal matrix
and their diagonalization by means of the so-called QR algorithm.
Details on the SVD algorithm are not important here. To under-
stand the relationships between PC, factor, and eigenvalue analy-
sis, however, it is useful to discuss the principle of SVD in matrix
representation.

SVD decomposes the data matrix, X, in Eq. (5.1) into the matri-
ces U, W, and V as follows:

X = UW V T (5.23)

⎛⎜⎜⎜⎜⎝
x11 x12 … x1p
x21 x22 x2p
⋮ ⋮

xn1 xn2 … xnp

⎞⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎝
u11 u12 … u1d
u21 u22 u2d
⋮ ⋮

un1 un2 … und

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
w11 0 … 0
0 w22 0
⋮
0 0 … wdd

⎞⎟⎟⎟⎠
×

⎛⎜⎜⎜⎜⎝
v11 v21 … vp1
v12 v22 vp2
⋮

v1d v2d vpd

⎞⎟⎟⎟⎟⎠
(5.24)

The matrix U contains the same column vectors as does the
scores matrix T in Eq. (5.15) but normalized to length 1; W is
the diagonal matrix containing the square roots of the eigenvalues
or singular values. For symmetrical matrices (n= p), the singular
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values are identical to the square roots of the eigenvalues, that is,

wii =
√
𝜆ii (5.25)

The dimension of the matrix of singular values corresponds to
the number of columns in the scores matrix. If small singular val-
ues are not neglected, that is, not set to zero, the dimension of W
is equal to the number of features, that is, d = p.

The matrix V T is identical to matrix LT in Eq. (5.15). U and V
are also denoted as left and right vectors of singular values, respec-
tively.

FA – Factor Analysis
The aim of FA is to express the features by a small number of com-
mon factors. For each factor, a property is assigned that cannot
be observed directly. For example, if air is analyzed in a city, a
common factor could be traffic. FA was originally developed for
explaining psychological theories, for example, for description of
factors such as intelligence or memory.

To transform the abstract factors determined in the first step
into interpretable factors, rotation methods are applied. If defi-
nite target vectors can be assumed to be contained in the data, for
example, a spectrum under a spectrochromatogram, the rotation
of data is performed by using a target. This technique is known as
target-transform factor analysis (TTFA, cf. Example 5.6).

In PCA, the objects are usually associated with samples or more
generally with cases and features with properties of those cases. In
contrast, in FA, the properties are arranged as the objects in the
rows and the samples as features in the columns.

The general strategy of FA is again the decomposition of the data
matrix, X, in Eq. (5.1) into two smaller matrices F and L:

X = FLT + E (5.26)

⎛⎜⎜⎜⎜⎝
x11 x12 … x1p
x21 x22 x2p
⋮ ⋮

xn1 xn2 … xnp

⎞⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎝
f11 f12 … f1d
f21 f22 f2d
⋮ ⋮

fn1 fn2 … fnd

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

l11 l21 … lp1
l12 l22 lp2
⋮ ⋮

l1d l2d … lpd

⎞⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎝
e11 e12 … e1p
e21 e22 e2p
⋮

en1 en2 enp

⎞⎟⎟⎟⎟⎠
(5.27)

The scores matrix, F, contains the values for the properties of
the d causal factors. The columns of the matrix L characterize the
fraction of the loading related to the considered factor. The matrix
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E consists of the p–d remaining or specific factors. These fac-
tors cannot be related to the sought common factors. Frequently,
the specific factors represent random interferences, for example,
noise factors.

Q and R Analysis The starting point in FA is, as in PCA, the covari-
ance or correlation matrix. So far, only one possibility for com-
puting this dispersion matrix has been exploited (Eqs. 5.11 and
5.14). In principle, the dispersion matrices can be calculated by
multiplication of the data matrix by its transpose or by relating
the transposed matrix with the original one.

Consider the calculation of the variance–covariance matrix of
the scaled data of the X matrix:

CQ = XTX or CR = XXT (5.28)

where X is a n*p matrix (cf. Eq. (5.1)), and Q and R labels for the
so-called Q and R analysis modes, respectively.

Computation of the covariance matrix based on Q mode has
been tacitly used in Eqs. (5.9)–(5.11). A matrix, CQ, of dimen-
sion p*p is obtained. The covariance matrix for the R mode, CR, is
determined after transposing X. Its dimension is n*n.

For the correlation matrix, we obtain for the two modes

RQ = (XV Q)T(XV Q) or RR = (V RX)(V RX)T (5.29)

where

vQ(ij) =
1

1
p−1

√
p∑

i=1
(xij − xj)2

vR(ij) =
1

1
n−1

√
n∑

i=1
(xij − xj)2

(5.30)

Evaluations based on the Q or R mode are also needed in
connection with other multivariate methods. In general, the
technique is called R analysis when the relationship among p
features determined by n observations is of interest. Q analysis
examines the relationship among n objects characterized by
p variables. For the most frequently used approach in FA, the
interpretation of the loadings can be denoted as R analysis and,
as seen as follows, the evaluation of the scores as Q analysis.

Communalities and Reduced Correlation Matrix As mentioned ear-
lier, we distinguish in FA between common and specific factors.
The criterion for this distinction is based on their loadings that
are clearly different from zero. A common factor is found if at
least two of its loadings are distinctly different from zero. For a
specific factor, it is true that only one of the loadings l1k … lpk is
clearly distinguished from zero. The subdivision of loadings, L′,
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in d common factors and p–d specific factors can be expressed
as sum of loadings of common factors, L′′ , and of specific factors,
L′′′ :

𝐋′ = 𝐋′′ + 𝐋′′′ =
⎛⎜⎜⎜⎝
l11 l21 … l1d 0 … 0
l21 l22 l2d 0 0

⋮
lp1 lp2 … lpd 0 … 0

⎞⎟⎟⎟⎠
+

⎛⎜⎜⎜⎝
0 … 0 l1d+1 0 … 0
0 0 0 l2d+2 0
⋮ ⋮
0 … 0 0 0 … lpp

⎞⎟⎟⎟⎠
(5.31)

In the case of orthogonal factors, we obtain

R = LLT + KK T (5.32)

where

L =
⎛⎜⎜⎜⎝
l11 l21 … l1d
l21 l22 l2d
⋮ ⋮

lp1 lp2 … lpd

⎞⎟⎟⎟⎠ K =
⎛⎜⎜⎜⎝
l1d+1 0 … 0

0 l2d+2 0
⋮ ⋮
0 0 … lpp

⎞⎟⎟⎟⎠ (5.33)

The squared elements of matrix K are exactly the specific vari-
ances.

K 2 = KK T =

⎛⎜⎜⎜⎜⎝
l2
1d+1 0 … 0
0 l2

2d+2 0
⋮ ⋮
0 0 … l2

pp

⎞⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎝
𝜎2

1 0 … 0
0 𝜎2

2 0
⋮ ⋮
0 0 … 𝜎2

p

⎞⎟⎟⎟⎠
(5.34)

These variances correspond to the fractions of the standardized
variance that can be explained by the common factors.

On the basis of the loading matrix, L, for orthogonal factors,
a reduced correlation matrix of the following form results:

R′ = LLT = R − KK T =

⎛⎜⎜⎜⎜⎝
h2

1 r12 … r1p
r12 h2

2 r2p
⋮

r1p r2p h2
p

⎞⎟⎟⎟⎟⎠
(5.35)

where h2
j = 1 − 𝜎2

j = l2
j1 + l2

j2 + · · · + l2
jd for j= 1…p.

In Eq. (5.35), the quantities h2
j are the so-called communalities.

They reflect which fraction of the variance of the jth standardized
feature is explained by common factors. The communalities either
are empirically known or can be estimated from random samples.
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For correlated (skewed) factors, the communalities are derived
from the multiple correlation coefficients according to

h2
j = 1 − 1

rjj
for j = 1… p (5.36)

The first problem of an FA is that of estimation of the loading
matrix, L. We will consider only two methods here, that is, PCA
and principal factor analysis.

Estimation of Factor Loadings FA in a more narrow sense means
procedures where the reduced correlation matrix, R′, Eq. (5.35) is
reproduced. For that, the communalities are required. The repro-
duction of the original correlation matrix R (Eq. (5.14)), as done
with PCA, is not an FA in a restrictive sense. However, because
PCA has been discussed already above, we will use it here as the
basis for performing a FA.

Principal Component Analysis The loading matrix has to reproduce
the correlation matrix R, that is,

R = LLT (5.37)

The assumptions on specific factors that must be made in FA in
the more narrow sense are not made in this context. The factorial
model reads in the terminology of FA (cf. Eq. (5.15)):

X = FLT (5.38)

As discussed earlier, PCA is not usually carried out to derive
interpretable components. But complicated relationships should
be reduced to simple ones by projecting the data from multidi-
mensional space to two or three dimensions.

For this, the principal axes are translated and rotated without
changing the distances of the features relative to each other.
The pairwise, perpendicularly arranged coordinates remain
orthogonal. Mathematically, this transformation can be dealt
with by solving an eigenvalue problem. The loading vector lk of
the kth component corresponds to the normalized eigenvector
of the related k largest eigenvalue 𝜆k of the empirical correlation
matrix R, that is,

lT
k lk = 1 (5.39)

Eigenvalue analysis is described here in more detail for a better
understanding.

Eigenvector Analysis For a symmetric, real matrix, R, an eigenvec-
tor v is obtained by

Rv = v𝜆 (5.40)
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where 𝜆 is an unknown scalar: the eigenvalue. The eigenvector is
to be determined such that the vector Rv is proportional to v. For
this, Eq. (5.40) is rewritten as

Rv − v𝜆 = 0 or (R − 𝜆I)v = 0 (5.41)

where I is the identity matrix and the vector, v, is orthogonal to
all of the row vectors of matrix (R − 𝜆I). The equation obtained is
equivalent to a set of d where d is the rank of R.

Unless v is the null vector, Eq. (5.41) only holds if

R − 𝜆I = 0 (5.42)

A solution to this set of equations only exists if the determinant
on the left side of Eq. (5.42) is zero:

|R − 𝜆I| = 0 (5.43)

Computing the determinant reveals a polynomial in 𝜆 of
degree d. Then the roots, 𝜆i with i= 1 … d, of those equations
have to be found. There will be an associated vector vi, such
that:

Rvi − vi𝜆i = 0 (5.44)

or in matrix notation:

RV = V𝜦 (5.45)

The matrix V is a square and orthogonal matrix of the eigen-
vectors. The different ways of computing the dispersion matrix by
Q or R analysis techniques lead to different sets of eigenvalues, as
we will see next in the comparison with SVD.

Example 5.3 Eigenvalue Determination

As an example of an eigenvalue analysis, we use the following
data matrix consisting of three rows and two columns:

⎛⎜⎜⎝
0.9 4.1
1.9 2.9
2.9 2.1

⎞⎟⎟⎠
The autoscaled form of this matrix is

X =
⎛⎜⎜⎝
−1 1.059
0 −0.132
1 −0.927

⎞⎟⎟⎠ (5.46)
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For determination of the eigenvalues, Eqs. 5.40–5.45 are
applied. First, the correlation matrix is calculated:

R =
(

1 −0.993
−0.993 1

)
(5.47)

Insertion of the eigenvalues, 𝜆, into Eq. (5.43) leads to

|R − 𝜆I| = ||||| 1 − 𝜆 −0.993
−0.993 1 − 𝜆

||||| = 0 (5.48)

Calculation of the determinant results in the characteristic
polynomial for the root 𝜆. In our example, a squared equation
is obtained:

(1 − 𝜆)2 − 1.993 = 0 (5.49)

The solution for Eq. (5.49) reveals the two eigenvalues
𝜆1 = 1.993 and 𝜆2 = 0.115.

For determination of the eigenvectors according to
Eq. (5.44), we insert both eigenvalues into Eq. (5.48).

Calculation of the first eigenvector:(
1 − 1.993 −0.993
−0.993 1 − 1.993

) (
v11
v21

)
=

(
0
0

)
(5.50)

Evaluation of Eq. (5.50) results in the following equation sys-
tem with two unknowns:

−0.993v11 −0.993v21 = 0
−0.993v11 −0.993v21 = 0 (5.51)

Further simplification leads to

v11 = −v21 (5.52)

For the eigenvectors in Eq. (5.44), infinite solutions exist. For
example, assume v11 = 1, then as a consequence, v21 =−1. Usu-
ally, the eigenvectors are normalized to length 1, that is,

v2
11 + v2

21 = 1 (5.53)

The predefined values of the eigenvectors are then divided
by the size of

√
12 + 12 =

√
2. For the first eigenvector, we

obtain(
v11
v21

)
=

⎛⎜⎜⎝
1√
2

− 1√
2

⎞⎟⎟⎠ =

(
0.707

−0.707

)
(5.54)

Analogous calculation of the second eigenvector reveals(
1 − 0.115 −0.993
−0.993 1 − 0.115

) (
v12
v22

)
=

(
0
0

)
(5.55)
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0.885v12 −0.993v22 = 0
−0.993v12 +0.885v22 = 0 (5.56)

v12 = v22 (5.57)

v2
12 + v2

22 = 1 (5.58)

The second eigenvector is then(
v12
v22

)
=

⎛⎜⎜⎝
1√
2

1√
2

⎞⎟⎟⎠ =

(
0.707
0.707

)
(5.59)

The solution for the matrix in Eq. (5.45) is then

RV = V𝜦 =
(

1 −0.993
−0.993 1

)(
0.707 0.707

−0.707 0.707

)
=

(
0.707 0.707

−0.707 0.707

)(
1.993 0

0 0.115

)
(5.60)

The matrix of eigenvectors V directly provides the loading
matrix L in Eq. (5.38). In the next step, the matrix of scores F
is determined, as explained in the following text in general. In
Example 5.4, the score matrix will be computed for the data
matrix X in Eq. (5.46).

Principal Factor Analysis PCA can be slightly modified to be
applied as a factor analytical method in its genuine sense, if
the specific variances are included. For this, the communalities
h2

1 … h2
p of the p features (cf. Eq. (5.36)) are estimated from the

correlation matrix R, and the reduced correlation matrix R′ is
reproduced according to Eq. (5.35) from the loadings:

R′ = LLT (5.61)

The reduced correlation matrix is subsequently subjected to a
PCA: the eigenvalues are determined and normalized to length
1, as explained in Example 5.3. The significant eigenvectors then
determine the loading matrix L. This approach is termed principal
factor analysis.

More powerful factor analytical methods are the centroid
method, maximum-likelihood method, and canonical FA. With
those methods, the loading matrix is estimated iteratively. Details
can be learned from the available software and the statistical
literature [1].
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Determination of the Scores Apart from the loadings for judging
the objects, the scores are also important. Unique scores can be
only determined on the basis of a complete PCA, since the loading
matrix is orthonormal, which means

LTL = I (5.62)

The scores matrix can be directly estimated from the model for
the standardized data matrix, X, since

X = FLT (5.63)

(in more detail XL = FLTL = FI = F).
For FA in its strict sense, no unique scores matrix can be given,

because the loading matrix only reproduces the reduced corre-
lation matrix of the features. Therefore, the score matrix F has
to be estimated. The estimation methods are to be found in the
specialized literature.

Example 5.4 Determination of the Factor Score Matrix

For the data in Example 5.3, the matrix of factor scores F is to
be computed.

To obtain that score matrix, the values for the standardized
matrix X (Eq. (5.46)) and the loading matrix L or V computed
in Example 5.3 (Eq. (5.60)) are inserted into Eq. (5.63):

F = XL =
⎛⎜⎜⎝
−1 1.059

0 −0.132
1 −0.927

⎞⎟⎟⎠
(

0.707 0.707
−0.707 0.707

)

=
⎛⎜⎜⎝
−1.455 0.0422

0.095 −0.0937
1.363 0.0515

⎞⎟⎟⎠ (5.64)

Decomposition of the standardized data matrix in Eq. (5.46)
by PCA results in the following factor analytical model:

X =
⎛⎜⎜⎝
−1 1.059

0 −0.132
1 −0.927

⎞⎟⎟⎠ = FLT

=
⎛⎜⎜⎝
−1.455 0.0422

0.095 −0.0937
1.363 0.0515

⎞⎟⎟⎠
(

0.707 −0.707
0.707 0.707

)
(5.65)

Relationship between FA and SVD If the FA is performed on the
basis of PCA, a direct relationship to SVD can be derived (cf.
Eq. (5.2)).
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Denote the matrix of the eigenvectors that were determined
from the correlation matrix by Q analysis, RQ, by U, and the eigen-
vector matrix of R analysis, RR, by V, then decomposition of the
matrix X by means of SVD reveals

X = U𝜦
1∕2V T (5.66)

The matrix U represents
the eigenvector of XTX
(left eigenvector), and
the matrix V the
eigenvector of XXT

(right eigenvector).
Depending on the mode, that is, whether Q or R analysis has

been used for computation of Δ, the dimension of matrix Δ is
either n*n or p*p, respectively.

The factor analytical solutions after R and Q analysis are inter-
related as follows:

X = LQFQ or X = FRLR (5.67)

where

X =

LQ
⏞⏞⏞

U

FQ
⏞⏞⏞

𝜦
1∕2V T X =

FR
⏞⏞⏞

U𝜦
1∕2

LR
⏞⏞⏞

V T (5.68)

The direction of the solution is less dependent on the mode, Q
or R analysis, but is directed by the scaling procedures applied.
The scaling may be based on scaling the columns or rows or on
the scaling of both.

Example 5.5 FA by R Mode

Eigenvalue analysis in Example 5.3 was carried out by R
analysis, that is, the matrix of scores FR (Eq. (5.64)) is formed
according to Eq. (5.68) by the product of matrix U from SVD
and the matrix of the eigenvalues (Eq. (5.49)):

FR = U𝜦
1∕2 =

⎛⎜⎜⎝
−0.729 0.367
0.0476 −0.815
0.683 0.448

⎞⎟⎟⎠
(

1.993 0
0 0.115

)

=
⎛⎜⎜⎝
−1.455 0.0422
0.095 −0.0937
1.363 0.0515

⎞⎟⎟⎠ (5.69)

Compare the results to that in Eq. (5.64).

Determination of the Number of Significant Factors To decide on the
number of common factors, some criteria have been introduced
already in connection with PCA, such as the eigenvalue-one test
or the scree test. Those criteria can be overtaken in FA, if the
determination of loadings is performed by a PCA.
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For FA in its genuine sense, additional criteria are used for rank
analysis, that is, for determination of the number of significant
factors. Most frequently, an empirical indicator function, IND,
introduced by Malinowski [2] is used. It is computed from the
real error, RE, or the residual standard deviation, RSD, as follows:

IND = RE
(p − d)2 = RSD

(p − d)2 =

( p∑
k=d+1

𝜆k

n (p − d)

)1∕2

(p − d)2 (5.70)

where p is the number of features, d the number of common fac-
tors, n the number of objects, and 𝜆k the kth eigenvalue. The indi-
cator function has a minimum at the most probable number of
factors.

Rotation Methods An optimal loading matrix is obtained by
rotation of factors. One distinguishes orthogonal and oblique
(correlated) rotations. In the case of an orthogonal rotation, the
coordinate system is rotated. The aim is that the new coordi-
nate axis cut the swarm of points in an optimal way. This can
be often better achieved by an oblique rotation. If the data can be
described by an orthogonal rotation in an optimal way, then
an oblique method will also lead to coordinate axes that are
perpendicular to each other.

In the case of an orthogonal rotation of the loading matrix L,
a rotated loading matrix Lrot is obtained by multiplication of that
matrix with a transformation matrix T:

Lrot = LT (5.71)

For an oblique rotation by multiplication with a transformation
matrix, a matrix of the so-called factor structure, Lfst is obtained.
This matrix contains correlation of common factors and features:

Lfst = LT (5.72)

The rotated loading matrix is only obtained after multiplication
of Lfst by the inverse correlation matrix of factors:

Lrot = LfstR−1
F (5.73)

As examples for orthogonal and oblique factor rotations, the
varimax, quartimax, and oblimax criteria will be considered.

The varimax criterion serves the purpose of an orthogonal rota-
tion, where the variance of the squared loadings within a common
factor is maximized. As a result, as many common factors should
be retained that are described by as few features (variables) as pos-
sible. Large eigenvalues and loadings are increased, but small ones
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are decreased. The uniform weighting of the variables is guaran-
teed by scaling the loadings by means of the communalities (cf.
Eq. (5.35)). The varimax criterion is calculated by

max[V] = p
p∑

j=1

d∑
k=1

𝜎2
jk −

d∑
k=1

( p∑
j=1
𝜎2jk

)2

(5.74)

where p is the number of features and d the number of factors.
In contrast, the quartimax criterion maximizes the variance of

the (squared) loadings of a variable. The aim is to express each
variable by as few common factors as possible. This kind of rota-
tion leads to an increase of large loadings and a decrease of small
loadings of each variable. However, it might happen that a single
common factor emerges from the rotation. The quartimax crite-
rion is obtained from the communalities as follows:

max[Q] =
d∑

k=1

p∑
j=1
𝜎4

jk (5.75)
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hair data in Table 5.1. In the case of the oblimax criterion, a similar function as known

for the quartimax criterion is maximized, termed the kurtosis
function:

max[K] =

d∑
k=1

p∑
j=1
𝜎4

jk[ d∑
k=1

p∑
j=1
𝜎4

jk

]2 (5.76)

More criteria for rotation of factors are given, for example, in
Frank and Todeschini [3].

Target Rotation: Target Transformation Factor Analysis A special
kind of rotation matches the abstract factor loadings to known
patterns. For example, whether a hypothetical spectrum under
an incompletely resolved chromatographic peak can be found
is tested on the basis of a spectrochromatogram, or whether
a compound pattern can be detected in the exhaust gas of an
emittent. The hypothetical spectrum or the elemental pattern is
termed the target, L*. The containment of a target in a data matrix
is evaluated by computing the target transformation matrix, T.

The starting point is the model of FA in Eq. (5.26):

X = FLT

The abstract loadings, L, are tested against a hypothetical load-
ing vector, L*, that is, against the targets. This relationship is given
on the basis of the transformation matrix T by

LT = L∗ (5.77)
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Computation of the transformation matrix is feasible by multi-
ple linear regression analysis (cf. Section 6.2):

T = (LTL)−1LTL∗ (5.78)

The fit of the target vectors in matrix L* and the predicted vec-
tors in matrix L̂ based on the transformation matrix according to
Eq. (5.77) is usually estimated by the average relative deviation as
follows:

relative deviation =

p∑
j=1

|l∗j − l̂j|
p∑

j=1
|l∗j |

(5.79)

Let us consider the different steps of a target transformation
factor analysis, for example, data from the combination of liquid
chromatography with ultraviolet (UV) spectroscopy.

Example 5.6 Target Transformation Factor Analysis

In a HPLC chromatogram under an incompletely resolved
peak, polycyclic aromatic hydrocarbons (PAHs) are expected.
Since detection was based on a diode array detector, the
observed peak can be evaluated at several wavelengths.
The spectrochromatogram for five wavelengths and seven
retention times is shown in Figure 5.8. The corresponding
data are given in Table 5.3.
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325
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6.9
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Wavalength, (nm) Retention tim
e, (m

in)

Figure 5.8 Simplified spectrochromatogram for an incompletely
resolved peak in HPLC with diode array detection. Absorbance is given
in milliabsorbance units.
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Table 5.3 Absorbances in milliabsorbance units for the spectrochro-
matogram in Figure 5.8.

Retention time (min) Wavelength (nm)

245 265 285 305 325

6.4 7.81 4.83 4.367 0.944 1.775
6.5 84.33 52.69 56.100 12.890 20.730
6.6 161.58 99.30 108.430 26.920 39.026
6.7 173.33 77.89 97.260 39.368 28.670
6.8 274.70 63.92 82.160 47.150 20.060
6.9 218.92 36.95 39.820 25.580 10.490
7.0 79.04 12.07 10.580 6.536 3.230

In the first step, we perform an FA based on the data for the
spectrochromatogram in Table 5.3. The result is three signifi-
cant common factors with the following scores and loadings:

X = FLT =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.431 −0.375 0.839
0.183 −0.889 −0.266

−1.077 −1.302 −0.977
−0.881 −0.186 1.509
−0.868 1.387 0.480

0.110 1.175 −1.297
1.102 0.191 −0.286

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
×

⎛⎜⎜⎝
−0.779 −0.958 −0.979 −0.892 −0.905

0.606 −0.282 −0.195 0.417 −0.423
−0.282 −0.050 0.058 0.177 −0.047

⎞⎟⎟⎠
(5.80)

To rotate the loading matrix, the target spectra of the
hypothetical compounds benzo[k]fluoranthene (B[k]F),
benzo[b]fluoranthene (B[b]F), perylene, and anthracene
are tested. These spectra are illustrated for the considered
wavelength in Figure 5.9.

On the basis of the computed loadings (Eq. (5.80)), we obtain
the following matrix equation for the transformation matrix T:

LT = L∗ =

⎛⎜⎜⎜⎜⎜⎝

−0.779 0.606 −0.282
−0.958 −0.282 −0.049
−0.979 −0.195 0.058
−0.892 0.417 0.177
−0.905 −0.423 −0.047

1
1
1
1
1

⎞⎟⎟⎟⎟⎟⎠
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T =

⎛⎜⎜⎜⎜⎜⎝

111.2 112.6 282.1 280.0
38.2 87.2 76.4 2.25
52.5 69.4 12.2 1.0

110.6 33.2 5.1 1.3
14.7 25.0 6.9 5.5

⎞⎟⎟⎟⎟⎟⎠
(5.81)

A
bs

or
ba

nc
e

300

200

100

0

245 265 285 305 325

Wavelength, (nm)

Figure 5.9 Simplified UV spectra of the compounds
benzo[k]fluoranthene (•), benzo[b]fluoranthene (◾), perylene (⧫),
and anthracene (▴) as the targets.

Note that the features (wavelengths) in the loading matrix L
are arranged in the rows. The target spectra are given in the
hypothetical loading matrix L* columnwise in the order of the
compounds B[k]F, B[b]F, perylene, and anthracene.

The values correspond to the absorbances shown in
Figure 5.9. Since in our case the spectra need not be central-
ized, we have to add a column of 1s in the loading matrix.
Then the intercepts for the spectra on the ordinate can be
accounted for in the calculation of the transformation matrix.

The transformation matrix is computed by means of multi-
ple linear regression according to Eq. (5.78):

T =
⎛⎜⎜⎜⎝
−141.1 −782.5 −589.5

112.5 134.5 242.7
14.57 −423.5 −888.3

−64.69 −645.9 −465.2

769.1
111.2

−249.7
748.4

⎞⎟⎟⎟⎠ (5.82)
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Prediction of the target spectra by multiplication of the load-
ing matrix with the transformation matrix reveals

L̂ = LT =

⎛⎜⎜⎜⎜⎜⎝

111.2 112.6 282.4 256.2
38.1 87.0 75.3 −7.5
52.4 69.6 13.4 −40.7

110.6 33.1 4.7 64.9
14.7 25.0 7.1 17.2

⎞⎟⎟⎟⎟⎟⎠
(5.83)

Comparison of the predicted matrix in Eq. (5.83) with the
hypothetical loading matrix in Eq. (5.81) demonstrates that
the spectra from the first three columns of the compounds
B[k]F, B[b]F, and perylene fit quite well. The compounds can
be clearly identified under the incompletely resolved peak, but
for the spectrum of anthracene (fourth column in the loading
matrix), an obvious deviation between the hypothetical and
predicted loading vectors is observed (cf. Figure 5.10). There-
fore, this compound can be excluded.
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Figure 5.10 Comparison of the target spectrum anthracene (•) with the
predicted spectrum (◾) in Eq. (5.83).

Apart from transformations of spectra, elution profiles in chro-
matography, depth profiles in materials analysis, or elemental pat-
terns in environmental analysis may also be interesting targets.

Evolving Factor Analysis (EVA) This method is a further develop-
ment of FA, where intrinsically ordered data can be investigated.
Multiwavelength detection of the elution of compounds in a chro-
matogram in dependence on time is a typical example, and the
spectroscopic investigation of simultaneous equilibria in depen-
dence on the pH value can also be carried out by evolving factor
analysis (EVA).
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Ordered data

Figure 5.11 Schematic representation of evolving eigenvalues, 𝜆, in
dependence on intrinsically ordered data.

In the case of forward decomposition of the original data
matrix, the eigenvalues in EVA are computed by stepwise
addition of objects. The evolving eigenvalues reveal the exis-
tence of individual components (cf. Figure 5.11). In this way,
for example, the intervals for the elution of compounds in a
chromatogram can be evaluated.

Independent Component Analysis
The first factorial method we considered in this chapter was PCA.
Although this is the most common projection method in multi-
variate analysis, PCA could not solve what is known as the blind
source separation problem. Imagine a cocktail party where you
record the mixed signals of the party guest speeches. To estimate
the original speeches, ICA has to be used instead of PCA.

The n× p matrix of observations, X, is considered to originate
from the underlying p×m matrix of signal sources, S, the inde-
pendent components, and an n×m mixing matrix, A, in a noise-
free ICA model according to

X = AST (5.84)

There should be at least as many observations as there are
source signals, that is, n≥m. For the ICA model, it is then
assumed that the source signals in S are statistically independent
and non-Gaussian rather than uncorrelated. If the number of
source signals is equal to the number of observed signals (n=m),
estimation of the true, underlying sources, U, as well as the
demixing matrix W = A−1 is performed by

U = W X (5.85)

For Gaussian underlying sources, ICA is of no use and PCA
would be the method of choice. Computation of the independent
components is based on entropy or negentropy measures (cf. [8])
based on the fact that, among random variables with equal vari-
ance, Gaussian variables have the maximum entropy.
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The performance of ICA in case of recovering sensor
signals from mixed signal observations is demonstrated in
Example 5.7.

Example 5.7 Independent Component Analysis (ICA) of Data
from Three Sensor Signals

Three source signals, S, (Figure 5.12a) have been mixed by an
arbitrary mixing matrix, A, revealing the three mixed signals,
X, in Figure 5.12b.
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Figure 5.12 Source signals (a) and mixed signals (b).

The mixed signals were then used to estimate the original
source signal traces by PCA and ICA as given in Figures 5.13a
and 5.13b, respectively.
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Figure 5.13 Estimation of signals by PCA (a) and ICA (b).

As a result, the PCA loadings (Figure 5.13a) reflect some
more or less distorted signals of the sources, whereas ICA
(Figure 5.13b) recovers the signal traces correctly.

Multiway Decompositions
The factorial models considered in this chapter so far are useful to
decompose two-way data, that is, a data matrix X consisting of I
rows and J columns. Typically, a set of I samples with their optical
spectra measured at J wavelengths provide this kind of data. Imag-
ine a fluorescence emission/excitation spectrum recorded for I
samples. If the fluorescence spectra are measured at J emission
wavelengths and K excitation wavelengths, the dimensions of the
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Xij1 Xij2… XijK
X

Figure 5.14 Unfolding of three-way arrays for data analysis by conven-
tional factorial methods.

resulting data matrix X are now I × J ×K representing a three-way
array. Hyphenation of chromatography and spectroscopy leads to
even higher dimensions of multiway data sets. For example, I sam-
ples applied to two-dimensional GC-MS generate a four-way data
array.

In principle, three-way arrays can be unfolded (matricized)
as seen in Figure 5.14 and then treated by the aforementioned
factorial methods. Matricizing often results in overfitting the
X matrix and simultaneously in a bad fit after cross-validation.
Furthermore, the predictive power is known to be worse than by
applying N-way methods.

Direct analysis of a three-way data array is feasible by parallel
factor analysis (PARAFAC) or by Tucker models.

Parallel Factor Analysis The PARAFAC model for an element xijk
of the three-way array X (I × J ×K ) in Figure 5.15 is as follows:

xijk =
F∑

f =1
aifbjf ckf + eijk (5.86)

where aif, bjf, and ckf are the elements of the matrices of modes
A, B, and C; eijk represents the residual; and F is the number of
factors. Figure 5.15 depicts the model graphically.

K
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X += +…+

J

c1

b1

a1

c1F

bF

aF

E

Figure 5.15 The parallel factor analysis (PARAFAC) model for F factors.
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In terms of matrices Xk, where Xk is the kth (I × J) slice of the
three-way X (I × J ×K ), the PARAFAC model can be written by
the matrices A (I × F), B (J × F), and C (K × F) that contain the
elements aiF, bjF, and ckF

Xk = ADkBT + Ek = ck1a1bT
1 + ck2a2bT

2 + · · · + ckFaFbT
F + Ek

(5.87)

where Dk is a diagonal matrix containing the kth row of C on its
diagonal, that is, the elements ck1 to ckF; a and b represent the f th
column of A and B, respectively; and Ek is the residual matrix with
the same dimension as Xk.

The PARAFAC model
can also be considered a
trilinear model. Two sets
of parameters are fixed,
for example, the a’s and
b’s, and the element xijk
is estimated as a linear
function of the
remaining parameter c.

Estimation of the parameters A, B, and C is usually carried out
by the alternating least squares (ALS) algorithm. As an example
for PARAFAC decompositions, we consider the evaluation of
the folding states of a protein by means of mass spectrometry
(Example 5.8).

Example 5.8 PARAFAC Decomposition of Protein Mass
Spectra

Electrospray–ionization mass spectrometry (ESI-MS) pro-
vides information on the folding of a protein. Figure 5.16
shows an ESI-MS spectrum of the intact protein myoglobin.
The different peaks represent differently charged protein
states. As a general rule, the more charged states that are
present in the spectrum, the less folded is the protein. The
folding states are highly pH dependent, and this is studied
in the example by varying the pH from 2.7 to 7. For a given
sample, the mass spectrum in dependence on all pH values
constitutes a matrix as seen in Figure 5.17. For different
samples, a third dimension provides a three-way data array
X of order 18 (charge states)× 10 (pH values)× 5 (samples
of different concentrations). In order to find the number of
folding states and the pH ranges of their existence, the array
is decomposed here by PARAFAC.
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Figure 5.16 Electrospray ionization–mass spectrometry (ESI-MS)
spectrum of apomyoglobin.
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Figure 5.17 Charge states for a sin-
gle sample (a) derived from ESI-MS
spectra in dependence on the pH
value of solution. The four factors

found after decomposing the
array X into modes A (b), B (c),
and C (d) by PARAFAC is also
given.

Results of the decomposition are given in Figure 5.17 for four
factors of the three modes. Mode A describes the factors with
respect to the charge states, mode B those of pH dependence,
and mode C shows the five samples varying in the concentra-
tion of the protein. To identify the different folding states, the
decomposition is plotted as the product of modes A and B for
the four factors. This is depicted in Figure 5.18, from which the
four folding states of the protein can be derived in different pH
ranges together with their charge state distributions.

Tucker Models In N-way PCA or Tucker models, the number
of components for the different modes can vary, in contrast to
PARAFAC models. Tucker models can be derived for a different
number of modes and are called Tucker1, Tucker2, and so on.
Consider a three-way array X. Then the corresponding Tucker3
model is given for an element, xijk, of this matrix by the loadings
a, b, and c and the element g of a core matrix by

xijk =
P∑

p=1

Q∑
q=1

R∑
r=1

aipbjqckrgpqr + eijk (5.88)
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Figure 5.18 Folding states of the protein myoglobin derived from
PARAFAC decomposition of charge states observed in ESI-MS spectra in
dependence on pH values.

where aip, bjq, and ckr are the elements of the matrices of modes
A (I ×P), B (J ×Q), and C (K ×R); gpqr is the element of the core
matrix G (P ×Q×R) with the P, Q, R components in the different
modes; and eijk represents the residual. A pictorial representation
of the Tucker3 model is given in Figure 5.19. As in PARAFAC
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Figure 5.19 Tucker3 model with different component numbers P, Q, and
R in the three modes.
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modeling, an ALS algorithm can be used to estimate the parame-
ters of a Tucker3 model.

In contrast to PARAFAC, the Tucker models do not have unique
axes, so the axes can be rotated, transformed, or simplified. The
PARAFAC approach also finds the best-fitting F-component
model of a three-way data set, while Tucker modeling results in a
finite dimensional subspace in each way.

Cluster Analysis

The second strategy of unsupervised learning is based on cluster
analysis. With this method, the objects are aggregated stepwise
according to the similarity of their features. As a result, hierarchi-
cally or nonhierarchically ordered clusters are formed. In order to
describe the similarity of objects, we need to learn about appro-
priate similarity measures.

Distance and Similarity Measures
To decide on the similarity of objects, the distance measures as
common in pattern recognition are used. The shorter the distance
between objects, the more similar they are.

A general distance measure is the distance after Minkowski or
Lp metric

dij =

[ K∑
k=1

|||xik − xjk
|||p
]1∕p

(5.89)

where K is the number of variables and i and j the indices for
objects i and j.

In the narrow sense,
cluster analysis should
not be confused with
classification methods,
where unknown objects
are assigned to existing
classes. Cluster analyses
belong to the methods of
unsupervised learning or
unsupervised pattern
recognition.

In most cases, the Euclidean distance is applied, for which p= 2.
For example, the Euclidean distance of two objects 1 and 2 reveals

d12 = [(x11 − x21)2 + (x12 − x22)2]1∕2 (5.90)

In the case p= 1, the so-called Manhattan or city-block distance
is obtained. This distance refers to the passage around a corner,
that is,

dij =
K∑

k=1
|xik − xjk| (5.91)

Figure 5.20 demonstrates the city-block and the Euclidean dis-
tance graphically.

A cluster describes a
group of objects that are
more similar to each
other than to objects
outside of the group. A
seed of a cluster serves a
single object or the
centroid (•).

A disadvantage of measures based on the Lp metric is their
dependence on the dimensions used. Scaling of data is frequently
unavoidable if these distance measures are to be applied.
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Figure 5.20 City-block distance (a) and Euclidean distance (b) for two fea-
tures.

A measure that accounts for the different scales of variables and,
in addition, for their correlations is the Mahalanobis distance. This
invariant measure is calculated by the following formula:

D2
ij = (𝐱i − 𝐱j)t𝐂−1(𝐱i − 𝐱j) (5.92)

where C is the covariance matrix (Eq. (5.11)), and xi and xj are the
column vectors for objects i and j, respectively.

A distance measure
based on the standard
deviation of a variable j,
sj, is the Pearson
distance:

dij =

√√√√√√√√
K∑

k=1
(xik − xjk)

2

s2
jScaling of data is not necessary if the Mahalanobis distance is

used. In addition, with this measure distortion occasioned by cor-
relations of features or feature groups is avoided. In contrast, if the
Euclidean distance were applied in the case of two highly corre-
lated variables, these variables would be used as two independent
features although they provide identical information.

Complementary to distance measures are similarity measures.
For example, the similarity measure, Sij, on the basis of the
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Minkowski distance is

Sij = 1 −
dij

dij(max)
(5.93)

where dij (max) represents the maximum distance of objects
found in the data. Completely similar objects reveal a similarity
measure of Sij = 0. For completely dissimilar objects, a value
Sij = 1 is expected.

Hierarchical Cluster Analysis

One possibility for clustering objects is their hierarchical aggrega-
tion. Here the objects are combined according to their distances
or similarities to each other. We distinguish between agglomera-
tive and divisive procedures. Divisive cluster formation is based
on splitting the whole set of objects into individual clusters. In
the case of the more frequently used agglomerative clustering,
one starts with single objects and merges them into larger object
groups.

Hierarchical cluster
analysis is deduced from
taxonomy, where
biological species are
ordered with respect to
phenomenological
similarities.

In order to better understand the different steps of cluster anal-
yses, hierarchical (agglomerative) clustering is demonstrated here
for a data set from clinical analysis.

Example 5.9 Cluster Analysis (Hierarchical)

On the basis of cluster analysis, the grouping of patients’ serum
samples is to be investigated. Features are the concentrations
of calcium and phosphate analyzed in the serum samples. The
values are given in Table 5.4.

Table 5.4 Concentrations of calcium and phosphate in six blood
serum samples.

Object (serum sample) Features

Calcium
(mg 100 ml−1)

Phosphate
(mg 100 ml−1)

1 8.0 5.5
2 8.25 5.75
3 8.7 6.3
4 10.0 3.0
5 10.25 4.0
6 9.75 3.5

In the first step, we calculate the distance matrix for all the
data based on one of the distance measures (Eqs. 5.89–5.92).
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Here we use the Euclidean distance. As an example, the dis-
tance of objects 1 and 2 is evaluated by taking into account the
feature values from Table 5.4:

d12 = [(8 − 8.25)2 + (5.5 − 5.75)2]1∕2 = 0.354
Clusters of objects with
two or three features can
be graphically
represented. The visual
clustering of blood sera
in Table 5.4 provides
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In multidimensional
space, cluster analysis
becomes obligatory.

Calculation of the other object distances is carried out
by analogy, that is, every object is to be compared with the
remaining objects. The distance between one and the same
object is zero:

Object 1 2 3 4 5 6

1 0
2 0.354 0
3 1.063 0.711 0
4 3.201 3.260 3.347 0
5 2.704 2.658 2.774 1.031 0
6 2.658 2.704 2.990 0.559 0.707 0

Clustering of objects is
related to the Q
technique. Usually,
distance measures are
used for this. Clustering
of features is called R
technique. The basis for
that is the computation
of the correlation matrix.

Reduction of the distance matrix is performed by aggre-
gation of objects. Objects with the shortest distance are
aggregated first. In this example, the method of weighted
average linkage is used for aggregation, where the objects are
combined by averaging the calculated distances. The following
steps demonstrate the building of clusters.

First reduced matrix: the shortest distance in the distance
matrix is between objects 1 and 2, that is, d12 = 0.354.
The two objects are aggregated to a new object 1* and
their new distance is set to zero. The distance matrix
is recomputed by averaging the individual distances as
follows:

d1∗3 =
d13 + d23

2
= 1.063 + 0.711

2
= 1.774

d1∗4 =
d14 + d24

2
= 3.202 + 3.260

2
= 3.231

d1∗5 =
d15 + d25

2
= 2.704 + 2.658

2
= 2.681

d1∗6 =
d16 + d26

2
= 2.658 + 2.704

2
= 2.681
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We obtain for the reduced matrix:

Object 1* 3 4 5 6

1* 0
3 1.774 0
4 3.231 3.347 0
5 2.681 2.774 1.031 0
6 2.681 2.990 0.559 0.707 0

Second reduced matrix: the shortest distance is observed
here for objects 4 and 6 with d46 = 0.559. The two objects
4 and 6 form a new object 4*, the distance of which is
again set to zero. The combination of the d values of that
row reveals the actual distance matrix:

d54∗ =
d54 + d56

2
= 1.031 + 0.707

2
= 0.869

d4∗3 =
d43 + d63

2
= 3.347 + 2.990

2
= 3.169

d4∗1∗ =
d41∗ + d61∗

2
= 3.231 + 2.681

2
= 2.956

Object 1* 3 4* 5

1* 0
3 1.774 0
4* 2.956 3.169 0
5 2.681 2.774 0.869 0

Third reduced matrix: the minimal distance is now
d54* = 0.869. A new object 5* is defined and a new
distance matrix arises:

d1∗5∗ =
d51∗ + d4∗1∗

2
= 2.681 + 2.956

2
= 2.819

d35∗ =
d4∗3 + d53

2
= 3.169 + 2.774

2
= 2.972
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Object 1* 3 5*

1* 0
3 1.774 0
5* 2.819 2.972 0

Fourth reduced matrix: here objects 1* and 3 are aggregated
with d1*3 = 1.774 to object 3*. Finally, the distance to the
remaining object 5* is evaluated:

d3∗5∗ =
d5∗1∗ + d5∗3

2
= 2.819 + 2.972

2
= 2.895

Object 3* 5*

3* 0
5* 2.895 0

Graphically, the distances between the clusters can be demon-
strated in a dendrogram (cf. Figure 5.21).
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Figure 5.21 Dendrogram for the clinical–analytical data from Table 5.4.
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For deciding on the number of clusters, different criteria can
be exploited. Very often, the number of clusters is known. In the
given example on clinical data, the number of clusters might be
predefined by a given number of diseases. In some cases, the num-
ber of clusters can be deduced from a predetermined distance
measure or difference between the clusters.

In Example 5.9, aggregation of clusters was carried out by the
weighted average linkage methods. In general, the distance to a
new object or cluster k (labeled in the example by a star) is com-
puted by forming the average between the individual distances of
objects A and B to object i.

Weighted Average Linkage

dki =
dAi + dBi

2
(5.94)

The size of the clusters and their weights are assumed to be
equal.

For the actualization of the distance matrix, several other for-
mulae exist. The most important ones are considered now for the
case of aggregating two clusters.

Single Linkage Here the shortest distance between the opposite
clusters is calculated, that is,

dki =
dAi + dBi

2
−

|dAi − dBi|
2

= min(dAi, dBi) (5.95)

As a result, clusters are formed that are loosely bound. The clus-
ters are often linearly elongated in contrast to the usual spherical
clusters. This chaining is occasioned by the fusion of single objects
to a cluster. The procedure is related to the k-nearest neighbor
(k-NN) method.

dA, B

Complete Linkage This method is based on the largest distance
between objects of the opposite clusters to be aggregated:

dki =
dAi + dBi

2
+

|dAi − dBi|
2

= max(dAi, dBi) (5.96)

Well-separated, small, compact spherical clusters tend to be
formed.

dA, B

Unweighted Average Linkage With this method, the number of
objects in a cluster is used for weighting the cluster distances:

dki =
nA
n

dAi +
nB
n

dBi with n = nA + nB (5.97)
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where nA and nB are the number of objects in cluster A and B,
respectively. No deformation of the cluster is observed. To some
extent, small clusters consisting of outliers might arise.

Centroid Linkage Here, the centroid calculated by the average of
a cluster is applied as the basis for aggregation without distorting
the cluster space:

dki =
nAi
n

dAi +
nB
n

dBi −
nAnB

n2 dAB (5.98)

dA, B

Median Linkage For determination of the centroid, the median
can also be used:

dki =
dAi
2

+
dBi
2

−
dAB

4
(5.99)

An advantage is the fact that the importance of a small cluster
is preserved after aggregation with a large one.

Ward’s Method With the Ward method, the clusters are aggre-
gated such that a minimum increase in the within-group error
sum of squares results:

dki =
nA + ni
n + ni

dAi +
nB + ni
n + ni

dBi −
ni

n + ni
dAB (5.100)

The error sum of squares is defined as the sum over the squared
deviations of each from the centroid of its own cluster. This aggre-
gation method leads to well-structured dendrograms and is prob-
ably the most frequently used method.

A more general procedure can be derived by applying a distance
formula as introduced by Lance und Williams:

dki = 𝛼AdAi + 𝛼BdBi + 𝛽dAB + 𝛾|dAi − dBi| (5.101)

In dependence on the choice of the parameters 𝛼, 𝛽, and 𝛾 , lim-
iting cases result, which represent the aforementioned agglomer-
ation methods (Table 5.5).

Dendrograms for cluster
analysis of the hair data
in Table 5.1 based on the
Euclidean distance and
the single linkage (A) or
Ward method (B).
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Nonhierarchical Cluster Analysis
With this method, the object clusters are not hierarchically
ordered but may be partitioned independently of each other.

Commonly in nonhierarchical cluster analysis, one starts with
an initial partitioning of objects to the different clusters. After
that, the membership of the objects to the clusters, for example,
to the cluster centroids, is determined and the objects are newly
partitioned. We consider here a general method for nonhierarchi-
cal clustering that can be used for both crisp (classical) and fuzzy
clustering, the c-means algorithm.
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Table 5.5 Parameters for hierarchical cluster analysis by means of the
general distance formula after Lance and Williams in Eq. (5.101).

Method 𝜶A 𝜶B 𝜷 𝜸

Unweighted
average

nA/(nA +nB) nB/(nA +nB) 0.0 0.0

Single 0.5 0.5 0.0 −0.5
Complete 0.5 0.5 0.0 0.5
Weighted
average

0.5 0.5 0.0 0.0

Centroid nA/(nA +nB) nB/(nA +nB) −nAnB/(nA +nB)2 0.0
Median 0.5 0.5 −0.25 0.0
Ward (nA +ni)/nABi (nB +ni)/nABi −ni/nABi 0.0

nABi =nA +nB +ni.

At the beginning, the objects are partitioned into subsets Si,
where i is indexed from 1 to c, the number of clusters. The mem-
bership of an object with the feature vector xk to cluster i can be
characterized by means of a membership function, mik , as follows:

mik ∶= mSi
(xk) (5.102)

In the case of a crisp set, the membership value is either 0 or 1.
For fuzzy sets, the membership to an object can assume values in
the interval from 0 to 1 (cf. Section 8.3).

If methods of fuzzy
clustering are used, an
object can belong to
different clusters to a
different degree. If crisp
clustering is applied, an
object is uniquely
assigned to a single
cluster.

The matrix M = [mik] is termed c-partition, if the following con-
ditions are fulfilled:

• The membership of n objects to the clusters are either crisp or
fuzzy, that is,

mik ∈ {0, 1} or [0, 1] 1 ≤ i ≤ c, 1 ≤ k ≤ n (5.103)

• The sum of memberships of objects to a given partition is equal
to 1 for crisp sets. In the case of fuzzy sets, the sum is normal-
ized to membership values of 1, that is,

c∑
i=1

mik = 1 1 ≤ k ≤ n (5.104)

• Within a given partition, the objects are to be partitioned over
all of the clusters, that is, each cluster of a partition contains
at least one object. On the other hand, in a 2-partition, at best
n− 1 objects can belong to a single cluster.

0 <
n∑

k=1
mik < n 1 ≤ i ≤ c (5.105)
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Example 5.10 Clustering (Nonhierarchical)

Consider as an example several 2-partitions for the three
objects x1, x2, and x3:

M1 =
[

1 1 0
0 0 0

]
M2 =

[
1 1 0
0 1 1

]
M3 =

[
1 0 0
0 1 1

]
M4 =

[
1 1 1
0 0 0

]
M5 =

[
1 0 1
0 1 0

]

Each row represents a definite cluster and the columns char-
acterize the objects, as they are assigned to the clusters. In this
example, there are only two genuine 2-partitions, that is, M3 and
M5. In the partition M1, the object x3 is not partitioned at all. In
M2, the object x2 has a twofold presence, and in M1 and in M4,
the second cluster does not contain any object.

A partition is a definite
assignment of objects to
a given cluster.

As an example of fuzzy c-partitions, the following partitions for
the three objects are given:

M1 =
[

1 0.5 0
0 0.5 1

]
M2 =

[
0.8 0.5 0.2
0.2 0.5 0.8

]
M3 =

[
0.8 0.9 0.3
0.2 0.2 0.7

]
M4 =

[
0.8 1 0.9
0.2 0 0.1

]
As can be easily seen, a wrong partition is among the four cases,

that is, M3. There, the sum of membership values exceeds 1 for
object x2.

To find genuine partitions, the following scheme is applied:

• Characterization of the clusters by their centroids:

vi =
1

n∑
k=1

mik

n∑
k=1

mq
ikxk (5.106)

where vi is the centroid of cluster i; q is the exponent that
expresses the degree of fuzziness, that is, for q= 1, the classical
c-means algorithm is obtained.

• Computation of the difference between the objects and the clus-
ter centroids by

‖xk − vi‖2 =

[ p∑
j=1

(
xkj − vi

)2
]1∕2

(5.107)

where p is the number of variables.
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• Minimization of the distance function by

min z (M,V ) =
c∑

i=1

n∑
k=1

mik ‖xk − vi‖2 (5.108)

Minimization of the function z(M,V ) may become a computa-
tional problem. The number of all partitions to be tested is calcu-
lated according to

#Partitions = 1
c!

[ c∑
j=1

(
c
j

)
(−1)c−jjn

]
(5.109)

For example, 10 clusters with 25 objects in total 1018 different
partitions would have to be tested. Fortunately, not all partitions
are to be computed, since algorithms that find an optimum parti-
tion iteratively according to predefined criteria are available.

Frequently, a threshold is defined, in order to judge the improve-
ment by changing from a partition Ml to Ml+1. If the criteria fall
under the threshold, the computation can be stopped.

The results of a c-means
clustering can be
visualized by plotting the
object–cluster distances.
For the data in Table 5.4,
we obtain
Cluster 1

4

56

1

2

3

C
luster 2

Graphical Methods

All of the methods discussed so far for grouping of data cannot
surpass the abilities of humans to recognize patterns. There-
fore, more and more methods are developed that exploit the
human ability for recognizing patterns. These graphical methods
are based on a compact representation of multidimensionally
characterized objects. We learn here about representation of
multivariate data by star and sun-ray plots as well as by Chernoff
faces.

For all those methods, standardization and translation to posi-
tive feature values are a prerequisite.

Star and Sun-Ray Plots
If the feature values are transferred into polygons and the polar
coordinates are plotted, then star-like representations emerge.
Consider p features where a circle is segmented into p uniform
sectors. Each sector describes an angle of 360∘/p. Each boundary
line is assigned a feature. The actual value of a feature is then
plotted at a distance from the mean point of the circle. After
connection of the points by straight lines, a polygon is obtained,
which forms a characteristic pattern.

Feature representation

1

2

34

5

Graphical representation is carried out in the form of stars
(Figure 5.22A), which are also termed diamonds. Or, the result



5.2 Unsupervised Methods 183

a b c

a b c

a b c

(A)

(B)

(C)

Figure 5.22 Graphical method for grouping of the hair data in Table 5.1
for representatives of the three subject groups a, b, and c (for assign-
ments cf. Table 5.8). (A) Stars, (B) sun-rays, and (C) Chernoff faces.

is represented by drawing the boundaries as rays giving the
so-called sun-ray plots (Figure 5.22B).

Chernoff Faces
Assignment of features to facial parts leads to representation of
the objects as faces. Well known are the faces introduced by Cher-
noff. The features are characterized by facial parameters, such as
the size or curvature of the eyes, the mouth, the eye brows, the
nose, or the upper and lower half of the case. As an example, the
hair data of the three subject types are plotted in Figure 5.22C, as
Chernoff faces.

Frequently, up to 20 different facial parameters are used, as
it is demonstrated in Figure 5.23 for distinguishing healthy and

DiseasedHealthy

Figure 5.23 Chernoff faces for distinguishing of serum samples of dis-
eased and healthy patients on the basis of 20 clinical analyses.
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ill patients on the basis of clinical analyses for blood serum
samples.

One disadvantage of Chernoff faces is the fact that the indi-
vidual faces cannot be varied independently of each other. Faces
proposed by Flury–Riedwyl (cf. [1]) overcome this disadvantage.

5.3
Supervised Methods

If the membership of objects to particular clusters is known in
advance, the methods of supervised pattern recognition can be
used. In this section, the following methods are explained: linear
learning machine (LLM), discriminant analysis, k-NN, the soft
independent modeling of class analogies (SIMCA) method, and
Support Vector Machines (SVMs).

Supervised methods for recognizing patterns can also be based
on multivariate modeling methods, for example, by use of PLS
as discussed in Section 6.2.2. The method is termed discriminant
analysis–partial least squares (DA-PLS) analysis where the input
feature data from the X matrix and the assignment to a class is
described in the Y matrix. To avoid a ranking of classes, the con-
tainment of classes is not coded in a single classification vector, for
example, classes 1–6, but is described by ones or zeros column-
wise in the Y matrix.

Linear Learning Machine

The first analytical application of a pattern recognition method
dates back to 1969 when classification of mass spectra with
respect to certain molecular mass classes was tried with the LLM.
The basis for classification with the LLM is a discriminant func-
tion that divides the n-dimensional space into category regions
that can be further used to predict the category membership of a
test sample.

Consider the data in Table 5.6 that represent the iodine content
of hair samples from five different patients belonging to two
categories. Since only one feature has been measured (p= 1), the
data can be represented in one-dimensional space as given in
Figure 5.24.

To find a decision boundary that separates the two groups, the
data vectors have to be augmented by adding a (n+ 1) compo-
nent equal to 1.0. This ensures that the boundary for separating
the classes passes through the origin. If more than two categories
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Table 5.6 Iodine content of hair samples from different patients.

Hair sample Iodine content (ppm) Augmented component

1 0.29 1.0
2 4.88 1.0
3 0.31 1.0
4 3.49 1.0
5 4.46 1.0

1 2 3 4 5
x

Figure 5.24 Representation of iodine data from hair samples in Table 5.6;
the two groups are labeled as open and filled circles.

are to be separated, several linear discriminant functions would
have to be constructed.

The boundary that separates the two categories is found itera-
tively by adjusting the elements of a weight vector, w, which is nor-
mal to the boundary, such that the dot product of w and any vector
of the full circles is positive, while that of w and the empty circles
is negative (Figure 5.25). The decision boundary s is expressed by

s = w1x1 (5.110)

1

0
1 2 3 4 5

w
x1

Figure 5.25 Linear learning machine (LLM): representation of iodine data
of Table 5.6 augmented by an additional dimension and separated by a
straight-line boundary with the normal weight vector w.
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or in general

s = wtx = ‖w‖•‖x‖ cos 𝜃 (5.111)

where ||⋅|| is the vector norm, that is,
[∑

i x2
i
]1∕2, x the augmented

data vector, s the scalar variable, and 𝜃 the angle between w and x.
If the angle 𝜃 is less than 90∘, it is obvious that the objects repre-

sented as full circles are categorized and that s> 0.0. Conversely,
if the angle 𝜃 is greater than 90∘, the scalar variable will be s< 0
and the empty circle objects are described.

To find the weight elements, w, they are set initially to random
numbers. The objects are then classified by computing s and
checking against the correct answer. If all classifications are
correct, the training process can be stopped and the LLM can be
used for further classification purposes. However, if the response
is incorrect, new weights have to be calculated by updating the
old ones, for example, by

w(new) = w(old) + cx with c = −2s
xT x

(5.112)

here the constant c is chosen such that the boundary is reflected
to the correct side of a data point by the same distance as it was
in error. The updating of weights is repeated as long as all objects
are correctly classified.

Of course, the LLM will only work properly if the data are
linearly separable. One should also remember that the solution
for positioning the boundary is not unique so that different
solutions will emerge if the order for presenting the training
objects is changed.

Additional disadvantages are the simple class boundaries, the
danger of wrong assignments of outliers, or the slow convergence.
In addition, LLM is restricted to the separation of only two classes
(binary classifier).

A decision boundary
separates two or more
groups of data.

Discriminant Analysis

Linear Discriminant Analysis
A more formal way of finding a decision boundary between differ-
ent classes is based on linear discriminant analysis (LDA) as intro-
duced by Fisher and Mahalanobis. The boundary or hyperplane
is calculated such that the variance between the classes is maxi-
mized and the variance within the individual classes is minimized.
There are several ways to arrive at the decision hyperplanes. In
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2

0

LDA

LR

1 2 3 4 5
x

–2

–4

Figure 5.26 Decision lines based on linear regression (LR) and linear dis-
criminant analysis (LDA) for separating the objects represented by filled
and empty circles.

fact, one of the routes Fisher described can be understood from
the principles of straight-line regression (cf. Section 6.1).

Two-Class Case Consider again the iodine data in Table 5.6. If you
create an augmented variable y with values of +1 for objects from
one group and −1 for objects from the other group and perform
a linear regression (LR) of y on x for the five training objects, then
the regression equations for y will have coefficients similar to the
LDA weights, that is,

y = –1.082 + 0.477x

Comparison with the LLM reveals that the boundary is not con-
strained to pass through the origin but a cut-off point is included
into the model. Application of LDA gives the discriminant
function

s = –4.614 + 1.718x

Both boundaries are given in Figure 5.26. Depending on the
class, s takes on positive or negative values.

Multiclass Case To arrive at the (nonelemental) LDA solution, an
eigenvalue problem has to be solved. To generalize the problem,
we have to consider a data matrix X with n objects and p feature
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variables. There are g different groups or classes indexed by g1 to
gnj

:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

x11 x12 … x1p
x21 x22 x2p

}
g1

x31 x32 … x3p
x41 x42 x4p

}
g2

⋮
xj1 xj2 … xjp
xn1 xn2 xnp

}
gnj

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5.113)

The weights of the linear discriminant functions are found as
the eigenvectors of the following matrix:

G−1Hw = 𝜆w (5.114)

where 𝜆 is the eigenvalue.
The matrix G is derived from the covariance matrix C

(Eq. (5.114)) of the different classes or groups g as follows:

G = (n − g)C = (n − g) 1
n − g

g∑
j=1

(nj − 1)Cj (5.115)

Cj =
1

nj − 1
∑
l∈gj

(xli − xji)(xlk − xjk) (5.116)

where n is the total number of objects, nj the number of objects
in group j, and l ∈ gj, which means index l is an element of the jth
group gj.

The results of categorical
classification are
represented in the
confusion matrix, which
contains the numbers of
correct classified objects
in each class on the main
diagonal and the
misclassified objects in
the off-diagonal.

Matrix H describes the spread of the group means xj over the
grand average x, that is,

H =
g∑

j=1
nj(xj − x)(xj − x)T (5.117)

x = 1
n

n∑
j=1

njxj (5.118)

The eigenvector, w1, which is found on the basis of the greatest
eigenvalue 𝜆1, provides the first linear discriminant function, s1,
by

s1 = w11x1 + w12x2 + · · · + w1pxp (5.119)

With the residual x data, the second largest eigenvalue is com-
puted and with the new eigenvector, w2, the second discriminant
function, s2, is obtained:

s2 = w21x1 + w22x2 + · · · + w2pxp (5.120)
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The procedure is continued until all discriminant functions are
found for solving the discrimination problem. By plotting pairs of
discriminating functions against each other, the best separation
of objects into groups after the linear transformation of the ini-
tial features can be visualized (cf. Figure 5.25). The projection of a
particular object onto the separating line or hyperplane is called
its score on the linear discriminant function.

s2

s1

s rj

Classification of unknown objects is carried out by inserting the
feature data into the discriminant functions in order to transform
its coordinates in the same way as for the original data set. The
object is then assigned to that class for which its centroid has the
smallest Euclidian distance:

min
j

‖wT(xu − xj)‖ with j = 1,… , g (5.121)

Table 5.8 Classifica-
tion vector for the hair
samples in Table 5.1.

Hair no. Subject

1 B
2 A
3 C
4 B
5 A
6 C
7 C
8 A
9 B

Example 5.11 Linear Discriminant Analysis

LDA is to be used to build a classification model for the hair
data in Table 5.1. Based on the model, an unknown hair sample
as given in Table 5.7 is to be classified.

Table 5.7 Elemental content of an unknown hair sample in parts per
million.

Cu Mn Cl Br I

9.2 0.27 2200 9.8 4.7

In the first step, the discriminant function is computed by
Eqs. 5.114–5.118. The membership of hair samples in the indi-
vidual groups is represented by a classification vector as given
in Table 5.8.

For the first two discriminant functions, we get:

s1 = 0.227xCu + 0.694xMn − 1.200xCl + 0.0394xBr − 0.0514xI
(5.122)

s2 = 0.00672xCu + 0.936xMn − 0.211xCl + 1.342xBr − 0.395xI
(5.123)

The first discriminant function describes 63.39% of the
variance of data and the second one 36.61%. That is, the
two discriminant functions are sufficient to explain 100%
(63.39%+ 36.61%) of the data variance. Discrimination of
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the data into three classes can be illustrated by plotting the
discriminant functions against each other (Figure 5.27).

If, in the second step, the elemental contents of the unknown
hair sample (Table 5.7) are inserted into the discriminant func-
tions of Eqs. 5.119 and 5.120, then the following values are
obtained for the scalar values s1 = 4.416 and s2 =−7.15. If com-
pared to the centroids of the classes (Figure 5.27), we obtain the
values 15.66, 4.93, and 10.52 for the Euclidian distances of the
classes A, B, and C, respectively. The shortest distance is found
between the data of the unknown hair and class B, that is, the
hair has to be assigned to the subject group B.
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Figure 5.27 Discriminant function of the LDA of the hair data in
Table 5.1 based on the classification vector in Table 5.8. The centroids
of the classes are labeled by a cross.

Multiclass Assignment A disadvantage with this method of unique
decision is the fact that simultaneous membership of an object
in several classes is not detected and that outliers, which do not
belong to any of the classes, will always be categorized. Therefore,
the unique categorization is often replaced by assigning the object
to all classes within a fixed variance range, for example, 95%. If the
object lies outside of any of those variance ranges, it will not be
categorized at all.

x

x

xs rj

Double
assignment

Single assignment

x Outlier

The calculation of the variance radius, rj, is done by

rj =
d(n − g)

n − g − d + 1
nj + 1

nj
F(d,n−g−d+1;𝛼) (5.124)
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Figure 5.28 Differently spread (a) and differently directed (b) objects of
the full and empty circled classes. (c) For case (a) the density function
around the class centroids is given.

where d is the number of discriminant functions used and F the
Fisher’s F statistics with risk 𝛼.

Assignment of an object to a particular class is performed if√√√√ d∑
i=1

(si − sij)2 ≤ rj (5.125)

here si represents the new coordinates of the unknown object and
sij is the jth class centroid.

Necessary assumptions of LDA are the normality of data dis-
tributions and the existence of different class centroids, as well
as the similarity of variances and covariances among the different
groups. Classification problems therefore arise if the variances of
groups differ substantially or if the direction of objects in the pat-
tern space is different, as depicted in Figure 5.28.

Bayesian Classification
In the case that objects of all classes obey a multivariate normal
distribution, an optimal classification rule can be based on Bayes’
theorem. The assignment of a sample, x, characterized by p fea-
tures to a class j of all classes g is based on maximizing the poste-
rior probability:

P(j|x) for j = 1,… , g (5.126)

Application of Bayes’ theorem for calculation of the posterior
probability reveals

P(j|x) = p(x|j)P(j)
p(x)

(5.127)
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According to Eq. (5.127), the posterior probability is computed
from the probability density function for the considered class,
p(x|j), the prior probability for that class P(j), and the probability
density function over all classes p(x). A sample x is then assigned
to that class j, for which the largest posterior probability is
found.

For computation of the class probability density, p(x|j), the mul-
tidimensional normal distribution is assumed:

p(x|j) = (2𝜋)−p∕2|Sj|−0.5 exp[−0.5(x − xj)S−1
j (x − xj)T] (5.128)

where the covariance matrix Sj based on the class centroid xj is
obtained by

Sj =
1
nj

nj∑
i=1

(xi − xj)T(xi − xj) (5.129)

xj =
1
nj

nj∑
i=1

x(j)
i (5.130)

where nj describes the number of samples in class j.
Maximizing the posterior probability is related to minimizing

the discriminant scores obtained by

dj(x) = (x − xj)S−1
j (x − xj)T + ln|Sj| − 2 ln P(j) (5.131)

An unknown sample is assigned to that class, j, with the shortest
distance to its class centroid. The first term in Eq. (5.131) rep-
resents the Mahalanobis distance between the sample x and the
class centroid xj.

In LDA, it is assumed that the class covariance matrices are
equal, that is, S j = S for all j= 1 to g. Different class covariances
are allowed in quadratic discriminant analysis (QDA). The results
are quadratic class boundaries based on unbiased estimates of the
covariance matrix. The most powerful method is based on regu-
larized discriminant analysis (RDA) [7]. This method seeks biased
estimates of the covariance matrices, Sj, to reduce their variances.
This is done by introducing two regularization parameters 𝜆 and
𝛾 according to

Sj(𝜆) = (1 − 𝜆)Sj + 𝜆S (5.132)

Sj(𝜆, 𝛾) = (1 − 𝛾)Sj(𝜆) +
𝛾

p
tr[Sj(𝜆)]I (5.133)

The parameters range in the interval 0 and 1; tr characterizes
the trace of a matrix and I is the identity matrix.

RDA is the same as
QDA, if 𝜆= 0 and 𝛾 = 0.
For 𝜆= 1 and 𝛾 = 0, the
method corresponds to
LDA. If 𝜆= 1 and 𝛾 = 1,
RDA is the same as the
nearest mean classifier.

This ensures that even in the case of ill-conditioned systems, for
example, in the case of very similar spectra, good results for the
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Figure 5.29 Separation boundary for classification of objects into two
classes with k = 1.

estimation of the inverse covariance matrix in Eq. (5.131) and the
subsequent classification of unknown samples are to be expected.

k-Nearest Neighbor Method

A simple nonparametric classification method is the nearest
neighbor method as introduced by Fix and Hodges in 1951. For
classification of an unknown object, its distance, usually the
Euclidian distance, is computed to all objects. The minimum dis-
tance is selected and the object is assigned to the corresponding
class.

The k-NN method is also
used for filling in missing
values or in library
searches.

Typically, the number of neighboring objects k is chosen to be 1
or 3. With the k-NN method, very flexible separation boundaries
are obtained as exemplified in Figure 5.29.

Unfortunately, classification is dependent on the number of
objects in each class. In the case of overlapping classes, the object
will be assigned to the class with the larger number of objects.
This situation can sometimes be handled if no single criterion
is used but alternative counting of neighborhood is allowed, for
example, for class A with fewer objects, five neighbors must be
found, whereas for another class B with more objects, seven
neighbors would have to be considered.

In the following example, a four-class problem simulated for
two-dimensional data is explored.

Example 5.12 k-Nearest Neighbor Classification

Here we consider simulated two-dimensional random data
for four different classes with 50 objects in each class. At first,
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a k-NN classification model is computed for one neighboring
object revealing decision boundaries as given in Figure 5.30a.
Although the resubstitution error is zero, that is, there are no
misclassified objects, the error of a 10-fold cross-validated
model amounts to 15.5% of misclassified objects. More stable
models are obtained with more neighboring objects.
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Figure 5.30 k-NN classification by cross-validated models with one
neighboring object (a) and four neighboring objects (b) for simulated
data.

Figure 5.31 demonstrates models for increasing numbers
of neighbors up to 15. The fraction of misclassifications has
a first minimum at four neighbors, where the fraction of
misclassified objects is 8.0% and 9.5% for resubstitution and
cross-validation, respectively. The decision boundaries for
this model are given in Figure 5.30b.
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Figure 5.31 Fraction of misclassified objects in dependence on the
number of neighbors used in k-NN classification models.

SIMCA

Apart from discrimination methods, class membership of objects
can also be determined by description of the individual classes
by means of a separate mathematical model independent of the
model for the other classes. In terms of geometry, the model
describes an envelope or a “class box” around the class, so that
unknown objects can be classified according to their fit to a
particular class model.

An early method developed uses multivariate normal distri-
bution to model the classes on the basis of their data variances.
Although this model has sometimes been used in analytical
chemistry, it lacks general application because the method is
based on the covariance matrix where it is tacitly assumed that
many data exist and that the ratio between objects and variables
is favorably about 6 : 1.

SIMCA is the
abbreviation for Soft
Independent Modeling of
Class Analogies.

More often, the SIMCA method is used. This finds separate
principal component models for each class. By using SIMCA,
the object variable number ratio is less critical and the model is
constructed around the projected, rather than the original, data.
The basic steps of principal component calculations as needed for
SIMCA have been outlined in the chapter on projection methods
with the NIPALS algorithm (Example 5.1).
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Figure 5.32 Soft independent modeling of class analogies (SIMCA) mod-
els for different numbers of significant principal components (PCs).

For each class q, a separate model is constructed that reveals for
a single x observation:

xq
ij = xq

j +
Aq∑

a=1
tq
ialq

ja + eq
ij (5.134)

where xq
j is the mean of variable j in class q, Aq the number of

significant principal components in class q, tq
ia the score of object

i on component a in class q, lq
ia the loading of variable j on principal

component a in class q, and eq
ij the residual error of object i and

variable j.
The principal components are found by the iterative NIPALS

algorithm. Each separate model may reveal a different number of
significant principal components Aq. Thus, the class models may
represent lines, planes, boxes, or hyperboxes as demonstrated in
Figure 5.32. The models can then be used to eliminate outlying
objects, to estimate the modeling power of a particular variable,
and to classify new objects.

The number of principal
components in a class
model is determined by
cross-validation.

Outliers
Objects that do not fit the estimated principal component model
can be eliminated by testing the total residual variance of a class q
against the residual variance of that object. The two variances are
calculated as follows.

Total residual variance of class q

s2
0 =

n∑
i=1

p∑
j=1

e2
ij

(n − Aq − 1)(p − Aq)
(5.135)
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where n is the number of objects and p is the number of
variables.

Residual variance for object i

s2
i =

p∑
j=1

e2
ij

p − Aq
(5.136)

If both variances are of the same order of magnitude, the object
is assigned as a typical object to the class. If s2

i > s2
0, then the object

should be eliminated to enable a more parsimonious class model
to be described.

Modeling Power
The residual variance of a variable j of class q is used for esti-
mating the modeling power of a particular variable if related to
the so-called meaningful variance, the familiar expression for the
variance.

Residual variance of variable j

s2
j (error) =

n∑
i=1

e2
ij

n − Aq − 1
(5.137)

Meaningful variance of variable j

s2
j (x) =

n∑
i=1

(xij − x)2

n − 1
(5.138)

The comparison of the two variances reveals a measure for the
noise-to-signal ratio of this variable. The modeling power for vari-
able j, Rj, is derived from the following expression:

Rj = 1 −
sj(error)

sj(x)
(5.139)

If the modeling power approaches values of 1, then the vari-
able will be highly relevant, because the ratio between the residual
error for the variable is small compared to its meaningful variance.

Classification
An unknown object with data vector xu (dimension 1× p) is deter-
mined to belong to a particular class by regression of the vector
xu on the q class models. Multiplying the data vector by the load-
ing matrix L (p×Aq) reveals an estimation for a new score vector
t̂ (1× p). With the score vector, the residuals are computed and
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used to decide on the membership of the object to a class:

t̂ = xuL (5.140)
e = xu − t̂LT (5.141)

As the residual variance for object u, we get:

s2
u =

p∑
j=1

e2
uj

p − Aq
(5.142)

The object is assigned to class q if the variances s2
u and s2

0 are of
similar order of magnitude. If s2

u is greater than s2
0, the object is not

a member of class q.

Support Vector Machines

Separation of overlapping classes is not feasible with methods
such as discriminant analysis because they are based on optimal
separating hyperplanes. SVMs provide an efficient solution
to separating nonlinear boundaries by constructing a linear
boundary in a large, transformed version of the feature space.

The Support Vector Classifier
With the LLM and discriminant analysis covered in this section,
classification of an object is carried out strictly by assigning it to
the class on either side of the separating plane (hyperplane). To
deal with overlapping classes, one approach is to allow for some
objects to be on the wrong side of the margin.

Consider a hyperplane

f (x) = xTw + w0 = 0 (5.143)

where w denotes a weight vector and w0 is the offset (cf.
Figure 5.26). Decision rules are then defined by

G(x) = sgn(xTw + w0) (5.144)

Given the classification vector, y, in the interval [−1,+1], a func-
tion f (x) = xTw + w0 with yi f (xi) > 0 can be found for all i. Then
a hyperplane can be computed that creates the biggest margin
between the training points for classes 1 and−1. The optimization
problem is then given by

min
(1

2
‖w‖2

)
subject to yi(xT

i w + w0) ≥ 1, i = 1,… , n

(5.145)

The decision problem is visualized in Figure 5.33 for a separa-
ble (a) and a nonseparable case (b), where the decision boundary
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Figure 5.33 Separable case (a) and nonseparable (overlap) case (b) of the
decision problem.

is represented by a solid line. The maximal margin is twice the dis-
tance C from the decision boundary. C is just the reciprocal value
of the norm of the weights, that is, 1∕‖w‖.

Now we consider overlapping classes in the feature space. One
can still try to find a hyperplane allowing for some points to be on
the wrong side of the margin. We define the slack variable, 𝝃, and
modify the constraints in Eq. (5.145) by

min

{
1
2
‖w‖2 + C

n∑
i=1

𝜉i

}
subject to

yi(xT
i w + w0) ≥ 1 − 𝜉i for all i, 𝜉i ≥ 0 (5.146)

The first term in Eq. (5.146) relates to maximization of the mar-
gin and the second term penalizes samples on the wrong side of
the class boundaries in the nonseparable case.

The optimization problem in Eq. (5.146) is a standard situa-
tion in optimization, that is, minimization of a quadratic function
with linear constraints and can be solved by applying Lagrangian
theory. From this theory, it follows that the weight vector of the
decision function is given by a linear combination of the training
data and the Lagrange multiplier 𝛼 by

ŵ =
n∑

i=1
𝛼iyixi (5.147)

Only those training vectors xi will have nonzero Lagrange
multipliers 𝛼i, which are at the class boundaries or are margin
errors. These prototypes, which determine the construction of
the decision function, are termed support vectors.

In contrast to conventional classification methods such as
discriminant analysis, no assumptions about the form of the
underlying class distributions are necessary with support vector
classifiers.
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Support Vector Machines
The problem can be made more flexible if the feature space is
enlarged using basis expansions such as polynomials or splines.
Instead of the original x variables, their transforms, that is, basis
functions h(x), are used in the support vector classifier according
to

f (x) = h(x)Tw + w0 (5.148)

Support vector machines
can also be adapted for
regression analysis
(see [8]).

The idea of basis expansion is that linear boundaries in the
enlarged space achieve better separations of the training classes
and translate to nonlinear boundaries in the original space. If the
dimension of the enlarged space gets very large, the classifiers are
termed SVMs.

In a special representation of the optimization problem, the
input features are represented via their inner products. Then the
knowledge of transformation h(x) is not required at all, but only
the kernel function K(xi, xj). This reveals the following nonlinear
decision function:

f (x) =
n∑

i=1
𝛼iyiK(x, xi) + w0 (5.149)

Popular choices of kernel functions for SVMs are as follows:

• Polynomial of degree p with parameters a1 and a2:

K(xi, xj) = (a1xT
i xj + a2)p (5.150)

• Gaussian kernel:

K(xi, xj) = exp
⎛⎜⎜⎜⎝
‖‖‖xi − xj

‖‖‖2

2𝜎2

⎞⎟⎟⎟⎠ (5.151)

• Sigmoid kernel:

K(xi, xj) = tanh (a1xT
i xj + a2) (5.152)

The Gaussian kernel is used in potential function classifiers,
also known as radial basis function networks. A sigmoid kernel
implements a multilayer perceptron (cf. Section 8.2) with a single
hidden layer.

SVMs can be advantageously used if there are ill-behaved distri-
butions, high dimensional data, or if there is a low ratio of training
samples to the dimensionality of the input data. These situations
are typically found with real-world problems and there the suc-
cessful application of this approach might be expected.
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Tree-Based Classification

Tree-based classification and regression are partition-based
methods. Partitioning is also used in nonhierarchical cluster
analysis. With classification and regression trees (CART), the fea-
ture space is partitioned into a set of rectangles and then a simple
model, such as a constant, is fit to each region separately. In
Figure 5.34, some fake data of a two-dimensional space of features
x1 and x2 are partitioned into four regions. The representation of
rectangles as in Figure 5.34a, is useful for two inputs, but more
difficult for more than two inputs. As an alternative, a tree can be
drawn independent on the number of features (Figure 5.34b).

X2 X1

Nonsmooth response
surface for the fake data
partitioning as in
Figure 5.34.

To keep the description of the regions simple, binary decision
trees with a root, nodes, and leaves, the Rm

′s, are favored. Each
region is split into two further regions over and over again termed
a recursive binary partitioning. The decision for the binary split is
based on a constant, s, as shown in Figure 5.34b.

Classification/regression
trees partition the
objects on one feature at
a time.

In case of regression trees, the constant could be derived from
the averaged response in each region. This will not work for classi-
fication trees and, therefore, the relative frequency or proportion,
p, of n responses, yi, in a node m, which represents the region Rm,
with class k is calculated as follows:

pmk = 1
nm

∑
xi∈Rm

I(yi = k) (5.153)

I represents the unit step function that gives 1 for I (yi = k) and 0
for I (yi ≠ k).

Classification of new observations in node m to class k is
obtained by

k(m) = arg maxkpmk (5.154)

that is, assign an observation to class k with feature variables
(arguments), x, for which the proportion of responses, pmk, is
maximum.

To build the classification tree for best fit on one or both
regions, the variables and the split points have to be found.
Best fit is usually determined by minimizing the mean squared
error of the residuals of the responses, ‖y − ŷ‖2. To find the best
partition according to this criterion, however, is computationally
infeasible. Several greedy algorithms are in use to estimate the
tree. Because a large tree might overfit the data tree pruning is
performed on the basis of a complexity criterion relying on a
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Figure 5.34 Partitioning in CART: The panel (a) demonstrates the partitioning of a two-dimensional feature space into four regions
by recursive binary splitting. In the panel (b), the resulting tree is shown.
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complexity parameter 𝛼 and the number of terminal nodes, |T|:
C𝛼(T) = ‖y − ŷ‖2 + 𝛼|T| (5.155)

An example for building a classification tree is given in Example
5.13 for classification of drugs based on their infrared spectra.

Example 5.13 Classification Trees

Spectra in the mid-infrared range were recorded in 70
blood serum samples representing seven classes of the drugs
codeine, methamphetamine, desmethyldiazepam, oxazepam,
diazepam, amphetamine sulfate, and hydromorphone. For
data analysis, the absorbances at 16 wavenumbers were chosen
as input to the CART algorithm. The resulting classification
tree has the following shape:

x1 < 0.439x2 < 0.238

x3 < 0.699

x2 ≥ 0.238

x1 ≥ 0.146 x1 ≥ 0.232

x1 ≥ 0.439

Desmethyldiazepam

Metamphetamine

Codeine

Diazepam

x2 ≥ 0.316

x3 ≥ 0.699

x1 < 0.146 x1 < 0.232

x2 < 0.316

Amphetamine sulfate

Oxazepam

Hydromorphone

All the seven drug classes can be perfectly separated. The
assignment of a new drug would be possible by applying
Eq. (5.154).

Collapsing any number
of nonterminal (internal)
nodes is termed pruning.

Although CART modeling of the classes might be perfect as in
Example 5.13, the prediction of new observations is sometimes
less perfect. This might be reasoned by overfitting and some fur-
ther treatment, especially pruning of a tree, should be applied.

In CART models, no assumptions are necessary regarding
the distribution of the input variables as made in many other
multivariate methods. Another advantage is the treatment of
missing values. In Section 5.1, we learned about column means
or random numbers to deal with missing values. CART provides
more sophisticated methods for this purpose, for example, by
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generating surrogate variables during modeling. Also, nonaddi-
tivity of predictors and complex interactions among predictors
can be handled with CART. Known disadvantages of CART
methods are their instability of tree structure in case of small
changes of input data and, furthermore, the fitted response
surface lacks smoothness.

Ensemble Methods

The models of tree-based methods can be improved by ensem-
ble methods, where several different decision trees are aggregated
to an ensemble and the slightly differing classification results are
averaged. Currently, the most popular ensemble methods are bag-
ging and boosting.

Ensemble methods
comprise bootstrap
aggregating (bagging),
Bayesian model
combination, bucket of
models, stacking, or
boosting.

In bagging, the original feature matrix, X, is used to generate
different models by bootstrap sampling. As in cross-validation,
in bootstrapping, samples are randomly left out and their
responses are predicted by the different models. In contrast
to cross-validation, however, the size of the X-matrix remains
constant because the missing rows are filled up with copies of
the remaining samples in the X-matrix. Combinations of the
predictions by the different models are carried out by a voting
system, where the unknown sample is assigned to the class for
which most of the votes were obtained. Unfortunately, the bagged
model has no longer an easy interpretation as has the single tree
because the original structure is lost.

Boosting constructs sequential models by a sample reweight-
ing function altering adaptively the X-matrix. A poorly predicted
sample is “boosted” by increasing its weight before the construc-
tion of the next model; thus, the models concentrate on the poorly
predicted samples and generalization is improved by the sequen-
tial models. An unknown sample is predicted by all models, the
results are weighted, and the outputs are combined again by a vot-
ing scheme.

Bagging and boosting of classification trees are explored in
Example 5.14.

Example 5.14 Ensemble Methods

Here we consider again the 4-class problem used in Example
5.12. CART modeling of this data set by a single tree reveals
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decision boundaries as seen in Figure 5.35. The percentage of
misclassified objects amounts to 0.75% after resubstitution
and to 19.0% after cross-validation, respectively.
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2 4 6 8 10 12

Figure 5.35 Decision boundaries for classification of four classes by
CART in a single tree.

Application of ensemble methods implies variation of sev-
eral parameters in order to optimize the final model. Typical
parameters are minimum observations per leaf or per branch
node, pruning, and split criterions as well as surrogate deci-
sion splits. In this example, the maximum number of deci-
sion splits (branch nodes) per layer – a set of nodes that are
equidistant from the root node – has been chosen for improv-
ing the CART model by the ensemble methods bagging and
boosting.

Figure 5.36a demonstrates the fractions of misclassifica-
tions in dependence on the maximum number of splits for
both resubstitution and cross-validation in a bagged CART
model. Although the resubstitution error might be close
to zero, a more realistic model is based on the maximum
number of splits for which a minimal classification error for
cross-validation is observed. The smallest error for the bagged
trees is found at 16 splits where the cross-validated fraction
of misclassification is 12.0% (cf. Figure 5.36b for the decision
boundaries).



206 5 Pattern Recognition and Classification

0.5

0.4

0.3

0.2

0.1

0
0 5 10 15 20

Fr
ac

tio
n 

of
 m

is
cl

as
si

fic
at

io
ns

Maximum number of splits

Resubstitution
Cross-validation

(a)

10

8

6

4

2

x 2

x1

2 4 6 8 10 12
(b)

Figure 5.36 Dependence of the fraction of misclassifications in
bagged CART models on the maximum number of splits (a) and the
decision boundaries for 16 splits per layer (b).

In case of boosting, here the RUSBoost algorithm was used,
the misclassification error versus the maximum number of
splits follows a similar trend as in bagging (Figure 5.37a).
The minimum for cross-validated misclassifications is at 14
splits per layer (Figure 5.37b) resulting in errors of 0.7% for
resubstitution and of 14.0% for cross-validation, respectively.
In summary, both ensemble methods improve the number of
correct classifications in comparison with a single tree CART
model.
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Figure 5.37 Dependence of the fraction of misclassifications in boosted
CART models on the maximum number of splits (a) and the decision
boundaries for 14 splits per layer (b).

In Example 5.15, the performance of different classification
methods for a simulated data set in two dimensions is compared
for LDA and QDA, SVMs, CART as well as for the k-NN method.

Example 5.15 Comparison of Classification Methods

Simulation of a data set in two dimensions consisting of 400
random objects divided equally into two classes revealed the
data given in Figure 5.38a.

The two classes represented by filled circles and crosses have
been modeled first by LDA. As can be seen in Figure 5.38b,
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Figure 5.38 Simulated two-class data (a) and their classification by (b) LDA, (c) QDA, (d) SVM, (e) CART, and (f ) k-NN.
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LDA cannot separate these classes, and in case of resubsti-
tution, the resulting fraction of misclassified objects is 49%.
Much improved decision boundaries are found by using QDA
with only 4.75% of misclassified objects (Figure 5.38c). A sim-
ilar result is obtained by applying SVM with a fraction of mis-
classifications of 4.50%. The support vectors are labeled by cir-
cles in the figure for this classification method (Figure 5.38d).
Even better results are obtained for CART and k-NN models
(Figure 5.38f ), where in case of resubstitution only 0.25% and
0% of objects are misclassified, respectively.

However, the instability of tree-based methods implies also
here a much higher error in case of cross-validation by the
simple leave-one-out method, that is, the cross-validated frac-
tion of misclassified objects for CART is with 2.25%, 10 times
higher than the resubstitution error. This error can be only
reduced if ensemble methods are included in the model build-
ing step. A bagged CART model revealed a cross-validation
error of only 1.0% (Figure 5.38e). The fraction of misclassifica-
tions for the cross-validated models increases for QDA, SVM,
and k-NN to 5.5%, 5.0%, and 4.75%, respectively. The cross-
validated classifications by LDA reveal 58.8% of misclassified
objects as expected from the type of data.
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Questions and Problems

1. Explain the following methods for data preprocessing:
centering, range scaling, autoscaling, scaling to vari-
ance one, normalization, Fourier transformation (FT),
principal component projection, linear transformation,
logarithmic transformation.

2. Which rows and/or columns could you eliminate in
matrix X in order to avoid correlated, constant, or
redundant data in subsequent multivariate analyses?

X =

⎛⎜⎜⎜⎜⎜⎝

2 1 3 5 7
4 2 6 5 14
3 7 4.5 5 12
1 3 1.5 5 3
9 4 13.5 5 1

⎞⎟⎟⎟⎟⎟⎠
Compute the condition numbers of X before and after
preprocessing.

3. Specify the following terms in multivariate analysis: prin-
cipal component, eigenvector, common and unique fac-
tor, score, loading, target vector, latent variable.

4. Which methods can be used to decide on the number of
abstract components in a PCA?

5. What is the difference between the principal component
and factor analysis?

6. The content of heavy metals in soil samples has been
determined at nine different locations. The following
table provides the results of the analysis for the elements
Zn, Cd, Pb, and Cu, in parts per million:

Sample Zn Cd Pb Cu

1 35.3 0.08 0.25 6.5
2 20.2 1.20 0.52 3.2
3 34.2 0.05 0.28 5.8
4 22.2 1.50 0.48 2.9
5 33.8 0.07 0.26 4.9
6 25.3 0.90 0.60 3.6
7 38.1 2.10 1.20 3.0
8 39.2 1.90 1.50 2.5
9 37.8 2.80 1.40 2.6

(a) What are the eigenvalues of the data matrix?
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(b) How many significant principal components/factors
are in the data set if more than 98% of the total vari-
ance is explained?

(c) Which sample numbers belong to the found classes?
(d) Assign the following unknown sample to the appro-

priate class of origin: Zn, 21.8 ppm; Cd, 1.3 ppm; Pb,
0.5 ppm; Cu, 3.3 ppm.

7. Summarize the advantages and disadvantages of direct
and inverse multivariate calibration.

8. For solving a classification problem by CART, the follow-
ing regions are given:

x1

x2

Is this a valid partitioning of regions emerging from a
recursive binary splitting?
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6
Modeling

Learning Objectives

• To introduce univariate regression analysis for straight-line
calibration and empirical model building of analytical rela-
tionships

• To understand the usage of the analysis of variance and
regression diagnostics

• To model analytical relationships by multiple linear regres-
sion analysis, such as in multicomponent analysis, and by
target transform factor analysis

• To present nonlinear regression methods based on paramet-
ric and nonparametric models.

Models are constructed in analytics to describe the relationship
between responses and factors. This is, for example, important
for optimization of analytical methods on the basis of response
surface methods (cf. Section 4.2). Models are also needed for
calibration of analytical methods. There, calibration of a single
analyte in dependence on one or several wavelengths might be of
interest. If, in the first example, the straight-line model would be
adequate, for the second task of multiwavelength spectroscopy,
multivariate approaches are needed. Calibrations in the case
of unselective analytical methods must also be performed.
These methods are termed simultaneous multicomponent
analysis. In near-infrared (NIR) spectroscopy, the contents
of water and protein in whole grain wheat are determined
that way.

Calibration and response surface methods are indeed the most
important applications of regression methods in analytics. Other
applications are seen in environmental analysis, where receptor
models are developed on the basis of multivariate relationships

Chemometrics: Statistics and Computer Application in Analytical Chemistry, Third Edition. Matthias Otto.
© 2017 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2017 by Wiley-VCH Verlag GmbH & Co. KGaA.
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or for risk assessment of environmental pollution on the basis of
typical pollution patterns.

Although our world in general cannot be described by simple
linear relationships, most of the problems considered in the fol-
lowing can cope with linear models. More precisely, models that
are linear in the parameters to be estimated are sufficient. The
simplest linear model is the straight-line model. It reads for one
dependent variable, y, and one independent variable, x, with the
intercept b0 and the slope b1:

y = b0 + b1x (6.1)

Linear models consist of
additive terms, each of
which contains only a
multiplicative parameter.

However, a quadratic dependence of one variable y on variable
x can also be characterized by a linear model, that is,

y = b0 + b1x + b11x2 (6.2)

All parameters (b0, b1, and b11) can be estimated by the methods
of linear algebra. Since the calculation of the parameters in mul-
tivariate linear models can be carried out by the same principles
as for the straight-line model, we will begin with the problem of
univariate linear regression.

6.1
Univariate Linear Regression

Straight-Line Model

The straight-line model (Eq. (6.1)) was used in Section 4.1 as cal-
ibration function (cf. Figure 4.2 and Eq. (4.1)). Estimation of the
parameters b0 and b1 by means of linear regression for n measure-
ments of the pairs of values (xi, yi) is done by

b1 =

n
n∑

i=1
xiyi −

n∑
i=1

xi

n∑
i=1

yi

n
n∑

i=1
x2

i −

( n∑
i=1

xi

)2 (6.3)

b0 = y − b1x (6.4)

where

x = 1
n

n∑
i=1

xi (6.5)
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and

y = 1
n

n∑
i=1

yi (6.6)

The variances of the parameters are estimated according to

s2
b0
=

s2
y

n∑
i=1

x2
i

n
n∑

i=1
(xi − x)2

(6.7)

s2
b1
=

s2
y

n∑
i=1

(xi − x)2

(6.8)

where s2
y characterizes the mean variance of residuals as differ-

ences between the measured values, (yi − ŷi)2, and the values pre-
dicted by the model (Eq. (6.1)), ŷi. The residual variance is calcu-
lated by

s2
y =

n∑
i=1

(yi − ŷi)2

n − p
with p = 2 (6.9)

The parameter estimations are frequently given as the standard
error, that is, as sb0

or sb1
(cf. Eq. (6.23)).

For prediction of an x0 value from an y0 value by means of the
straight-line model, we have

x0 =
y0 − b0

b1
(6.10)

The standard deviation for prediction by using the straight-line
model and performing p parallel measurements with one sample
reveals

s0 =
sy

b1

√√√√√√√
1
p
+ 1

n
+

(y0 − y)2

b2
1

n∑
i=1

(xi − x)2

(6.11)

It is important for all kinds of modeling that the estimated
parameters are tested for their statistical significance. To derive
appropriate tests for the adequacy of a regression model, we need
to generalize the straight-line regression.
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Generalization of the Straight-Line Model

For generalization of the regression problem, we use matrix nota-
tion. The straight-line model

y = b0• 1 + b1x (6.1)

then reads⎛⎜⎜⎜⎝
y1
y2
⋮
yn

⎞⎟⎟⎟⎠ =
⎛⎜⎜⎜⎝
1 x1
1 x2
⋮ ⋮
1 xn

⎞⎟⎟⎟⎠
(

b0
b1

)
(6.12)

or in abbreviated notion

y = Xb (6.13)

The number of rows of the vector of the dependent variable
y and of the matrix of the independent variables X corresponds
to the number of measurements n. The parameter vector b con-
sists of only two elements in the present case of the straight-line
equation.

The parameter elements in vector b are estimated on the basis
of the generalized inverse by

b = (XTX)−1XTy (6.14)

We will learn the most appropriate methods for solving
Eq. (6.14) in Section 6.2. The statistical tests for the adequacy
of the regression model are based on an analysis of variances
(ANOVAs) (cf. Section 2.3).

Analysis of Variance (ANOVA)
For an ANOVA, the observed and predicted y values are consid-
ered in dependence on the independent variables or factors (cf.
Section 2.3).

Partitioning of the variances of a linear regression follows the
scheme given in Table 6.1 and Figure 6.1 by the appropriate sums
of squares: the total variance of the y values, SST, adds up from the
sum of squares of the mean, SSM, and the sum of squares corrected
for the mean, SScorr.

The latter sum of squares is composed of the sum of squares of
the factors, SSfact, and the sum of squares of the residuals, SSR.
The sum of squares of the residuals is composed of the sum of
squares of the lack-of-fit, SSlof, and the sum of squares of pure
experimental error, SSpe.

In Example 6.1, we consider the calculation of all these sums
of squares for a simple regression problem. The meaning of the
different y expressions is illustrated in Figure 6.2.
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Table 6.1 Computation of the sums of squares (SS) for a complete
ANOVA in linear regression.

Sum of squares Matrix operation Calculation Degrees of
freedom

SST, total yTy
n∑

i=1
y2

i n

SSM, mean yTy ny2 1

SScorr, corrected for
the mean

(y − y)T(y − y)
n∑

i=1
(yi − y)2 n− 1

SSfact, factors (ŷ − y)T(ŷ − y)
n∑

i=1
(̂yi − y)2 p− 1

SSR, residuals (y − ŷ)T(y − ŷ)
n∑

i=1
(yi − ŷi)

2 n− p

SSlof, lack-of-fit (j − ŷ)T(j − ŷ)
n∑

i=1
(yi − ŷi)

2 f − p

SSpe, pure
experimental error

(y − j)T(y − j)
n∑

i=1
(yi − yi)

2 n− f

j−This vector contains y values averaged at each observation point i,
f −number of different realizations of the independent variables (independent
factor combinations), n−number of measurements, and p−number of

parameters, y = 1
n

n∑
i=1

yi total mean.

SST = 29.93

SSlof = 0.07

SSfact = 6.80

SSpe = 0.5

SSR= 0.57

SScorr = 7.37SSM = 22.56

n = 4

p–1 = 1 n–p = 2

n– f = 1f–p = 1

n–1 = 31

Figure 6.1 Illustration of analysis of variance (ANOVA) for linear regression
on the data in Table 6.2. See Table 6.2 for abbreviations.
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Figure 6.2 Plot of the x–y data in Table 6.2 in connection with an ANOVA
according to Table 6.1.

Example 6.1 ANOVA in Regression Analysis

In Table 6.2, for four measurements, the x–y data are given.
The data are to be fitted by the straight-line model. After that,
all sums of squares are to be calculated according to Table 6.1,
in order to use them for subsequent tests for adequacy of the
model.

The experimental error
can only be estimated if
at least one replication is
performed at an
independent factor
combination.

Table 6.2 x–y data.

No. x y

1 0 0.3
2 1 2.2
3 2 3
4 2 4

Insertion of the data in the model for the straight line (6.12)
reveals⎛⎜⎜⎜⎝

0.3
2.2
3
4

⎞⎟⎟⎟⎠ =
⎛⎜⎜⎜⎝
1 0
1 1
1 2
1 2

⎞⎟⎟⎟⎠
(

b0
b1

)
(6.15)

Computation of the parameter vector b is done according to
Eq. (6.14)
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(
b0
b1

)
= b = (XTX)−1XTy =

⎛⎜⎜⎜⎝
(

1 1 1 1
0 1 2 2

)⎛⎜⎜⎜⎝
1 0
1 1
1 2
1 2

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠
−1

×
(

1 1 1 1
0 1 2 2

)⎛⎜⎜⎜⎝
0.3
2.2
3
4

⎞⎟⎟⎟⎠
=
(

4 5
5 9

)−1 (9.5
16.2

)
=
(

0.818 −0.454
−0.454 0.363

)(
9.5

16.2

)
=

(
0.41
1.57

)
(6.16)

The straight-line model is then

y = 0.41 + 1.57x

Based on the model, the sums of squares can be determined
by performing an ANOVA:

SST = yTy =
(
0.3 2.2 3 4

) ⎛⎜⎜⎜⎝
0.3
2.2
3
4

⎞⎟⎟⎟⎠
=

n∑
i=1

y2
i = 0.32 + 2.22 + 32 + 42 = 29.93

The variance of the y values results from the total sum of
squares, SST, that is:

The sum of squares of the mean, SSM, is calculated from the
total mean for all y values by

SSM = ny2 = 4•2.3752 = 22.56

Correspondingly, we obtain for the sum of squares corrected
for the mean

SScorr =
n∑

i=1
(yi − y)2 = (0.3 − 2.375)2 + (2.2 − 2.375)2

+ (3 − 2.375)2 + (4 − 2.375)2 = 7.37

The influence of the factors is reflected by the sum of squares
due to the factors, SSfact:

SSfact =
n∑

i=1
(̂yi − y)2 = (0.41 − 2.375)2 + (1.98 − 2.375)2

+ (3.55 − 2.375)2 + (3.55 − 2.375)2 = 6.80
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The difference between the observed and predicted y values
leads to the sum of squares of the residuals, SSR (cf. Eq. (6.9)):

SSR =
n∑

i=1
(yi − ŷi)2 = (0.3 − 0.41)2 + (2.2 − 1.98)2

+ (3 − 3.55)2 + (4 − 3.55)2 = 0.57

Within the residuals, the lack-of-fit to the model and the
experimental error are to be accounted for. The sum of squares
due to lack-of-fit, SSlof, provides

If the intercept is
included in the model,
the sum of residuals
equals zero.

SSlof =
n∑

i=1
(yi − ŷi)2 = (0.3 − 0.41)2 + (2.2 − 1.98)2

+ (3.5 − 3.55)2 + (3.5 − 3.55)2 = 0.07

The sum of squares due to the experimental error, SSee, is
calculated by

SSpe =
n∑

i=1
(yi − yi)2 = (0.3 − 0.3)2 + (2.2 − 2.2)2

+ (3 − 3.5)2 + (4 − 3.5)2 = 0.5

Table 6.3 comprises the calculation in an ANOVA table.

Table 6.3 ANOVA table for linear regression of the data in Table 6.2.

Source of variation SS df MSS F value p value

Total, SSG 29.93 4 7.48 — —
Mean, SSM 22.56 1 22.56 — —
Corrected for the mean, SSccrr 7.37 3 2.47 — —
Factors, SSfact 6.80 1 6.80 24.06 0.0391
Residuals, SSR 0.57 2 0.283 — —
Lack-of-fit, SSlof 0.07 1 0.07 0.14 0.779
Pure experimental error, SSpe 0.50 1 0.5 — —

SS Sum of squares, MSS mean sum of squares, and df degrees of freedom.

Coefficient of Determination and Correlation Coefficient

The coefficient of determination is given by the ratio of the sums of
squares due to the factors and due to the sum of squares corrected
for the mean:

R2 =
SSfact
SScorr

(6.17)

If the regression
parameters are estimated
by the least squares
method, the square root
of the coefficient of
determination and the
multiple correlation
coefficient will be
identical.
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The coefficient of determination describes the fraction of the
sum of squares due to the factors in relation to the sum of squares
corrected for the mean. The square root of the coefficient of deter-
mination reveals the multiple correlation coefficient:

r =

√
SSfact
SScorr

(6.18)

The sign of the correlation coefficient is given by the slope b1.

Example 6.2 Correlation Coefficient

For the regression problem in Example 6.1, the coefficient of
determination we obtain according to Eq. (6.17) is

R2 =
SSfact
SScorr

= 6.80
7.37

= 0.923

The two factors explain 92.3% of the sum of squares cor-
rected for the mean.

The correlation coefficient is calculated according to
Eq. (6.18):

r =

√
SSfact
SScorr

=
√

6.80
7.37

= 0.961

Note that the correlation coefficient does not provide a real-
istic picture for the explanation of the variance due to the fac-
tors. In our example, only 92.3% are explained, although the
correlation coefficient is 0.961. An r value of, for example, 0.7
would mean that only 49% of the SScorr can be explained.

Test for Adequacy of the Model

To test for the fit of data to the model, two F tests are to be carried
out: the F test for goodness-of-fit and the F test for lack-of-fit. For
this, the sum of squares normalized to the degrees of freedom is
applied, given in Table 6.3 as the mean sum of squares (MSS).

As measure for the quality of fit, the F value for the goodness-
of-fit is calculated by the linear model with the intercept, b0, by

F(p − 1, n − p) =
SSfact∕(p − 1)
SSR∕(n − p)

=
MSSfact
MSSR

(6.19)

The MSS must be greater than the residuals if the factors in the
model influence the y values definitely. If an appropriate model
has been found, the F test will be significant at the given 𝛼 level.

If the experimental error
is comparably large for
all factor combinations,
the data are termed
homoscedastic. In the
case of heteroscedastic
data, the errors differ at
different factor
combinations.
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The lack-of-fit test is based on the comparison of the MSS due
to the model and the experimental error:

F(f − p, n − f ) =
SSlof∕(f − p)
SSpe∕(n − f )

=
MSSlof
MSSpe

(6.20)

Note that this test is only applicable if the number of indepen-
dent factor combinations, f, is greater than the number of model
parameters, p. In addition, at least one replicate measurement
is required at the same factor combination to guarantee that n
becomes greater than f and the sum of squares due to the pure
experimental error can be estimated.

In regression analysis,
the term multiple
realizations of an x value
is common instead of
factor combinations.

The lack-of-fit may not be significant if an appropriate model
has been found.

Example 6.3 Tests for Model Adequacy

The straight-line model in Example 6.1 is to be tested for its
adequacy. First, the F test for goodness-of-fit is carried out
according to Eq. (6.19):

F(p − 1, n − p) =
MSSfact
MSSR

= 6.80
0.283

= 24.0

The critical F value at the significance level of 0.05 is F(0.95;
1, 2)= 18.51 (cf. Table A.4). As a consequence, the calculated
F value is greater than the critical one and the goodness-of-fit
test is derived to be statistically significant.

This result can also be derived from the ANOVA Table 6.3.
There the p value is given with 0.0391. This value is lower than
the significance level of 0.05 (1− 0.95) considered here, and
therefore, the test is significant. In other words, the risk that
all of the factors are different from zero is 3.91%. Since in our
model, we only have a single factor, x, we can assume with
(100− 3.91)= 96.09% probability that the effect of x is realistic.

For very small
experimental error, the F
value in the lack-of-fit
test might be
extraordinarily large and
the test becomes
significant. It is to be
decided then whether
this result is also
practically significant. In the second step, the F test for lack-of-fit (Eq. (6.20)) is

applied:

F(f − p, n − f ) =
MSSlof
MSSpe

= 0.07
0.50

= 0.14

For the tabulated critical F value, we obtain F(0.95; 1, 1)=
161 (cf. Table A.4). The F test for lack-of-fit is not significant,
since the calculated F value is smaller than the critical value.
The significance level is only 0.779, as the p value shows in
Table 6.3.
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Confidence Intervals

Confidence Interval for the Parameters The error for estimation of
the parameters of the straight line in Eq. (6.1) has already been
used in the form of the variances for the parameter estimations
(Eqs. (6.7) and (6.8)).

More generally, the errors of parameter estimation can be
calculated on the basis of the variance–covariance matrix (Eq.
(5.10)). The variance–covariance matrix is computed here
on the basis of the MSS for the pure experimental error as
follows:

C = MSSpe(XTX)−1 (6.21)

where, according to Table 6.1,

MSSpe =
SSpe

n − f

For the case that the sum of squares due to lack-of-fit, SSlof, is
small, the variance of the residuals, s2

R, can be used instead of the
variance due to the experimental error. The residual variance cor-
responds to the MSS of the residuals in Table 6.1, that is,

s2
R = MSSR =

SSR
n − p

The special case for p= 2 has already been used in Eq. (6.9). The
variance–covariance matrix is then computed by

C = s2
R(X

TX)−1 (6.22)

The diagonal of the variance–covariance matrix consists of
the variances for the parameter estimates and the off-diagonal of
those of the related covariances. In the case of the straight-line
model with the parameters b0 and b1, the corresponding matrix
is

C =

(
s2

b0
s2

b0b1

s2
b1b0

s2
b1

)
(6.23)

For the confidence interval Δb related to the parameter b, we
obtain by means of the F-statistic for a given significance level 𝛼

b ±
√

F(𝛼; 1, n − p)s2
b (6.24)

The covariance matrices of Eq. (6.21) or (6.22) can be used anal-
ogously for calculations of confidence intervals, if more than two
parameters are to be determined.
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Example 6.4 Confidence Interval

For the regression parameters of the data in Example 6.1, the
confidence intervals of the parameters according to Eq. (6.22)
are to be estimated. The required inversion of the matrix XTX
has already been introduced in Eq. (6.16). With the MSS of
residuals of Table 6.3, we obtain

C = s2
R(X

TX)−1 = 0.283
(

0.818 −0.454
−0.454 0.363

)
=
(

0.231 −0.128
−0.128 0.103

)
The standard error for the parameters of the regression

equation reveals

sb0
=

√
s2

b0
=

√
0.231 = 0.481

sb1
=

√
s2

b1
=

√
0.103 = 0.321

The confidence interval of the parameters at a significance
level of 0.05 with F(0.05; 1, 2)= 18.51 (cf. Table A.4) is calcu-
lated by

b0 ±
√

F(𝛼; 1, n − p)s2
b0
= 0.41 ± 2.07

b1 ±
√

F(𝛼; 1, n − p)s2
b1
= 1.57 ± 1.38

b1–Δb1

b1+Δb1

b1

b0+Δb0b0–Δb0 b0

We should be aware that the estimations of the confidence inter-
vals in the given way will only be valid if the parameters are inde-
pendent of each other. All elements in the off-diagonals of the
covariance matrix in Eq. (6.23) need to be zero. In the case of two
parameters, the confidence intervals describe a square (cf. figure
in the margin). If dependences exist between parameters, then an
ellipse is obtained for the confidence interval of the parameters.
The larger the elements in the off-diagonals in Eq. (6.23), the more
pronounced deviations from the squared shape of the confidence
intervals are to be expected.

Confidence Bands The previous considerations can also be
exploited for computation of the confidence interval for the
prediction of a y value, y0, at a given x0 value. The predicted value



6.1 Univariate Linear Regression 225

and the corresponding confidence interval are given by

y0 = x0b ±
√

F(𝛼; 1, n − p)s2
R(1 + x0(XTX)−1xT

0 ) (6.25)

In the case of the straight-line model, the vector x (dimension
1× p) consists only of two elements (cf. Eq. (6.12)), that is,

x0 =
(
1 x0

)
The prediction of a single mean from several y values at a given

factor combination is feasible with modification of Eq. (6.25). For
m new y values, we obtain for prediction of the mean and its con-
fidence interval

y0 = x0b ±
√

F(𝛼; 1, n − p)s2
R

( 1
m

+ x0
(

XTX
)−1xT

0

)
(6.26)

For very large values of m, Eq. (6.26) simplifies to Eq. (6.27):

ŷ0 = x0b ±
√

F(𝛼; 1, n − p)s2
R(x0(XTX)−1xT

0 ) (6.27)

By means of Eqs. (6.25)–(6.27), the confidence bands for predic-
tion of the y values along the independent variables can be plotted.
This is demonstrated in Figure 6.3 for the prediction of a single y
value and for a mean from many y values on the basis of the data
in Example 6.1.

4

3

2

1

0
0

0.8 1.2 1.6 2.00.4

y

x

Figure 6.3 Confidence bands for the prediction of individual y values
(broken lines, Eq. (6.25)) and for the mean from many y values (solid lines,
Eq. (6.27)) for the data in Table 6.2 of Example 6.1.
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Example 6.5 Confidence Interval for Prediction of y Values

Based on the straight-line model in Example 6.1,

y = 0.41 + 1.57x

The y value is to be predicted and the corresponding con-
fidence interval is to be estimated for a value of x= 0.9. The
confidence interval is to be given for a single value as well as
for a mean from several y values. The variance for the residu-
als, s2

R, is 0.283 (cf. Example 6.4). The expression (XTX)−1 has
already been computed in Eq. (6.16). We choose a significance
level of 𝛼 = 0.05, that is, an F value of F(0.05; 1, 2)= 18.51 (cf.
Table A.4) is to be used.

According to Eq. (6.25), we calculate for the single y value

y0 =
(
1 0.9

)(0.41
1.57

)

±

√
18.51•0.283

((
1 0.9

)( 0.818 −0.454
−0.454 0.363

)(
1

0.9

))
y0 = 1.82 ± 2.60

For prediction of the means from several y values, Eq. (6.27)
is applied:

ŷ0 =
(
1 0.9

)(0.41
1.57

)

±

√
18.51•0.283

((
1 0.9

)( 0.818 −0.454
−0.454 0.363

)(
1

0.9

))
ŷ0 = 1.82 ± 1.24

As expected for prediction of a y value as the mean of several
observations, a narrower confidence interval results.

Residual Analysis

For graphical inspection of regression models, the analysis of
residuals is applicable. The residual, ei, denotes the difference
between the observed value, yi, and the value estimated by the
model, ŷi. For n observations, we get

ei = yi − ŷi with i = 1, n (6.28)

In the case of a valid model, the residuals describe the random
error of the regression model. The straight-line model in Eq. (6.13)
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is therefore formulated as follows:

y = Xb + e (6.29)

where e represents the 1× n dimensional vector of the random
error.

By means of residual analysis, the assumptions for the linear
regression as well as the deviations from the model can be
checked.

The most important prerequisites for linear regression are as
follows:

• The error of the independent variable, x, can be neglected, that
is, x is fixed and only the dependent variable, y, is erroneous.

• The y values are independent of each other and normally dis-
tributed.

• The variances of y values are comparable for all x values, that is,
they are homoscedastic.

• The residuals are, then, independent, normally distributed, and
homoscedastic.

If the residuals are plotted in a histogram, for large n, the
shape of a normal distribution results. From plotting the resid-
uals in dependence on the run order, trends can be derived
(Figure 6.4a).

In addition, the residuals are evaluated in dependence on the
predictor variable, x, the observed variable, y, or the predicted
variable, ŷ. The latter possibilities reveal similar information.
They will be explained in the following for plotting the residuals
in dependence on the independent variable, x.

• In the case of changing variance of the y values (heteroscedas-
ticity), different types of residual bands result (Figure 6.4b). For
treating those data, a transformation of y values or weighted
regression is required.

• A missing linear parameter representing the effect of a linear
factor is recognized by linearly ascending or descending resid-
uals (Figure 6.4c).

• Incomplete models might also be reasoned by effects of higher
order. In Figure 6.4d, this is demonstrated for the lack of a
quadratic term. The residuals show then the form of a parabola.

Apart from the analysis of residuals, the recognition of outliers
and of influential observations is important for the selection of a
regression model. We will raise those questions for the general-
ized regression diagnostics in Section 6.2.
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Figure 6.4 Residual analysis in linear regression. (a) Time-dependent
observations. (b) Heteroscedasticity. (c) Linear effects. (d) Quadratic effect.

Weighted and Robust Regression
In residual analysis, as already mentioned, one prerequisite of
conventional regression is the comparably large error in the y
direction for all realizations of x (homoscedasticity). This means
that each point on the straight line has the same weight in the
regression analysis. In the case of heteroscedastic data, the
observations will have different weights in calculating the straight
line. In order to make the regression less sensitive to small
deviations from the distributional assumptions, the influence of
observations with large residuals has to be weighted down.

Weighted Regression To adjust the weighting, the analyst can fre-
quently simply use his expertise. For example, the error in a cal-
ibration in y direction may increase with increasing x value, that
is, the relative error is constant. Appropriate weights, wi, would
be in this case:

wi =
1
xi

(6.30)
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To weight variances changing at the different observation points
xi, a weight based on the reciprocal standard deviation (variance)
could be applied:

wi =
1
s2

yi

(6.31)

The weights are usually normalized to one, that is, for n obser-
vations, we obtain

w′
i =

1
n∑

i=1
wi

(6.32)

The model for the straight line is that given in Eq. (6.1):

y = b0 + b1x

The intercept guarantees that the straight line need not pass the
origin of the coordinate system, but passes the centroids of the
variables, that is, x and y. For estimation of the parameters for a
weighted regression, first the weighted centroids are calculated as
follows:

yw = 1
n

n∑
i=1

wiyi (6.33)

xw = 1
n

n∑
i=1

wixi (6.34)

The regression parameters are then calculated by

b1 =

n∑
i=1

wixiyi − nxwyw

n∑
i=1

wix2
i − n(xw)2

(6.35)

b0 = yw − b1xw (6.36)

For the standard deviation in the case of prediction from x0 val-
ues based on p parallel measurements of y0 values, it is valid for
the weighted case (cf. Eq. (6.11)) that

s0 =
syw

b1

√√√√√√√
1
p
+ 1

n
+

(y0 − yw)2

b2
1

( n∑
i=1

wix2
i − nxw

) (6.37)
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where

syw
=

√√√√√√
( n∑

i=1
wiy2

i − b2
1

( n∑
i=1

wix2
i − nx2

w

))
n − 2

(6.38)

As result of a weighted regression, the standard deviations
for the parameters should decrease compared to a conven-
tional regression. This is advantageous, for example, for better
predictions of y values.

Example 6.6 Weighted Regression

The x–y data in Figure 6.5 show an increasing random error
in the y direction with ascending x values. To fit those data,
conventional and weighted regression is to be carried out.

In the case of conventional regression, we obtain the fol-
lowing model, with the corresponding standard errors of the
parameters, for the straight-line regression:

y = (1.24 ± 0.71) + (0.732 ± 0.091)x

For weighted regression, the reciprocal x values are used
as weights according to Eq. (6.30). The following regression
model results:

y = (1.08 ± 0.33) + (0.754 ± 0.060)x

The standard errors for estimation of the two parameters of
the straight-line model were obviously decreased by applying
weighted regression.

8

8

4

4 12

12

y

x
0

0

Figure 6.5 x–y-Values for the case of heteroscedastic data.
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Robust Regression Robust regression is based at an iterative
weighting of observations. As appropriate weights, Tukey
suggests

wi =

{
1 −

(
ei

kS2

)
0

|ei| < kS|ei| > kS (6.39)

where ei is again the residual of observation i; k is a constant,
which controls the weighting of the residuals; and S is a scaling
factor, for example,

S = median{|ei|} (6.40)

Robustness means
tolerance against
outliers, that is, a model
that describes the
majority of data well is to
be found.

Conventional

Robust

x

y

Computation is started by conventional regression analysis.
Subsequently, the residuals are determined and the weights for a
value of k > 1 are calculated for each observation. Regression is
repeated as long as the parameters change only by a predefined
small amount. The smaller the value for k, the more the residuals
are weighted down.

6.2
Multiple Linear Regression

In the case of multivariate modeling, several independent as well
as several dependent variables may operate. Out of the many
regression methods, we will learn about the conventional method
of ordinary least squares (OLS) as well as methods that are
based on biased parameter estimations reducing simultaneously
the dimensionality of the regression problem, that is, principal
component regression (PCR) and the partial least squares (PLS)
method.

As an example of the application of these methods, spectro-
metric multicomponent analysis will be considered, leading to an
introduction to regression diagnostics in multiple linear regres-
sion.

Ordinary Least Squares Regression

The general least squares problem that relates a matrix of depen-
dent variables Y to a matrix of independent variables X can be
stated as follows:

⎛⎜⎜⎜⎝
y11 y12 … y1m
y21 y22 … y2m
⋮

yn1 yn2 … ynm

⎞⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎝
x11 x12 … x1p
x21 x22 … x2p
⋮

xn1 xn2 … xnp

⎞⎟⎟⎟⎟⎠
•

⎛⎜⎜⎜⎝
b11 b12 … b1m
b21 b22 … b2m
⋮

bp1 bp2 … bpm

⎞⎟⎟⎟⎠
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In matrix notation, we get

Y = XB (6.41)

= + Residuals

n n

X BY

m mp

p

where Y is the n×m matrix of dependent variables, X the n× p
matrix of independent variables, B the p×m matrix of regression
parameters, and residuals are the differences between measured
and predicted data, that is, Y − XB.

For example, in multivariate calibration, this equation will be
used to model the concentrations of m constituents in n samples
(Y matrix) on the n spectra recorded at p wavelengths (X matrix).

In OLS, the number of columns in the X matrix is maintained.
As an example, the set of linear algebraic equations for the first
column of Eq. (6.41) resembles the following:

y11 = b11x11 + b12x12 + · · · + bp1x1p

y21 = b11x21 + b12x22 + · · · + bp1x2p

⋮

yn1 = b11xn1 + b12xn2 + · · · + bp1xnp (6.42)

OLS is synonymous with
the following terms: least
squares regression, linear
least squares regression,
multiple least squares
regression, multivariate
least squares regression.
OLS provides the best
linear unbiased
estimator (BLUE) that
has the smallest variance
among all linear and
unbiased estimators.

Parameter Estimation
Usually, the matrix of the independent variables, X, is not square,
so that the regression parameters B have to be estimated by the
generalized inverse. B is given by

B = (XTX)−1XTY (6.43)

In principle, this equation could be solved by directly inverting
the matrix XTX. This, however, will only work if no linear depen-
dences are valid and the system is, in a mathematical sense, well
conditioned. The conditioning of the system is given by the con-
dition number:

cond(B) = ‖C‖•‖B−1‖ (6.44)

where ‖B‖ is the norm of matrix B.
The matrix norm of B is computed as its largest singular value

(square root of eigenvalue 𝜆) and the norm of B−1 as the reciprocal
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smallest singular value of B, that is,

cond(B) =
√
𝜆max•

1√
𝜆min

(6.45)

This definition holds for exactly determined systems where the
number of rows in X is equal to the number of columns, that is,
n= p (cf. Eq. (6.41)). In the case of overdetermined systems, with
n> p, the condition number is obtained from

cond(B) = [cond(BTB)]1∕2 (6.46)

Well-conditioned systems have condition numbers close to 1.
A matrix is singular if its condition number is infinite, and it is
ill-conditioned if its condition number is too large, that is, if its
reciprocal approaches the machine’s floating point precision.

Linear dependences between rows or columns lead to singular-
ities. This might even happen if there is no exact linear depen-
dency, and round-off errors in the machine render some of the
equations linearly dependent.

Solution Methods
Typical procedures to solve the OLS problem are Gaussian elim-
ination and Gauss–Jordan elimination. More efficient solutions
are based on decomposition of the X matrix by algorithms, such
as LU decomposition, Householder reduction, or singular value
decomposition (SVD). One of the most powerful methods, SVD,
is outlined as follows (cf. Section 5.2 and “Biased Parameter Esti-
mations: PCR and PLS” Section).

Significance of Parameters
To test for the significance of the parameters of a model, we have
already used the F test for goodness-of-fit and for lack-of-fit
(Section 6.1). In this type of test, a whole set of parameters is
investigated.

In statistical programs, the test for individual parameters on the
basis of the t or F statistics can also be found. The null hypothe-
sis is that the considered parameter differs only randomly from 0.
The tests are based on the confidence intervals for the considered
parameters that include the corresponding value bi = 0.

Too many parameters in
a model lead to
overfitting of the
experimental
observations.

For a t-test on the parameters b0 of the straight-line model in
Eq. (6.1), we get

t =
|b0 − 0|

sb0

(6.47)

where sb0
is the standard error for the parameter (Eq. (6.7)). The

calculated t value is then compared with the critical value at the
predefined significance level as discussed in Section 2.2.
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As long as the model consists of only a single parameter, this
kind of testing is adequate. In the case of several parameters,
the risk for applying a one-parameter test is no longer simply 𝛼.
The probability of rejecting at least one null hypothesis falsely, if
all k null hypotheses were true, is [1− (1− 𝛼)k]. This means, for
example, if the model has two parameters, the risk at significance
level of 𝛼 = 0.05 is accordingly [1− (1− 0.05)2]= 0.0975 or, in the
case of three parameters, [1− (1− 0.05)3]= 0.1426.

The F tests demonstrated in Section 6.1 deal with a whole set of
parameters. The selected significance level is therefore valid inde-
pendent of the number of parameters in the model. However, one
should bear in mind that, with those tests, by rejecting the null
hypothesis, the parameters different from zero cannot be recog-
nized individually.

Prediction
Modeling of analytical relationships by estimating the regression
parameters in OLS is one of the objectives. Most often, in a second
step, the model parameters are used to predict some unknown x
or y values from the measured y or x values, for example, in mul-
tivariate calibration, the concentrations are predicted from the
recorded spectra.

In regression analysis,
the dependent variable y
is also called a response
variable and the
independent variable x is
denoted as predictor
variable or regressor.

Prediction of a single y0 vector from an x0 vector is easily per-
formed by Eq. (6.41). For predicting an x0 vector (dimension 1× p)
from a y0 vector (1×m), the following expression is used:

y0 = x0B

For the confidence intervals of the predicted y values,
the approaches given for the straight-line model hold
(Eqs. (6.25)–(6.27)). Instead of the parameter vector b, the matrix
of the parameter estimations B is now used. For prediction of a
single y value according to Eq. (6.25), we get

y0 = x0B ±
√

F(𝛼; p, n − p)s2
R(1 + x0(XTX)−1xT

0 ) (6.48)

Prediction of an x0 vector (dimension 1× p) from a y0 vector
(1×m) is done by solving a least-squares problem, that is,

x0 = y0BT(BBT)−1 (6.49)

To estimate the upper bound error for prediction, the following
relationship holds:‖𝛿x0‖‖x0‖ = cond(B)

(‖𝛿y‖‖y‖ + ‖𝛿B‖‖B‖
)

(6.50)

where ‖𝛿x0‖∕‖x0‖ is the relative error for prediction, ‖𝛿y‖∕‖y‖ is
the relative error of measurements y, and ‖𝛿B‖∕‖B‖ is the relative
error of parameter estimation.
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From Eq. (6.50), it is obvious that the prediction error will be
small if the error in the dependent variable y and the modeling
error can be kept low.

Biased Parameter Estimations: PCR and PLS

PCR – Principal Component Regression
PCR is best performed by means of SVD, a method that was
introduced in Section 5.2. With this method, the matrix X is
decomposed into two orthonormal matrices U and V that are
joined by a diagonal matrix W of singular values:

X = UW V T (6.51)

Orthonormal means a
set of vectors that are
orthogonal and have
their norm equal to 1.

Computation of the regression coefficients b vectorwise is
carried out by formation of the pseudo-inverse matrix X+

(Moore–Penrose matrix) according to

X+ = V (diag(1∕wij)UT) (6.52)

b = X+y (6.53)

In OLS, the
pseudo-inverse matrix is
equivalent to the
generalized inverse:

X+ = (XTX)−1XT

In the case of full rank, all singular values will be obviously
different from zero and the SVD solution equals that of OLS.
However, one often comes up with several small singular values
because of ill-conditioned systems. Therefore, the main goal
of PCR is not to keep all singular values for an exact repre-
sentation of the Moore–Penrose matrix, but to select a subset
of singular values that best guarantee predictions of unknown
cases.

PLS – Partial Least Squares Regression
Regression of Y on X by OLS and PCR is based on solving the
linear equations columnwise with respect to the Y matrix in
order to estimate the regression coefficients in the columns of
the matrix B in Eq. (6.41). The decomposition of the X matrix
is performed independently of the Y matrix. A method for
using the information from the Y matrix is the PLS algorithm as
developed by H. Wold and propagated by his son S. Wold. Each
PLS latent variable direction of the X matrix is modified so that
the covariance between it and the Y matrix vector is maximized.
The PLS method is based on a bilinear model with respect to the
objects and the variables of the X and Y matrix. Both the X and Y
matrices are decomposed into smaller matrices according to the
following scheme:

X = TPT + E (6.54)

PCR and PLS are
examples of biased
regression methods
where the expected
estimated value might
differ from the true value
of the parameter.
Another powerful biased
regression method is
ridge regression.
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where X, Y, n, p, m, and d have the same meanings as given in
Eq. (6.41), T and U are the n× d score matrices containing orthog-
onal rows, P are the p× d loadings of the X matrix, E is the n× p
error (residual) matrix of the X matrix, Q is the m× d loading of
the Y matrix, and F is the n×m error (residual) matrix for the Y
matrix.

To compute the B coefficients for the general model of
Eq. (6.41), the matrices P, Q, and W are required:

B = W (PTW )−1QT (6.56)

with W being the p× d matrix of PLS weights. The meaning and
estimation of the weight matrix W can be understood from the
PLS algorithm in the following example.

Example 6.7 PLS Algorithm

The first dimension d (index l) is computed from the column
mean vectors of the X and Y matrix as follows (for centering
cf. Eq. (5.2)):

l = 0:

X = Xoriginal − x (6.57)

Y = Y original − y (6.58)

Next, the dimensions l = 1 to l = d are computed, based on a
suitable stopping criterion, usually the standard error of pre-
diction due to cross-validation (SEPCV, Eq. (6.68)):
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Loop for the number of dimensions ∶ l = l + 1

The principal components are estimated iteratively, for
example, by the nonlinear iterative partial least squares
(NIPALS) algorithm. Iteration is halted if the computer
precision is reached.

Iteration loop for NIPALS:

1. Use the first column of the actual Y matrix as a starting
vector for the y score vector u:

u = y1

2. Compute the X weights:

wT = uTX
uTu

(6.59)

3. Scale the weights to a vector of length 1:

wT = wT

(wTw)1∕2 (6.60)

4. Estimate the scores of the X matrix:

t = XwT (6.61)

5. Compute the loadings of the Y matrix:

qT = tTY
tTt

(6.62)

6. Generate the y score vector u:

u =
Y q
qTq

(6.63)

Compare u(old) with u(new). If ||u(old)−u(new)||< ||u
(new)|| * THRESHOLD, convergence is obtained. Other-
wise, iteration is continued at step 1. The threshold can be
chosen on the basis of computer precision.

7. Determine the inner relationship in the form of a scalar b:

b = uTt
tTt

(6.64)

8. Compute the loadings of the X matrix:

pT = tTX
tTt

(6.65)

9. Form new residuals for the X and Y matrix:

E = X − btp (6.66)

F = Y − btq (6.67)
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Compute the SEPCV. If the SEPCV is greater than for the
actual number of factors, then the optimum number of
dimensions has been found. Otherwise, the next dimension is
computed. The SEPCV is obtained by

SEPCV =

⎡⎢⎢⎢⎢⎢⎣

m∑
j=1

n∑
i=1

(
yestimated

ij − ytrue
ij

)2

n•m

⎤⎥⎥⎥⎥⎥⎦
(6.68)

The B coefficients are finally computed according to
Eq. (6.56), that is,

B = W (PTW )−1QT

One can show that the matrix PTW is an upper bidiagonal
matrix so that the PLS algorithm represents just a variation of
diagonalizing a matrix before its inversion.

To estimate the error of the model, there are two possibilities.
Either the objects or samples are predicted by resubstitution into
the model equation (Eq. (6.41)), giving an estimate of the standard
error of modeling, or the model is built by leaving out objects
randomly and predicting the left-out samples from the reduced
model. The latter prediction is known as cross-validation and
reveals the standard error of prediction from cross-validation,
SEPCV (cf. Eq. (6.68)).

The PLS algorithm is one of the standard methods used for two-
block modeling, for example, for multivariate calibration as given
as follows.

OPLS – Orthogonal Partial Least Squares
Orthogonal partial least squares (OPLS) or orthogonal projec-
tion to latent structures (O-PLS) has been developed in order
to separate information in the X matrix that is correlated with
Y from Y -uncorrelated (orthogonal) information [6]. The PLS
model from Eq. (6.54) is extended by an extra component of
scores, To, and loadings, Po, which account for the orthogonal
variations:

X = TPT + ToPo
T + E (6.69)

This method provides less complex and easier way to interpret
models. It can also be considered as a preprocessing step to
remove all Y -orthogonal variation in X by calculating X − ToPo

T

followed by PLS analysis in the usual way.
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Generalization of OPLS to a bidirectional version is known as
O2PLS and modeled in the following way:

X = TW T + ToPYo
T + E (6.70)

Y = UCT + UoPXo
T + F (6.71)

here, T and U denote the predictive scores and To and Uo the
orthogonal scores, W and C are the predictive weight matrices,
and PYo and PXo the orthogonal weight matrices as well as E and
F the residual matrices of the X- and Y -matrices, respectively.

Example 6.8 Orthogonal Partial Least Squares (OPLS)

Here, we consider NIR spectra that have been recorded
in order to analyze the protein content in wheat (cf.
Example 6.10). The original 30 spectra shown in Figure 6.6a
are of less regular structure in comparison to the spectra of
Figure 6.6b corrected by the OPLS model of Eq. (6.69).

Multivariate calibration of the spectra on protein contents
by OPLS will reveal better predictions with fewer principal
components compared to the original PLS algorithm used in
Example 6.10.
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Figure 6.6 Original NIR spectra (a) and OPLS corrected spectra (b).



240 6 Modeling

Applications for Multicomponent Analysis

As an example for multivariate modeling, we consider the
simultaneous determination of several components in low-
selective analytical systems (multicomponent analysis). These
components can be elements, compounds, or chemical/physical
properties. By means of multicomponent analysis, constituents
of pharmaceutical formulations can be determined in the UV
range, the water and protein content of cereal can be estimated
from NIR spectra or chemical elements, and technological
parameters of coal are predictable on the basis of infrared (IR)
spectra. The limited selectivity of chemical sensors can also
be overcome by applying the principles of multicomponent
analysis.

The principles are introduced on the basis of spectrometric
multicomponent analysis, since this method currently dominates
in applications.

Spectrometric multicomponent analysis is based on Beer’s law
that is formulated for a single component:

A𝜆 = 𝜀𝜆dc (6.72)

where A𝜆 is the absorbance at wavelength, 𝜆; 𝜀𝜆 is the molar
absorption coefficient at wavelength, 𝜆, in liters per mole per
centimeter; d is the cell thickness in centimeters; and c is the
molar concentration in moles per liter.

The absorbances can be normalized to a constant cell thickness,
so that a simplified Beer’s law results:

A𝜆 = k𝜆c (6.73)

where k𝜆 is the normalized absorption coefficient.
In a multicomponent system, it is assumed that the absorbances

at a specific wavelength i can be represented by the sum of
absorbances of the m individual components according to

Ai = ki1c1 + ki2c2 + · · · + kimcm =
m∑

j=1
kijcj (6.74)

where Ai is the absorbance at wavelength, i; kij is the normalized
absorption coefficient of the jth component at wavelength, i; and
cj is the concentration of the jth component.

In multiwavelength spectroscopy, the spectra are acquired at
p wavelengths, so that either exactly determined linear equation
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systems (p=m) or overdetermined systems (p>m) emerge,
that is,

A1 = k11c1 + k12c2 + · · · + k1mcm

A2 = k21c1 + k22c2 + · · · + k2mcm

⋮

Ap = kp1c1 + kp2c2 + · · · + kpmcm

In matrix notation, we obtain

a = Kc (6.75)

where a is a p× 1 dimensional vector that represents the spec-
trum; K a p×m matrix of normalized molar absorptivities; and c
an m× 1 dimensional vector of concentrations.

Direct Calibration Method
This method is used if all the absorptivities are known. This
implies that the pure component spectra can be measured or
can be obtained elsewhere, that there is no interaction between
the different components in the sample or between constituents
and the solvent, and that unknown matrix constituents do not
interfere with the determination.

Analysis of unknown samples is based on the sample spectrum,
a0, and the known absorptivities K according to (cf. Eq. (6.49))

cT
0 = aT

0 K−1 for m = p (6.76)

or

c0 = K T(KK T)−1a0 for m > p (6.77)

where c0 is the vector of predicted concentrations.

Example 6.9 Direct Calibration

Two constituents in a sample are to be determined from their
absorbances at either two or three wavelengths. The following
K matrix for the absorptivities (arbitrary units) is given:

Wavelength Constituent

1 2

1 3.00 2.00
2 3.00 4.00
3 2.00 6.00
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The absorbance data measured on the sample are

a0 =
⎛⎜⎜⎝
0.71
1.09
1.41

⎞⎟⎟⎠
The true concentrations of that sample are

c0 =
(

c1
c2

)
=

(
0.100
0.200

)
Determination at the two wavelengths 1 and 2 (exactly deter-

mined linear system, p=m) reveals

cT
0 = aT

0 K−1 = (0.71, 1.09)
[

3.0 3.0
2.0 4.0

]−1

= (0.71, 1.09)
[

0.666 −0.5
−0.333 0.5

]
= (0.110, 0.190)

or expressed for the single concentrations:

c1 = 0.110 and c2 = 0.190

As a result, the relative deviation between estimated and
true concentrations is obtained as

𝛿c1 =
cpredicted

1 − ctrue
1

ctrue
1

•100 = 0.110 − 0.100
0.100

•100 = 10%

δc2 =
cpredicted

2 − ctrue
2

ctrue
2

•100 = 0.190 − 0.200
0.200

•100 = 5%

This relatively high error can be decreased if all three wave-
lengths are used in the analysis:

c0 = K T(KK T)−1a0 =
[

3 3 2
2 4 6

] ⎛⎜⎜⎝
⎡⎢⎢⎣
3 2
3 4
2 6

⎤⎥⎥⎦
[

3 3 2
2 4 6

]⎞⎟⎟⎠
−1 ⎡⎢⎢⎣

0.71
1.09
1.41

⎤⎥⎥⎦
=
[

3 3 2
2 4 6

] ⎛⎜⎜⎝
⎡⎢⎢⎣
13 17 18
17 25 30
18 30 40

⎤⎥⎥⎦
⎞⎟⎟⎠
−1 ⎡⎢⎢⎣

0.71
1.09
1.41

⎤⎥⎥⎦
=
[

3 3 2
2 4 6

] ⎛⎜⎜⎝
⎡⎢⎢⎣

0.125 0.0479 −0.0967
0.0479 0.0209 −0.0309

−0.0967 −0.0309 0.0889

⎤⎥⎥⎦
⎞⎟⎟⎠
⎡⎢⎢⎣
0.71
1.09
1.41

⎤⎥⎥⎦
=
(

0.0995
0.2002

)
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For the relative deviations from the true concentrations, we
now obtain

δc1 =
cpredicted

1 − ctrue
1

ctrue
1

•100 = 0.0995 − 0.100
0.100

•100 = 0.5%

δc2 =
cpredicted

2 − ctrue
2

ctrue
2

•100 = 0.2002 − 0.200
0.200

•100 = 0.1%

Notice that the error has been decreased by adding just one
wavelength to the analysis scheme. With higher floating point
precision, the result could be even further improved. Therefore,
multiwavelength spectrometry can be a powerful alternative to
systems where, for every component, only a single wavelength is
applied.

In practice, some or even all of the aforementioned prereq-
uisites for direct calibration on the basis of OLS regression are
often not obeyed. Therefore, more sophisticated calibration pro-
cedures have to be carried out based on mixture or multivariate
calibration.

Indirect Calibration Methods

Indirect methods are based on estimating the calibration parame-
ters from calibration mixtures. These methods offer the following
advantages:

• Interactions between constituents or between constituents
and the sample matrix can be accounted for in the calibration.
Thus, the validity of Beer’s law, that is, the additivity of spectra
for every single component and linear response–concentration
relationships, is not a prerequisite any more.

• Modeling of background in a principal component becomes
feasible.

• Systems of highly correlated spectra can also be used for multi-
component analysis.

The different methods for multivariate calibration differ by the
mathematical model that is based either on Beer’s law, that is,
the spectra are regressed on concentrations as with the K-matrix
approach or on inverse models where the regression of concen-
trations on spectra is carried out.

Collinearity of data
refers to approximate
linear dependence
among variables.
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K-Matrix Approach The K-matrix approach is based on an exten-
sion of Eq. (6.72) to matrix form

⎡⎢⎢⎢⎣
a11 a12 … a1p
a21 a22 … ap
⋮

an1 an2 … anp

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
c11 c12 … c1m
c21 c22 … c2m
⋮

cn1 cn2 … cnm

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

k11 k12 … k1p
k21 k2p
⋮

km1 km2 … kmp

⎤⎥⎥⎥⎥⎦
or in matrix notation

A = CK (6.78)

where A is the n× p matrix of absorbances, C is the n×m matrix
of concentrations of constituents, K is the m× p matrix of absorp-
tivities, n is the number of samples, p is the number of wave-
lengths, and m is the number of components.

In the present notation, it is assumed that the absorbance
data are centered and that, therefore, there is no intercept at the
absorbance axis. If uncentered data are used, the first column
in the concentration matrix should consist of 1’s, and in the K
matrix, the intercept coefficients would have to be introduced as
the first row.

Calibration is based on a set of n samples of known concentra-
tions for which the spectra are measured. By means of the calibra-
tion sample set, estimation of absorptivities is possible by solving
for the matrix K according to the general least squares solution:

K = (CTC)−1CTA (6.79)

The analysis is then based on the spectrum a0 (1× p) of the
unknown sample by

c0 = a0K T(KK T)−1 (6.80)

where c0 is the (1×m) vector of sought-for concentrations.
A great advantage of the K-matrix approach is the fact that the

elements of the K matrix represent genuine absorptivities with
reference to the spectra of the individual constituents. Also, the
general assumption in least squares regression analysis is valid,
such that only the dependent variable, here the absorbance, is
error prone.

In the K-matrix approach, all absorbing constituents of a sam-
ple must be explicitly known to be included into the calibration
procedure. As we will see in the following, with more soft mod-
eling techniques, it will also be possible to account for unknown
constituents without their explicit calibration.

Another disadvantage of the K-matrix approach results from
the fact that calibration and analysis are connected to the inver-
sion of a matrix. Although this is not a problem from the point
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of view of computational time, it might become a problem if ill-
conditioned (less selective) systems are applied, where the spec-
tra of the constituents are very similar. Then in the analysis step
(Eq. (6.80)), a badly conditioned matrix of absorptivities has to
be inverted that might be almost singular, that is, all singular val-
ues or eigenvalues are zero. To overcome this difficulty, powerful
algorithms for solving linear equations, such as SVD, should be
used in connection with reduction of the dimensionality of the
problem.

An alternative to the K-matrix approach is to calibrate the
concentrations directly on the spectra. These methods are called
inverse calibration methods.

P-Matrix Approach The P-matrix approach is based on the follow-
ing model:

⎡⎢⎢⎢⎣
c11 c12 … c1m
c21 c22 … c2m
⋮

cn1 cn2 … cnm

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣
a11 a12 … a1p
a21 a22 … a2p
⋮

an1 an2 … anp

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣
p11 p12 … p1m
p21 p22 p2m
⋮

pp1 pp2 … ppm

⎤⎥⎥⎥⎦
Calibration of
concentrations on
signals instead of signals
on concentrations is
termed an inverse
calibration.

and in matrix notation:

C = AP (6.81)

The calibration coefficients are now the elements of the
P matrix that are estimated by the generalized least squares
solution (OLS) according to

P = (ATA)−1ATC (6.82)

Analysis is carried out by direct multiplication of the measured
sample spectrum a0 by the P matrix:

c0 = a0P (6.83)

A disadvantage of this calibration method is the fact that
the calibration coefficients (elements of the P matrix) have no
physical meaning, since they do not reflect the spectra of the
individual components. The usual assumptions about errorless
independent variables (here, the absorbances) and error-prone
dependent variables (here, concentrations) are not valid. There-
fore, if this method of inverse calibration is used in connection
with OLS for estimating the P coefficients, there is only a slight
advantage over the classical K-matrix approach, due to the fact
that a second matrix inversion is avoided. However, in connec-
tion with more soft modeling methods, such as PCR or PLS, the
inverse calibration approach is one of the most frequently used
calibration tools.
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Soft Modeling
The methods of soft modeling are based on the inverse calibration
model where concentrations are regressed on spectral data:

C = AB (6.84)

where C, A are again the n×m concentration and n× p
absorbance matrix, respectively, and B is the p×m matrix of
regression or B coefficients.

PCR Approach The method of PCR was outlined earlier on the
basis of SVD. For simultaneous spectroscopic multicomponent
analysis, the decomposition of the absorbance matrix A can be
written as (cf. Eq. (5.23)):

A = UW V T (6.85)

Estimation of the matrix of regression coefficients B is
performed columnwise by

b = A+c (6.86)

with A+ being the pseudo-inverse of the absorbance matrix A (cf.
Eq. (6.53)).

The main advantages of PCR calibration are as follows:

• Decomposition of the absorbance matrix into smaller orthog-
onal matrices enables reduction of the dimensionality of the
problem in the case of ill-conditioned systems. So, if highly cor-
related spectra are to be investigated, one will always obtain the
best solution, even in the case of nearly singular matrices.

• Additional unknown components or background components
can be automatically modeled as principal components if the
concentrations of those components vary within the different
calibration samples.

Problems may occur if small principal components are elimi-
nated in the process of reducing the number of significant prin-
cipal components/singular values, because it might happen that
one of the eliminated singular values is important for the predic-
tion of a certain constituent concentration. The decomposition of
the absorbance matrix A does not consider relationships between
the concentrations and the absorbances. Therefore, the decom-
position might be not optimal with respect to further use of the
calibration model for prediction of concentrations in unknown
samples.

A method that accounts for the concentration–spectra rela-
tionships during decomposition is the PLS approach.
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PLS Approach Details of the PLS method were given earlier in
this chapter. In multicomponent analysis, we obtain the following
equations for the decomposition of the absorbance matrix A (the
former X matrix) and the concentration matrix C (formerly the Y
matrix) according to the inverse calibration model in Eq. (6.87):

C = AB (6.87)

A = TPT + E (6.88)

C = TQT + F (6.89)

B = W (PTW )−1QT (6.90)

The meaning of the additional matrices is the same as in
Eqs. (6.54)–(6.56).

The main advantage of the PLS method is based on the inter-
related decomposition of the concentration matrix C and the
absorbance matrix A, so that it is with this algorithm that the
most robust calibrations can presently be obtained.

Regression Diagnostics

Leading vendors of software for multicomponent analysis now
provide a great variety of tools for diagnosing the suitability of the
calibration model, for detecting outliers and influential samples
or for estimating realistic prediction errors. It is not unusual that
for a calibration set consisting of 30 standard samples, about
5000 different diagnostic plots could be generated.

Visual inspection should be possible from plots of predicted
versus measured concentrations, from principal component plots
of loadings and scores in the case of soft modeling techniques, and
by plotting the standard error of calibration (SEC) or the stan-
dard error of prediction (SEPCV, Eq. (6.68)) from cross-validation
in dependence on the number of eigenvalues or of principal com-
ponents.

The study of the residuals is very important in diagnostic
statistics. Let us return to the general least squares model given
in Eq. (6.41). We rewrite it here for a single y variable as follows:

y = Xb + e (6.91)

where e is the vector of residuals of y values, that is, the difference
between the measured y value, y, and the y value estimated by the
model, ŷ; for a single y value j ej = yj − ŷj.

Diagnostic plots in multi-
component analysis:
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In the case of an inverse calibration model, one can interpret
the model in Eq. (6.88) as regressing the concentrations of a single
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component, y, on the spectra of the calibration samples collected
in the matrix X with n rows (samples) and p columns (wavelength)
according to Eq. (6.78). The regression coefficients b are then in a
p× 1 vector.

The relationship between the estimated and measured y val-
ues can be described by a fundamental matrix, the hat matrix,
H. As explained in “Ordinary Least Squares Regression” Section,
the regression parameters are estimated by the general inverse as

b = (XTX)−1XTy (6.92)

The fitted model has the form

ŷ = Xb̂ (6.93)

Substitution of Eq. (6.89) into Eq. (6.90) reveals

ŷ = X[(XTX)−1XTy] = X(XTX)−1XTy = Hy (6.94)

where H is the n× n hat matrix defined by

H = X(XTX)−1XT (6.95)

The projection matrix H
is called the hat matrix
because it puts the “hat”
on y.

The hat matrix transforms the vector of measured y values into
the vector of fitted ŷ values. The element of H, denoted by hij, is
computed by

hij = xT
i (X

TX)−1xj (6.96)

Many special relationships can be found with the hij. For
example, the rank of the matrix X is easily found from the
diagonal elements of the hat matrix by the formula

rank(X) =
n∑

i=1
hii (6.97)

Further relationships will be learnt subsequently.

Residuals and Prediction Error
The relationship of the hat matrix with the residuals can be under-
stood from the following equations:

ê = y − ŷ = y − X(XTX)−1XTy = [I − X(XTX)−1XT] = [I − H]y
(6.98)

The residuals depend directly on the product formed by the
vector of the measured y values and the difference between the
identity and the hat matrix.

In a principal
component model, the
leverage value is replaced
by the squared
Mahalanobis distance.
For the component score
matrix T , this distance is
computed by
T(TTT)−1TT.

The elements of the hat matrix are also important for estimating
the standard error of prediction. In general, the prediction error
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is calculated as the predictive residual sums of squares (PRESS) by

PRESS =
n∑

i=1
ê2

i =
n∑

i=1
(yi − ŷi)2 (6.99)

The influence of observations on a regression model can be
assessed by its leverage. If the prediction error is to be estimated
on the basis of the calibration sample set, k samples are left out
to calculate new prediction residual errors, ê(k). By using the
elements of the hat matrix, sometimes also called leverages of
case k, a good approximation of the estimated prediction error
can be obtained according to

ecv =
ê(k)

1 − hkk
(6.100)

For the new PRESS, we obtain

PRESSCV =
∑

e2
cv (6.101)

Based on Eq. (6.98), it is possible to estimate a realistic predic-
tion error without analyzing additional standard samples.

Outliers
Low prediction errors go along with good models. Samples that do
not follow the same model as the rest of the data are called outliers.
Testing for outliers can also be based on the leverage values, hij.
Suppose that the kth sample is an outlier, then a new model is cal-
culated after deleting the kth sample from the data set. Based on
the new estimation for the regression parameters b̂(k), new resid-
ual values, ê(k), are obtained where the kth sample was not used.
To test for the significance of the outlier, a Student’s t-test can be
applied. If ŷk is not an outlier, the null hypothesis can be assumed,
such that there is no difference in predicting ŷk with the full model
or with the model estimated without the potential outlier k. If ŷk
is an outlier, then the t value should exceed the critical value at a
certain risk level. The t value can be approximated by the leverage
value by formula

tk =
êk

s(k)
√

1 − hkk

(6.102)

The externally
studentized residual is
also termed jackknifed
residual.

where tk is called the externally studentized residual since case k
is not used in computing s(k); it has n− p− 1 degrees of freedom;
s(k) is derived from the residual mean square, that is,

s2
(k) =

n∑
i=1,i≠k

e2
i

n − p − 1
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The externally studentized residual is scale invariant. Com-
monly, an outlier is detected if tk > 2.

Influential Observations
Outliers should not be confused with influential observations.
Until now, we have used the residuals in order to find problems
with a model. If we want to study the robustness of a model to
perturbations, we do an influence analysis. This kind of study is
done as though the model were correct. Influential observations
cannot be detected by large residuals. Their removal, however,
may cause major changes in subsequent use of the model. The
difference can be understood from Figure 6.7. A straight-line
model that includes the influential observation will give a differ-
ent slope if that observation is deleted. On the other hand, if the
obvious outlier is included in the model, we will estimate larger
residuals for all of the cases.

To measure the change of the influential observation, the model
has to be built by including or deleting it. From the two models,
we obtain different estimations for the y values that can be used
to compute a measure, the so-called Cook’s distance, Dk:

Dk =
(ŷ(k) − ŷ)T(ŷ(k) − ŷ)

ps2 (6.103)

where ŷ(k) is the vector of y values estimated from the model with-
out case k, ŷ is the vector of y values estimated with the full model,
and s2 is the variance computed similar as in Eq. (6.103) for the full
model, that is,

s2 =

n∑
i=1

e2
i

n − p

Influential
observation

Outlier

y

x

Figure 6.7 Straight modeling in the presence of an outlier and an influen-
tial observation.
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Again the leverage value can be used to estimate the D value as
follows:

Dk = 1
p

r2
k

( hkk

1 − hkk

)
with rk =

êk

s
√

1 − hkk

(6.104)

rk is called the internally studentized residual because s is esti-
mated by including all of the data.

Large Dk values reflect the substantial influence of case k. There-
fore, samples or cases with the largest Dk values will be of interest.
In practice, those samples should be deleted and the model should
be recomputed in order to understand which changes will happen.

An additional possibility
for standardization of
residuals is the
standardized residual
computed by

ri = êi(s
√

1 − hii)

Example 6.10 NIR – Multivariate Analysis of Protein in
Wheat

As an example of spectroscopic multicomponent analysis,
the protein content in whole wheat is calibrated on the basis
of NIR spectra. The model is then used for analysis of an
unknown sample.

In total, n= 30 calibration samples are available. The NIR
spectrum of one sample is given in Figure 6.8. We will
use the inverse calibration method (cf. Eq. (6.81)), that is,
according to the general equation of multiple regression
(Eq. (6.41)), the protein content is arranged in the y vec-
tor and the matrix X contains the NIR spectra. In order
to keep the calibration model small, only the five most
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Figure 6.8 NIR spectrum of wheat.
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important wavelengths are evaluated. The regression model on
the basis of OLS reads as follows:

y = 6.23 + 670.9x1 − 4154x2 + 3682x3 − 176.8x4 − 9.371x5

(6.105)

Table 6.4 provides the results for the ANOVA. The sum
of squares corrected for the mean is explained by 95.41%
(coefficient of determination Eq. (6.17)) due to the factors,
here the wavelength. The F test for goodness-of-fit is also
given in Table 6.4. Based on a significance level of 𝛼 = 0.05,
the goodness-of-fit test is significant, since the p level is
smaller than 0.05. This means that the parameters of the linear
calibration model are significantly different from zero.

Figure 6.9 illustrates the recovery function for the analysis of
protein contents in wheat. The predictions correspond here to

Table 6.4 ANOVA table for OLS calibration of NIR spectra in the analysis
of protein in wheat.

Source of variation SS df MSS F value p-level

Corrected for the mean, SScorr 69.80 29 2.41 — —
Factors, SSfact 66.60 5 13.32 99.81 0.000
Residuals, SSR 3.203 24 0.1334 — —

SS− sum of squares, MSS−mean sum of squares, and df − degrees of
freedom.
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Figure 6.9 Recovery function for resubstitution of samples in case of
inverse OLS calibration of protein (mass%) by means of NIR spectra.
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resubstitution of the calibration samples into the model in
Eq. (6.105). For the mean SEC, one obtains from the PRESS
value (Eq. (6.99))

PRESS =
n∑

i=1
ê2

i =
n∑

i=1
(yi − ŷi)2 = 3.203

SEC =
√

PRESS
n

=
√

3.203
30

= 0.327 (6.106)

To estimate the error of unknown (independent) samples,
the standard error of prediction of cross-validation is to be
applied (SEPCV, Eq. (6.68)). It is expected that this error is
greater than that for resubstitution, and it amounts to

SEPCV =
√

PRESSCV
n

=
√

4.592
30

= 0.391

Related to the mean protein content of 13 mass%, this cor-
responds to a relative error of (0.391/13)100%= 3.0%.

Regression diagnostics are carried out by using Cook’s
distance (cf. Figure 6.10 and Eq. (6.104)) and the analysis of
residuals. The latter are given as common residuals according
to Eq. (6.28) and as jackknifed residuals after Eq. (6.102)
in dependence on the diagonal elements of the hat matrix.
The plot of Cook’s distances (Figure 6.10a) reveals sam-
ple 4 as a potential influential observation. However, this
sample also has a high residual error, so that the model
has to be recalculated after elimination of the suspicious
sample.

A typical outlier is sample number 17. The sample has a very
large residual, but cannot be identified as an influential obser-
vation.

For computation of the content of the unknown sample,
the absorbances are inserted into the calibration model
(Eq. (6.105)). The following protein content in percentage
mass results:

y = 6.23 + 670.9 ⋅ 0.4569 – 4154 ⋅ 0.4178 + 3682 ⋅ 0.4134
– 176.8 ⋅ 0.4348 – 9.371 ⋅ 0.9816 = 13.29

Finally, calibration is performed on the basis of the complete
spectrum using 176 wavelengths. The OLS method cannot be
used for this, since only 30 samples are available, and therefore,
n< p, that is, the matrix is rank deficient.
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Figure 6.10 Regression diagnostics
for influential observations and out-
liers. (a) Cook’s distance for recogni-
tion of influential observations. (b)

Residual plot in dependence on
the calculated y values. (c) Jack-
knifed residuals according to
Eq. (6.102).

The results based on biased parameter estimates, PCR and
PLS, are represented by their PRESS values in Figure 6.11.

As expected, the fit of calibration spectra is improved with
increasing component number. This effect is here still more
pronounced for the PLS method than for the PCR method.
Prediction of unknown samples, however, should not be
based on the maximum number of principal components. For
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Figure 6.11 Error for calibration of
30 wheat samples by means of 176
wavelengths if principal component
regression (PCR) (a) and partial least
squares (PLS) regression (b) are used
for data evaluation. The predictive
residual sums of

squares (PRESS) values are com-
puted by Eq. (6.99). PRESS corre-
sponds to the error due to
resubstitution (Eq. (6.99)) and
PRESSCV to the error estimated by
cross-validation (Eq. (6.101)).

estimation of the optimal component number with respect to
robust prediction, the error due to cross-validation, PRESSCV,
according to Eq. (6.101), is computed on the basis of the lever-
age value. For both calibration methods, we observe a mini-
mum in the dependence on the number of components. It lies
at 10 components for PCR and at 8 for PLS.

If the prediction error based on the standard error is
compared to the computation with only five wavelengths, for
both methods, PCR (SEPCV = 0.519) and PLS (SEPCV = 0.526),
worse results are obtained. This is explained by the fact that



256 6 Modeling

the five optimal wavelengths were selected. The judicious
choice of features, here the wavelength, is therefore an
important aspect in applying the methods of multicomponent
analysis.

Multiway Regression (Modeling)

Up to this point, regression has been restricted to two blocks
of two-way data Y and X. In chemical analysis, however, a
growing number of problems can be cast as three-way regression
analysis. Consider the calibration of chemical constituents on
the basis of their fluorescence excitation/emission spectrum
or of gas chromatography/mass spectrometry (GC/MS) data.
For each sample, two-dimensional measurements are available
that constitute a three-way data array, X. This data array has to
be related to sample concentrations of one, vector y, or several
analytes, matrix Y. Cases can be imagined where even the matrix
Y constitutes a three-way data array.

Methods for simultaneous N-way regression can be based
on the decomposition of the X array by multiway methods
introduced in Section 5.2 (parallel factor analysis (PARAFAC)
or Tucker models) and regressing the dependent variable on the
components of those models. A drawback with this approach
is that the separately estimated components are not necessarily
predictive for Y. This caused the development of improved
algorithms for multiway regression analysis of that kind.

A frequently used sequential N-way method that predicts y and
decomposes X in a PARAFAC-like mode is multilinear or N-way
partial least squares (N-PLS). Denoting the component vector t
and the weighing vectors for mode K, wK, and for mode J, wJ, the
following criterion has to be maximized (cf. Figure 6.12):

max
wJ wK

[
cov

(
t, y

) ||||||min

( I∑
i=1

J∑
j=1

K∑
k=1

(
xijk − tiw

J
j w

K
k

)2
)]

(6.107)

Introducing a summation vector z computed from y and x
implies

max
wJ wK

[ I∑
i=1

tiyi

||||||ti =
J∑

j=1

K∑
k=1

xijkwJ
j w

K
k

]

=max
wJ wK

( I∑
i=1

J∑
j=1

K∑
k=1

yixijkwJ
j w

K
k

)
= max

wJ wK

J∑
j=1

K∑
k=1

zjkwJ
j w

K
k

(6.108)
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Figure 6.12 Scheme of N-way PLS regression of responses, Y (K ×M), on a
three-way data array, X, after decomposition to one component t with its
weighing vectors w.

In matrix form, the criterion to be maximized becomes

max
wJ wK

[(wJ )TZwK ] = SVD(Z) (6.109)

where SVD is again the singular value decomposition (cf.
Eq. (6.51)).

Generalization of N-PLS to higher order arrays X and Y is fea-
sible. The principal algorithm for regressing a y vector on a three-
way array X is given in Example 6.11 and can be compared to the
original PLS1 algorithm in Example 6.7.

Example 6.11 Algorithm for N-PLS [7]

Center X and y
a= 1

1. Calculate matrix Z.
2. Determine wJ and wK by SVD.
3. Calculate t.
4. b= (TTT)−1TTy.
5. Each sample Xi is replaced by Xi − tiwJ(wK) T and

y= y−Tb.
6. a= a+ 1. Continue from step 1 until proper description of

y.

Prediction: y0 =TbA =X0 bPLS

Important applications of N-PLS are in the area of multivari-
ate calibrations for excitation/emission fluorescence spectrome-
try, for hyphenated analytical methods, such as HPLC/diode array
detection and GC/MS, or for multidimensional separation tech-
niques with or without coupling to spectroscopy.
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6.3
Nonlinear Methods

In analytics, nonlinear relationships can be frequently modeled
without the application of nonlinear methods. This is feasible by
means of transformations of variables, such as signals or concen-
trations. Remember Beer’s law in the form

I = I0e−𝜀𝜆dc (6.110)

where I is the transmitted light intensity; I0 is the incident inten-
sity of light, and 𝜀𝜆, d, c have the meanings as given Eq. (6.72).

The signal intensity is related to the concentration in a nonlin-
ear way. Logarithmic transformation, however, leads to a linear
relationship (A𝜆 = 𝜀𝜆dc, Eq. (6.72)), so that the linear methods dis-
cussed can be used. The transformation in this example is based
on a physical law, that is, it is of a mechanistic nature.

Parameters that cannot
be transferred by any
operation into linear
parameters are denoted
as being intrinsically
nonlinear.

Another possibility consists of an empirical transformation on
the basis of polynomials of higher order. In this context, we have
already used quadratic polynomials for response surface methods
in Section 4.2.

In this section, on the one hand, methods that are used to
estimate intrinsically nonlinear parameters by means of nonlin-
ear regression (NLR) analysis will be introduced. On the other
hand, we will learn about methods that are based on nonpara-
metric, nonlinear modeling. Among those are nonlinear partial
least squares (NPLS), the method of alternating conditional
expectations (ACE), and multivariate adaptive regression splines
(MARS).

Nonlinear modeling on the basis of neuronal networks is dis-
cussed in Section 8.2.

Nonlinear Regression Analysis

Nonlinear parameters can be estimated by the methods of NLR.
Chemical equilibria represent typical nonlinear models. For
example, the retention behavior in HPLC is described in depen-
dence on the pH value or the hydrogen ion concentration by a
set of parameters of distribution coefficients and acid protolysis
constants:

k′ =
k0 + k1

[H+]
KA1

+ k−1
KA2
[H+]

1 + [H+]
KA1

+ KA2
[H+]

(6.111)

where k′ is the capacity factor as a relative measure for the reten-
tion time; [H+] is the molar concentration of hydrogen ions; k0,
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k1, and k−1 are the distribution coefficients for the different forms
of the analyte molecules HS, HS+, and S−; and KA1

and KA2
are the

acid constants for HS and S−, respectively.
In mathematical terms, the nonlinear model is expressed by the

dependent variable y, the independent variable x, and the param-
eter bi in Eq. (6.111):

y =
b0 + b1

x
b3

+ b2
b4
x

1 + x
b3

+ b4
x

(6.112)

In this equation, we note two types of parameters: first, the lin-
ear parameters b0, b1, and b2, and then, the intrinsically nonlinear
parameters b3 and b4. By appropriate reshaping of the equation,
the linear parameters can be determined by the methods of linear
algebra. In fact, there exist algorithms for separation of linear and
nonlinear parameters in a given model.

The nonlinear parameters can be estimated by means of NLR.
There, however, no closed solution is feasible, but the parameters
are iteratively approximated on the basis of initial values for them.
The following approximation methods can be distinguished:

• The method of steepest descent
• Linearization methods
• Search methods.

In all cases, an objective function, 𝜒2, is minimized that repre-
sents the deviations of the n estimated y values from the observed
ones:

𝜒2 =
n∑

i=1
(yi − ŷi)2 ⇒ Minimum (6.113)

Method of Steepest Descent

With this method, the direction of steepest descent is searched on
a plane or hyperplane of the objective function in dependence on
the parameters of the model. The basis is a design, for example, 2m,
in the m parameters where the objective function,𝜒2 (Eq. (6.110)),
is approximated by means of a linear model in the parameters a:

𝜒2 = a0 +
m∑

j=1
aj
[bj − bj]

sj
+ e (6.114)

where bj is the center of the design and sj is the standard deviation
for the parameters as a normalization factor.

b1

b2

χ2



260 6 Modeling

The direction of steepest descent is given by the values −1⋅aj,
that is,

[bj − bj]
sj

= 𝜆(−aj) (6.115)

or

bj = bj − 𝜆ajsj (6.116)

where 𝜆 is the descent parameter.
The method is repeated with new parameter values bj as long as

the minimum is found.

Linearization Methods
In contrast to linear parameters, nonlinear parameters cannot be
represented simply by the product between the matrix of indepen-
dent variables, X, and the parameter vector, b (cf. Eq. (6.13)). If,
however, approximate initial values, b0, are known for the param-
eter vector, b, then the function y= f (x) can be rewritten such
that a linear function emerges in dependence on the difference
of the parameter to be estimated and its starting value, that is,
Δb= b− b0. This means that the method can be traced back to
the solution of a least squares problem.

The basis for linearization is the extension of the function into
a Taylor series and truncation after the first-order term under the
prerequisite that the difference Δb is small enough:

yi = f (xi, b1, b2,… , bm) + ei (6.117)

yi = f (xi, b = b0) +
δfi
δb1

||||𝐛=𝐛0

Δb1

+
δfi
δb2

||||b=b0

Δb2 + · · · +
δfi
δbm

|||||b=b0

Δbm + ei (6.118)

where δfi
δbj

||||b=b0

is the first derivative of the parameters bj at point i

at the initial value b0. Equation (6.115) is then linear in the param-
eters Δb1, Δb2, …, Δbm and similar to the general equation for
linear regression (Eq. (6.13)). The matrix of the independent vari-
ables, X, now contains, however, the partial first derivatives of the
function to the parameters in the form⎛⎜⎜⎜⎜⎜⎝

δf1
δb1

δf1
δb2

… δf1
δbm

δf2
δb1

δf2
δb2

… δf2
δbm

⋮
δfn
δb1

δfn
δb2

… δfn
δbm

⎞⎟⎟⎟⎟⎟⎠
= X = J (6.119)
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The matrix is termed the Jacobian matrix, J. The linearized
model reads then

Δy = JΔb + e (6.120)

where the vector Δy represents the difference between the mea-
sured y values and the predicted value at position b0, that is,

Δy =
⎛⎜⎜⎜⎝

y1 − ŷ1,0
y2 − ŷ2,0

⋮
yn − ŷn,0

⎞⎟⎟⎟⎠ (6.121)

Estimation of the parameter vector Δb is carried out in analogy
to Eq. (6.14) by

Δb = (JTJ)−1JΔy (6.122)

The vector of the nonlinear parameters is finally obtained by

b = b0 + Δb (6.123)

The accuracy of parameter estimations depends first on good
starting values. Bad initial values may lead to slow convergence or
oscillations.

Second, the quality of parameter estimates is also determined
by the appropriateness of series extension without considering
higher order terms. If the first order is not sufficient, divergences
cannot be ruled out. In principle, Taylor expansion can also be
performed by inclusion of the second derivative (Hessian matrix).

The derivation of a mechanistic model can be carried out ana-
lytically; this is in contrast to empirical models, which require
numerical derivatives.

Search Methods

A particular search method has already been introduced in
the form of the simplex method in Section 4.3. Although it
was explained in connection with the optimization of experi-
mental observations, it can be transferred analogously to the
optimization of the objective function in Eq. (6.113).

A very simple method is the grid search, where each point at the
given grid is evaluated and in that way the minimum is found. If
necessary, the grid is reduced to estimate the parameters locally
more precisely.

In the case of the Monte Carlo method, the optimum is searched
by random change of the parameters to be estimated. The best set
of parameters is maintained in subsequent computations.

Extrapolations outside
the areas that were used
for building the model
are more critical for
nonlinear methods than
for linear ones.
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Marquardt Algorithm
In practice, a combination of the method of steepest descent and
the linearization procedure is preferred. The algorithm is based
on a proposition by Levenberg, which was further developed by
Marquardt. As long as the parameter estimations are still poor, the
algorithm operates on the basis of the steepest descent method. In
the course of optimization, the linearization method is progres-
sively included.

Regression Diagnostics
A particular cost criterion of nonlinear modeling is the minimiza-
tion criterion, 𝛾2, by itself. If this criterion becomes zero, a perfect
fit is obtained. Similarly to linear regression analysis, the residu-
als can be graphically inspected and the recovery function can be
evaluated.

More difficult is the estimation of errors for the nonlin-
ear parameters, since no variance–covariance matrix exists.
Frequently, the error estimations are restricted to a locally
linear range. In the linearization range, the confidence bands
for the parameters are then calculated as in the linear case
(Eqs. (6.25)–(6.27)). An alternative consists in error estimations
on the basis of Monte Carlo simulations or bootstrapping
methods (cf. Section 8.2).

Nonparametric Methods

Alternating Conditional Expectations
At the beginning of Section 6.3, the possibilities of transforma-
tions of variables for modeling nonlinear relationships were dis-
cussed. In the ACE method, these transformations need not be
predefined, but are found by the algorithm. To understand the
ACE method, we start from the linear multivariate model for a
single dependent variable y and p independent variables xj (cf.
Eq. (6.13)):

y = b0 +
p∑

j=1
bjxj + e (6.124)

where bj is the regression parameter.
The model of the ACE method is an analogy [8]:

g(y) =
p∑

j=1
fj(xj) + e (6.125)

here g(y) is a transformation of the y variable and the fj are trans-
formations of the variables xj. The transformation functions are
smooth, but unconstrained functions of the variables y and x.
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The ACE model is stored in the form of p pairs of [yj, g(yj)] and
[xij, f (xij)]. The transformation functions are not in closed or ana-
lytical form in contrast to parametric models. The transformation
is obtained on the basis of an optimality criterion, according to
which the variance of the error e in Eq. (6.122) is minimized with
respect to the variance of the transformed variable y.

The notion of ACE derives from the algorithm, which serves the
estimation of the optimum transformations. Based on initial esti-
mates of the transformations (g0 and f 0), the algorithm improves
the function gk and subsequently fk. If, for example, fk is given, then
an improved version for g is obtained by computation of

gk+1(y) =

E

[ p∑
j=1

f k
j
(
xj
)|||||| y

]
‖‖‖‖‖‖E

[ p∑
j=1

f k
j
(
xj
)|||||| y

] ‖‖‖‖‖‖
(6.126)

E denotes here the expectation value and ‖•‖ = [E(•)]1∕2.
In analogy, an improved estimation of f is computed if the actual

estimation gk for g is

f k+1
j (xj) = E

[
gk (y

)
−

p∑
i≠j

f k
j (xi)

|||||| xj

]
(6.127)

The algorithm uses conditioned expectation operators in alter-
nating sequence. It converges to the optimum transformations
gk → g and fk → f .

In the case of evaluating real data sets, the algorithm in
Eqs. (6.126) and (6.127) only serves the purpose of providing
the mathematical basis of how the algorithm should perform in
principle. The operator of conditional expectations is replaced by
an appropriate smoothing algorithm.

The actual transformations can be graphically evaluated. This
is shown in Figure 6.13 for the data from Example 6.12. Linear
relationships are also reflected by linear transformations.

Prediction of y values is carried out in two steps. First, the
transformations f (x) on the basis of the x values are evaluated in
a look-up table. Usually, interpolation between two points will
be necessary. After that, the p functional values are inserted into
Eq. (6.125) and the y value is calculated by adding up the individual
functions.
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Figure 6.13 Plot of the transformation of an x variable in the alternating
conditional expectations (ACE) method. The plot is based on the data in
Example 6.11, that is, the x variable corresponds here to a pH value.

For predictions, the ACE model can be used until this stage only
if the y values are not transformed, that is, if g(y)= y.

The main advantage of the ACE algorithm is the diversity of
possible transformations. For collinear data, a previous reduction
of dimensionality of the X matrix is to be recommended, for
example, by means of principal component analysis.

Nonlinear PLS

The linear PLS method has been introduced in Section 6.2 and
also in connection with multicomponent analysis. The NPLS
method fits an NLR model to the data. This model is based
on a nonlinear inner relationship of the PLS algorithm, which
is described by means of a smoothing function [9]. The inner
relationship denotes regression of the scores of the Y matrix
on the scores of the X matrix. According to the algorithm in
Example 6.7 (step 7), after rearranging for a given dimension, we
obtain the inner relationship:

u = f (t) + e (6.128)

where u represents the score vector of the X matrix, t is the score
vector of the Y matrix, e are the residuals, and f is the smooth-
ing function. In the first step, the latent variables are computed
as in the linear PLS. After that, instead of linear approximation
of u on t, the nonlinear relationship is constructed by means of
the smoothing function. The smoothing function is the same as
in the ACE method. The nonlinear relationship can be analyzed
graphically by plotting the latent variables. In Figure 6.14, this is
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Figure 6.14 Demonstration of the nonlinear relationship between latent
variables for the univariate data in Example 6.10.

demonstrated for univariate data. For a multivariate data set, one
obtains for each latent x variable an individual plot.

Multivariate Adaptive Regression Splines

MARS represents one of the most complex nonlinear methods
[10]. This method is based on the idea that only few variables
significantly influence the dependent variable in subspaces of
the multidimensional space. If these subspaces can be identified,
and therefore the corresponding variables assigned, it should
be possible to approximate linear or cubic splines to the obser-
vations. The fundamentals of spline functions were discussed
in Section 3.1.

The model for a multivariate regression spline is based on lin-
ear combinations of univariate spline functions Skj of the general
form [10]

yi = b0 +
K∑

k=1
bk

J∏
j=1

[Skj(xij − tkj)] + ei (6.129)

where b0 and bk are the parameters of the linear combinations, tk
is the knot at point k, K is the number of knots of the spline, and
J is the number of basis functions.

The nonlinearity of the method results from the fact that
both the spline coefficients and also the linear combinations are
optimized with respect to the problem at hand. Adaptive means
here that the subranges are fit to the concrete data set. The knots
are therefore not fixed as in conventional splines. The search for
the most appropriate positions of the knots may be very time
intensive.
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Table 6.5 pH depen-
dence of the retention
(k′) of anthranilic acid
in HPLC.

pH k′

2.0 10.60
2.5 14.28
3.0 16.63
3.5 17.60
4.0 15.64
4.5 13.31
5.0 8.09
5.5 4.48
6.0 2.60
6.5 1.92
7.0 1.56
7.5 1.45

Example 6.12 Nonlinear Methods

The retention behavior of anthranilic acid in dependence
on the pH value is to be modeled. To solve this problem, first,
the method of nonlinear regression is exploited to estimate
the parameters according to a physicochemical model given
in Eq. (6.111) and formalized in Eq. (6.112). In a second step,
the nonparametric methods NPLS and ACE are applied.

The measured k′ values are given in Table 6.5 and plotted in
Figure 6.15. Regression by means of NLR provides the param-
eters summarized in Table 6.6, together with their standard
errors.
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Figure 6.15 Modeling of the retention (k′) of anthranilic acid in HPLC in
dependence on the pH value.

The standard error of the
parameters bi is
calculated from the
diagonal elements of the
variance–covariance
matrix in Eq. (6.22):√

s2
bii

Table 6.6 Parameter for the model of retention (k′) of anthranilic acid
in HPLC according to Eq. (6.112).

Parameter Estimation Standard error

b0 18.55 0.31
b1 4.979 1.912
b2 0.300 0.116
b3 7.06× 10−3 2.27× 10−3

b4 1.52× 10−5 0.11× 10−5
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The parameters can be interpreted in a physicochemical
sense. For example, the acid protolysis constants can be
compared with those determined by potentiometry. The total
error for modeling is given in Table 6.7 by the PRESS value
(Eq. (6.99)) and the standard error (in analogy to Eq. (6.106)).

Table 6.7 Error for modeling the pH dependence of the retention (k′)
of anthranilic acid in HPLC.

Method PRESS Standard error

NLR 7.647 0.798
NPLS 46.72 1.973
ACE 22.06 1.356

Table 6.7 also demonstrates the results of modeling with
the nonparametric methods NPLS and ACE. The com-
puted retention values are plotted for all three methods in
Figure 6.14. Both plots demonstrate the superiority of the
parametric NLR method. It should be noted that only by
regression on the basis of the mechanistic model in Eq. (6.112)
can the independent variable be maintained in its antiloga-
rithmic form, that is, as hydrogen ion concentration. For the
nonparametric computations, an acceptable fit of the k′ values
is only feasible if pH values are applied. This is explained by
the fact that the nonparametric methods can only be used
in the sense of curve fitting, but not in the sense of model
approximation.

Scientifically, a mechanistic model is always to be preferred if
it can be constructed. In practice, however, empirical modeling is
frequently sufficient, so that the nonparametric nonlinear meth-
ods are also important tools.

Regression Trees

Another nonparametric regression method is CART (classifica-
tion and regression trees). The basic concepts were outlined in
“Discriminant Analysis” Section about tree-based classification.
We remember from that chapter that CART is a recursive binary
partition method based on a simple model constant for each
region. If the residual sums of squares of responses is minimized,
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it can be shown that the best constant, cm, for regression trees is
just the average of the responses, yi, in region Rm:

ŷ =
∑

m
cmI(x ∈ Rm) (6.130)

The unit step function yields for I(x∈Rm)= 1 and for
I(x∉Rm)= 0.

In Example 6.13, a regression tree model for calibration and pre-
diction of an organic pollutant from ultraviolet spectra and the
model improvement by bagging are described.

Ensemble methods are
not restricted to
tree-based methods but
can also be applied for
k-NN or discriminant
analyses.

Example 6.13 Regression Trees

A calibration model for prediction of benzanthracene on the
basis of UV spectra was constructed by regressing concen-
trations of benzanthracene in 25 sample solutions on UV
absorbances at 27 wavelengths by CART. The regression tree
has the following form:

x12 < 0.764 x12 ≥ 0.764

x13 ≥ 0.890x13 < 0.890

x13 ≥ 0.569x13 < 0.569

1.08 1.62

0.54

x26 ≥ 0.0425x26 < 0.0425

2.702.16

Resubstitution of the benzanthracene concentrations
reveals perfect fit, that is, the calibration mean squared
error (Eq. (6.106)) is almost zero. Estimation of predictions
from a single tree by leave-one-out cross-validation reveals
a mean squared prediction error of 0.428. A plot of the
recovery function for the individual predictions is given in
Figure 6.16a. Further improvement of the model is feasible
if again ensemble methods (cf. “Tree-Based Classifica-
tion” Section) are applied. Figure 6.16b shows the recovery
function for a bagged model with a smaller prediction
error of 0.337.
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Figure 6.16 Recovery functions for cross-validated predictions of benzan-
thracene from UV-spectra based on a single tree (a) and a bagged tree
model (b).
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Questions and Problems

1. Decide which of the following models contains intrinsi-
cally nonlinear parameters, which cannot be estimated by
linear regression analysis:

y = b0 + b1x + b111x3

y = b0 + e−b1x

y = b0 + b1
1
x2

y = b1x + 1
x+b2

The following data were obtained for liquid chro-
matograms of standard solutions of atrazine. The
concentrations are given in mmol l−1 and the signals as
relative peak area.

Concentration Area

0.2 0.85
0.2 0.83
0.5 1.34
1.0 2.15
2.0 3.70
3.0 5.15
4.0 6.50
5.0 7.75
6.0 8.90
7.0 9.95

(a) Plot the data and select an appropriate calibration
model.

(b) Estimate the parameters of the model by linear
repression analysis.

(c) Calculate the confidence intervals of the parameters.
(d) Investigate the residuals of the model and perform a

complete ANOVA in order to test the significance of
the calibration parameters.

2. Which variations describe the sums of squares in the F
tests for goodness-of-fit and lack-of-fit of a model?

3. In which situations are biased regression methods par-
ticularly useful compared to ordinary linear regression
analysis?

4. Summarize the advantages and disadvantages of direct
and inverse multivariate calibration.
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5. What is the difference between an outlier and an influen-
tial observation and how are they detected?

6. Explain the differences between parametric and nonpara-
metric nonlinear regression methods and give examples
of their applications.
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7
Analytical Databases

Learning Objectives

• To introduce the principles of representation, conversion,
and storage of analytical data

• To code spectra and chemical structures in analytical
databases and to learn about library search methods and
the simulation of spectra.

Chemical databases serve different purposes, such as the
search for scientific and patent-related literature or retrieval of
facts about chemical compounds. In analytical chemistry, the
databases that are of interest are those that contain either original
measurements (spectra and chromatograms) or derived data,
such as concentrations or chemical structures. These data can
be retrieved online via network from a host, for example, STN
International. On the other hand, databases can be stored at
individual PCs or in connection with an analytical instrument.

Examples of some of the oldest analytical databases are given in
Table 7.1. At present, databases that comprise several spectromet-
ric methods, such as SDBS (Spectral database for organic com-
pounds, AIST), exist and in SciFinder (CAS), several databases are
combined to reveal more than 42 million of spectra. Apart from
representation of the analytical measurements in the computer,
the coding of chemical structures is an important aspect of con-
structing analytical databases.

Efficient retrieval of the analytical information depends on
appropriate search strategies. To confirm a chemical structure
on the basis of its spectrum, the database must contain the
sought-for spectrum. Very often, however, no spectrum related
to the assumed chemical structure is available, so then methods
for simulation of spectra from a chemical structure are needed.

Chemometrics: Statistics and Computer Application in Analytical Chemistry, Third Edition. Matthias Otto.
© 2017 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2017 by Wiley-VCH Verlag GmbH & Co. KGaA.
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Table 7.1 Some analytical databases.

Method Database
/supplier

Data Compounds Remarks

NMR SpecInfo
(CC)

85 000
spectra

150 000 On-line

Bruker 19 000
spectra

— Spectrometer
/PC

MS NIST/EPA
/MSDC

210 000
spectra

200 000 On-line/PC

John Wiley &
Sons

125 000
spectra

110 000 PC

IR Sadtler 80 000
spectra

— PC

Aldrich-
Nicolet

>10 000
spectra

10 600 Spectrometer
/PC

Atomic
emission

Plasma 2000
(PE)

50 000 atomic
lines

60 elements PC

GC Sadtler Retention
indices

— PC

7.1
Representation of Analytical Information

Type of Information

Different sorts of information for analytical databases exist:

• Numerical
• Alphanumerical, for example, text
• Topological
• Graphical.

Numerical data are in question, if spectral, chromatographic, or
electroanalytical data have been measured and, if concentrations,
errors, or analysis costs are to be stored. Typical alphanumeric
data concern descriptions of sample identity or analytical pro-
cedures. Chemical structures are represented topologically from
electron microprobe analysis.

Structure of Databases

The demands for storing and processing information dictate
the format of a database. Usually, the content of the database is
acquired in different steps.
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Source file

Library file

Exchange file

Index file

Working file

Application
software

Manipulation
software

Figure 7.1 Structure of analytical databases.

Source and Library Files

The raw analytical data are stored in the source file (cf. Figure 7.1).
Elimination of unimportant data, filtering, transformations, or
compression of data leads to a library file, which is archived. The
library files of an analytical database consist of a header and a
collection of data blocks. The header contains information about
the file organization, as well as control parameters. Stored in
the data block are different sets of data that contain information
about the analytical data, such as spectra, and about chemical
structures and additional remarks.

Exchange Files

To transfer data between different bulk storage media, files of
fixed exchange formats are created. The most important exchange
format in spectroscopy is that elaborated by the JCAMP/DX
format, which was elaborated by the Joint Committee on Atomic
and Molecular Data with the following objectives:

• Different sorts of spectra should be describable, for example,
Fourier transformation/infrared (FT/IR), Raman, UV/VIS
spectrometry, X-ray diffraction spectrometry, nuclear mag-
netic resonance (NMR), or MS.

• The text of the file should be readable by computer, humans, and
telecommunication systems alike. Therefore, only ASCII char-
acters are allowed.

• Descriptive information about the sample should be compact.
• The format must be flexible enough to guarantee later exten-

sions.

Table 7.2 demonstrates an example of a JCAMP/DX data file
for storing the IR spectrum of epichlorohydrin vapor. Here, the
minimum information is given. Further items concern informa-
tion about the compound, for example, the molecular mass or the
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Table 7.2 Important information of a JCAMP/DX exchange file for an IR
spectrum.

1. ##Title=Epichlorohydrin vapor
2. ##JCAMP-DX= 4.24
3. ##DATA TYPE= INFRARED SPECTRUM
4. ##ORIGIN= Sadtler Research Laboratories
5. ##OWNER=EPA/Public Domain
⋮

Rows 6–24 are optional
⋮
25. ##XUNITS= 1/CM
26. ##YUNITS=ABSORBANCE
27. ##XFACTOR= 1.0
28. ##YFACTOR= 0.001
29. ##FIRSTX= 450.
30. ##LASTX= 4000.
31. ##NPOINTS= 1842
32. ##FIRSTY= 0.058
33. ##XYDATA= (X++(..Y))
34. 450 58 44 34 39 26 24 22 21 21 19 16 15 15 17
35. etc.
36. 3998 15 15 14
37. ##END=

Chemical Abstract number, about sample preparation, the instru-
ment used, or about measuring conditions and data processing
methods, such as smoothing or derivatives.

The format is general enough that it can be exploited for similar
purposes. Thus, a convention exists for describing chemical struc-
tures (JCAMP/CS format where CS stands for chemical struc-
ture).

Coding of Spectra

For a long time, the limited storage capacity of bulk storage media
hindered the complete storage of spectra and chromatograms in
an analytical database. Therefore, many spectroscopic databases
contain only features of the spectra. For example, UV spectra are
based on maximum absorbances or IR spectra are represented as
peak lists (cf. Figure 7.2).

Now, one attempts to store the complete analytical infor-
mation, that is, full spectra, complete chromatograms, or even
spectrochromatograms that are generated by hyphenated sys-
tems, such as HPLC with diode array detection. Usually, the
digitization rate is determined by the measuring conditions.
Table 7.3 exemplifies the representation of signal position and
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Figure 7.2 Evaluation of the peak list of a
spectrum.

Table 7.3 Coding of spectra in the molecular database of the Organic
Institute of ETH Zurich (OCETH).

Method Signal position Intensity Number of
data points

13C-NMR 0.1 ppm 0.1% 100
MS 0.1 mass number 0.1% 500
IR 1 cm−1

(200–2000 cm−1)
%transmission at 63

levels
2300

4 cm−1

(2000–4000 cm−1)
UV/VIS 1 nm 0.01 in lg 𝜀 400

intensity of molecular spectra as stored in the beginning of the
1980s in a database of the ETH Zurich.

As a rule, the databases contain additional information, for
example, about the starting point of a measurement, resolution,
or multiplets in NMR spectroscopy.

Apart from the storage of full spectra at certain digitalization
levels, several algorithms are known to represent the original
data in a compact, and for further processing, efficient way. As
an extreme case, the measured data or chemical structures are
encoded as binary vectors of constant lengths.

As a rule, the user does not need to know about the details of
data compression. In addition, because of the increasing perfor-
mance of computers, the necessity for compressing the original
data decreases, at least for analytical data banks.

Recent developments in spectroscopy and in analytical sep-
aration science, in the hyphenation of those methods as well
as in multidimensional separations, have led to a dramatic
increase in the amount of data emerging from a single analytical
measurement. For example, a gas chromatography–mass spec-
trometry (GC-MS) experiment with a capillary column and a
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high-resolution mass spectrometer might produce a data file in
the order of 2 or even 20 GB. Storage of those data in ASCII files
is prohibitive. Therefore, storage as binary data or new formats
are exploited. Such a new format is Base 64 used in storage of,
for example, protein mass spectra by mzXML (m/z Extensible
Markup Language). As an example, an ASCII file of the size of
816 MB could be stored in a binary file in a size of 234 MB. Using
the Base 64 format compression is possible to 312 MB and, after
elimination of all zero intensities, even further to 13 MB, that is,
data reduction from the ASCII file to Base 64 is achieved by more
than 60-fold.

Binary data storage is common in the separation sciences. Here,
the Network Common Data Format (Netcdf) is used with the fol-
lowing characteristics:

• Data arrays
• Binary data
• Self-explanatory
• Portable (independent of computer platform and storage

media)
• Scalable (effective access to subsets of big data sets)
• Extendable (without new definitions of data structures)
• Simultaneously accessible
• Archivable.

Coding of Chemical Structures

Fragmentation Codes An easy possibility for converting a chem-
ical structure into a computer-readable format is based on
fragmentation codes. Typical fragmentations are aromatic rings,
structural skeletons, the OH group, and the azo group (–N=N–).
The fragmentations are numbered and stored in a fragmentation
list. More generally, a fragmentation is formed on the basis of a
freely eligible center of the molecule and is described by its first
to fourth spheres by means of hierarchically ordered symbols.

Consider a conventional encoding of chemical structures
in 13C-NMR spectroscopy as introduced with the so-called
HOSE code (hierarchically ordered spherical description of
environment). Table 7.4 contains some symbol descriptions of
this code.

The molecule given in Figure 7.3 is to be coded by the
HOSE code.

The carbon atoms around the center of the molecule (bold face
C atom) in the first sphere are described according to Table 7.3 by

∗ C ∗ CC(
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Table 7.4 Symbols for the HOSE substructure code ordered by priority.

Symbol Meaning

R Ring
% Triple bound
= Double bond
* Aromatic bond
C C
O O
N N
S S
X Cl
Y Br
& Ring closure
, Separator
(//) Sphere separator

Cl

C C

C C

C C

CC C
C

C

C
C

CH H

H

H

H

H

H

N

O

Figure 7.3 Spheres around a carbon atom (bold face) as the basis for
encoding the structure by the hierarchically ordered spherical description
of environment (HOSE) code.

Brackets symbolize the end of the first sphere. The second
sphere reads then as

∗ C, ∗ C,= OC∕

Here the end of the sphere is characterized by the symbol /.
Analogously, the third and fourth spheres are obtained and the
HOSE code for all of the four spheres of the molecule in Figure 7.3
is

∗ C ∗ CC(∗ C, ∗ C,= OC∕ ∗ CX, ∗ ς, ,CC∕ ∗ ςC, ,CN,C)

Although with this kind of code, a fragmentation can be
represented up to the fourth sphere, in many applications, the
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Cl

Cl

C O

1

2

3 4
Figure 7.4 Chemical structure of phosgene represented
as an undirected graph.

description of the first sphere is a good approximation. Rings are
characterized by special fragmentation codes, for example, the
hierarchically ordered ring description (HORD code) .

In principle, the assignment of fragmentations is easy and
unique. Thus, fragmentation codes are also used in structure
elucidation in IR spectroscopy, although the vibrations of a
molecule are coupled and a decomposition of the molecule
into individual fragmentations is sometimes misleading for the
interpretation process.

The HOSE code
represents a linear
notation of a chemical
structure. Other codes
are ROSDAL, SYBYL,
and SMILES. The latter
code is currently the
most popular linear
notation.

Generation of a molecule from its fragments is carried out by a
structure generator.

The number of theoretically possible chemical structures for a
given molecular formula can be very large. For example, a struc-
ture generator could generate more than 151 million isomers for a
molecule with the molecular formula C6H6N4O (mass= 150 Da).
In contrast, the BEILSTEIN database of organic compounds contains
only 273 structures for this molecular formula [4].

The easy assignment of fragmentations does not provide the
structure of the unknown compound. In the next step, the frag-
mentations have to be connected and the hypothetical structure
has to be compared with candidate structures, atom by atom. Of
course, only those molecules that contain all of the found frag-
mentations have to be considered as candidates.

Matrix Representation of Chemical Structures A mathematical
description of a chemical structure can be derived by means of
graph theory. In Figure 7.4, the graph of the molecule phosgene is
given as an example.

The atoms of the molecule form the nodes of the graph and the
bonds the edges (cf. Table 7.5). The coding of the graph is per-
formed by the so-called adjacency matrix A. For every element,
aij, of this matrix, the following is valid: if the node Ki is connected
with another node Kj, then its value is 1; otherwise, it is 0.
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Table 7.5 Representation of a chemical structure based on undirected
graphs.

Chemical term Graph theoretical term Symbol

Molecular formula Molecular graph G
Atom Node K
Covalent bond Edge G
Free electrons Loop n
Topological map Adjacency matrix A

Example 7.1 Adjacency Matrix

For the phosgene molecule, we obtain:

1 2 3 4

A =

1
2
3
4

⎛⎜⎜⎜⎝
0 0 1 0
0 0 1 0
1 1 0 1
0 0 1 0

⎞⎟⎟⎟⎠ (7.1)

The additional numbers above and at the side of the brack-
ets correspond to the nodes in the graph as numbered in
Figure 7.4.

In the adjacency matrix, no bonds are considered. This would
be possible by the analogous representation of a molecule based
on the bond electron matrix, or BE matrix for short. In the latter,
the g-fold connection of two nodes as well as the number of n free
electrons of an atom is accounted for.

Example 7.2 BE matrix

For the phosgene molecule, the BE matrix B is given by

1 2 3 4

A =

1
2
3
4

⎛⎜⎜⎜⎝
6 0 1 0
0 6 1 0
1 1 0 2
0 0 2 4

⎞⎟⎟⎟⎠ (7.2)

The advantage of matrix representation consists of the fact that
all of the matrix operations can be applied to the encoded chem-
ical structures. Simple subtraction of two BE matrices provides,
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for example, a reaction matrix, R, which consists of broken (minus
sign) and made (plus sign) bonds. This reaction matrix is obtained
as the difference of the BE matrices from the beginning, B, and to
the end, E, of a reaction.

Example 7.3

BE matrices for the reaction of acetaldehyde and formaldehyde
to form 3-hydroxypropanal:

O
+

H
8 10 H

8 O

C

H
H

C O
C

2

3H

10 H 5

H
6

9

11

4

1 7
O

C
9

H11

6

C
C

2

3

4

H

1 7

H

H

H

5

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 1 1 1 0 0 0 0 0
1 0 1 0 0 0 2 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0
0 2 0 0 0 0 4 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0 2 1
0 0 0 0 0 0 0 0 2 4 0
0 0 0 0 0 0 0 0 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

E =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 1 0 1 0 0 1 0 0
1 0 1 0 0 0 2 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0 0 0
0 2 0 0 0 0 4 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 1 0 1 1
0 0 0 0 1 0 0 0 1 4 0
0 0 0 0 0 0 0 0 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

R = E − B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 −1 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 −1 0
0 0 0 0 1 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
As can be deduced from Eqs. 7.1 and 7.2, the quadratic matri-

ces are symmetric around the main diagonal. However, even in
the case where the matrices are stored as triangular matrices, a



7.1 Representation of Analytical Information 283

disadvantage arises from the need for high storage capacity that
accompanies representation of a chemical structure in this way.
In addition, the graphs are sparsely connected. Therefore, many
matrix elements are equal to zero and many parts of the matrix
are redundant.

Connection Tables In practice, the node-oriented connection
table is applied. This table can be derived from the connection
matrix of atoms (cf. Table 7.6) and contains only the numbered
chemical elements, the bonds connected to the atoms, and the
type of the actual bond. In Table 7.7, the connection table for the
phosgene molecule is written down. A less redundant connection
table representation is given in Table 7.8.

The numbering of atoms
in the considered
molecule is arbitrary.
Therefore, many
connection tables are
feasible for a given
molecule.
Mathematically the
number of connection
tables for a molecule
consisting of n atoms is
calculated from
factorials. A molecule of
3 atoms, e.g.,
hypochloric acid,
Cl–O–H, yields 3! = 6
connection tables. For a
12-atom molecule 12! =
479.001.600 connection
tables are theoretically
possible.

Table 7.6 Connection matrix for the molecule phosgene (cf. Figure 7.4).

1 2 3 4

1 Cl 0 1 0
2 0 Cl 1 0
3 1 1 C 2
4 0 0 2 O

Table 7.7 Bond atoms and bonds in a connection table of phosgene (cf.
Figure 7.4).

Atom number Atom symbol Atom1 Bond Atom2 Bond Atom3 Bond

1 Cl 3 1 — — — —
2 Cl 3 1 — — — —
3 C 1 1 2 1 4 2
4 O 3 2 — — — —

1 Single bond and 2 double bond.

Table 7.8 A nonredundant connection table for phosgene (cf. Figure 7.4).

Node no. Atom Connected to Bond

1 Cl
2 Cl 3 1
3 C 1 1
4 O 3 2

1 Single bond and 2 double bond.
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Cl G1

G2O

Figure 7.5 Example of a Markush structure with the
general groups G1 of phenyl, naphthenyl, N-pyridinyl,
and G2 of cycloalkyl.

As a general rule, in the representation of chemical structures,
the hydrogen atoms are not coded at all. If necessary, for example,
for graphical representation of a molecule, hydrogen atoms can
be added by a suitable algorithm automatically.

Connection tables can be easily extended in their rows, for
example, by having information about alternating bonds, cyclic
and noncyclic bonds, stereochemistry or by description of vari-
able positions or generic groups in a molecule. Generic groups
are represented by Markush structures.

Markush Structures Searching for chemical structures is often
related to searching for a whole family of structures rather than
for a single compound. The description of general, so-called
generic classes is feasible by means of Markush structures (cf.
Figure 7.5). Such a structure consists of a core with well-defined
atoms and bonds and at least one general group. The general
groups are additionally specified. Substructure search is then
performed for a whole compound class. This problem is especially
important in the field of patent literature where the most general
claim for a compound is envisaged. Eugene A. Markush was the
first to apply for a patent in the United States in 1923 that claimed
for the generic class of a chemical compound.

Canonization Important for the representation of a chemical
structure as matrix or table is the unique assignment (canon-
ization) of atoms in the structure. This can be calculated, for
example, by Morgan’s algorithm.

Working and Index File

In Figure 7.1, two additional files are mentioned, that is, the work-
ing and index files. The working file contains the data that are
needed in an actual application. Judicious organization of this file
guarantees fast access to the data. The organization is determined
by the type of information, that is, whether there are numerical,
alphanumerical, topological, or graphical data. The searching
algorithm is also responsible for the data representation.

Access to other data or files is organized via the index file. For
processing databank information, additional software will be nec-
essary.
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Laboratory Information and Management Systems (LIMS)

Among analytical databases, there are also systems for organizing
laboratory work, for exchanging information, and for communi-
cating within a company. They are termed laboratory information
and management systems (LIMS).

Typical performance characteristics of a LIMS are as follows:

• Sample identification
• Design of analytical procedures
• Compilation of analytical reports
• Release of analytical results
• Acquisition of raw data and data reduction
• Archiving of analytical results
• Database functions for chemicals, reference materials, suppli-

ers, specifications, personal, and bibliographies.

Organization of data in a LIMS can be carried out by different
models of data bank theory:

• Entity relationship model
• Network data model
• Hierarchical data model
• Relational data model.

Today, the relational data model is the dominant one. In con-
trast to a telephone directory, this model enables related lists to
be represented. It is based on combinations of keys. The individ-
ual list can be kept short and the data structure can be extended
at any time if required. Thus, in the development of a LIMS, not
all options of the applicant have to be known in advance.

Table 7.9 key serves here the sample identification. The origin
and matrix of the sample form the attributes of the relation. Every
row represents a realization of the relation.

Manipulation of entities in the database is performed either by
relation-oriented operations, such as projection, connection, and

Table 7.9 Example relation for characterization of an analytical sample.

Sample identification Origin Matrix

P1 Final control Alloy
P2 Plant 1 Steel
P3 Plant 2 Fly ash
P4 Supplier 4 Ore
P5 Customer 007 Sewage
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selection, or by set-oriented operations, that is, union, intersec-
tion, and negation (cf. Section 8.3).

7.2
Library Search

Spectra and chemical structure searches are based on distance
and similarity measures as introduced in Section 5.2. Different
strategies are known: sequential search, search based on inverted
lists, and hierarchical search trees. The strategies are explained for
search of spectra.

Search Strategies

Sequential Search
This kind of search is based on comparing the measured spectrum
with candidate spectra of the library, bit by bit. Sequential search
is only useful if a small data set is to be treated or if it is obligatory
to retrieve every individual data set. A more efficient way is to sort
the entities in a database by deriving appropriate keys.

Inverted Lists
With this method, selected data keys are defined and the data are
arranged in new files that contain the information on the indi-
vidual data sets. Consider an inverted list for a spectral library in
the IR range (Figure 7.6). The key consists here of the numbered
spectral features, that is, in this example, the wavenumbers repre-
senting absorption maxima.

Every feature appears in the list of keys together with the iden-
tity numbers (IDs) of all spectra that contain the actual feature.
After collection of all features of the unknown spectrum, a rather
short file can be generated on the basis of the keys that consist of
all the candidate spectra.

Problems may arise if the lengths of the inverted lists differ.
This may be because certain wavenumbers are more typical than
others or certain chemical structures appear more often, for
example, –C–C– is more frequent than –C=C–. The solution
to this problem is the application of Hash coding algorithms: the
key is coded by a random number that is then stored in a random
access file.

Hierarchical Search Trees
Hierarchical arrangements of spectra or chemical structures are
based on grouping of data by means of some similarity measure.
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Figure 7.6 Inverted list for an IR spectral library. ID Identity number of
spectrum.

The fundamentals have been introduced with cluster analysis in
Section 5.2. The main problem in library search is in deciding the
metric to be chosen in order to describe the similarity of spectra
or chemical structures. In addition, clustering of large amounts of
data may still be limited by the computer resources available at
present.

Similarity Measures for Spectra

Comparison of a measured spectrum with a candidate library
spectrum is feasible by these different principles:

Cortisone

O

O

O

OH
H

H HH

CH2OH

• Correlation of spectra
• Similarity and distance measures
• Logical operations.
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Table 7.10 Hit list for comparison of UV spectra of corticoids in
methanol/water (70/30%) eluent based on the correlation coefficient (Eq.
(5.12) in Section 5.1).

Compound Correlation coefficient

Cortisone 0.999
Dexamethasone 0.965
Betamethasone 0.962
Prednisolone 0.913

Correlation Measures
Comparison of full spectra can be achieved by applying cor-
relation or similarity measures. In the case of correlation, the
coefficient of correlation between the spectra to be compared is
computed (cf. Eq. (5.12)). Ranking the comparisons by the size
of correlation coefficients, Table 7.10 provides a hit list that
describes the quality of comparison between the unknown and
the candidate library spectrum. In principle, the spectrum with
the highest correlation coefficient is the sought-for spectrum.
In order to ensure that a certain degree of similarity is reached
for the top spectrum of the hit list, a threshold for assigning the
library spectrum should be specified.

Typically, the correlation coefficient is used for comparison of
UV spectra, for example, as is common in HPLC with diode array
detection.

Similarity and Dissimilarity Measures
Comparisons of spectra with similarity or distance measures are
based on the same definitions as given in Eqs. (5.87)–(5.91).

In the case of full spectra or of other analytical signal curves,
both the Euclidean distance and the Manhattan distance are used
as similarity measures. In the case of the Manhattan distance, the
differences between the unknown and the library spectrum are
summed. As a result of comparison, a hit list ranked according to
distances or similarities of spectra is again obtained.

Grouping and Feature Selection
One possibility to speed up the search is preliminary sorting of the
data sets. Here, the methods of unsupervised pattern recognition
are used, for example, principal component and factor analysis,
cluster analysis, or neural networks (cf. Sections 5.2 and 8.2). The
unknown spectrum is then compared with every class separately.

To improve spectral comparisons, the selection of features will
very often be necessary. For example, in mass spectrometry, the
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Figure 7.7 Connection of bits by exclusive OR (XOR).

original spectra are scarcely used for spectral retrievals. Instead, a
collection of features is derived, such as the modulo-14-spectrum.

Logical Operations
Comparison of spectra is also possible by using logical connec-
tives (cf. truth Table 1.2). A prerequisite for logical comparison
is the conversion of spectra into a bit format. Bitwise conversion
can be performed with complete spectra. More frequently, how-
ever, the bit vectors are formed from features derived from the
raw spectral data. The logical operations can also be considered
as distances of the derived vectors in bit space.

In the simplest case, the unknown spectrum is compared
with the candidate library spectrum by an AND connective
(cf. Table 1.2).

A typical dissimilarity measure is the so-called Hamming
distance based on the exclusive OR (cf. Figure 7.7) calculated as
follows:

Hamming distance =
p∑

i=1
XOR(y(A)

i , y(B)i ) (7.3)

where y(A)
i is the bit vector for the unknown spectrum at point

i, y(B)i the bit vector of the candidate library spectrum, and p the
number of points (wavelengths).

The distance calculation is shown in Figure 7.8. For identical
spectra, the Hamming distance would be zero.

A 1 0 0 1 1 0
B 0 1 0 1 1 0

XOR 1 1 0 0 0 0

A combination of different logical operations can be found in
mass spectrometry with the following dissimilarity measure S′:

S′ = 2 +
p∑

i=1
XOR(y(A)

i , y(B)i ) − 2
p∑

i=1
AND(y(A)

i , y(B)i ) (7.4)

In the examples discussed, the comparison is based on bit
vectors. Another type of logical operation can be based on
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Figure 7.8 Comparison of an
unknown spectrum (A) with a
candidate library spectrum (B)
by the exclusive OR connective
(XOR).
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Figure 7.9 Set-oriented comparison
of two spectra: (a) Unknown original
spectrum. (b) Signal positions for the
unknown spectrum. (c) Library spectrum
with intervals for signal positions. (d)
Comparison of (b) and (c) by intersection
of the two sets (AND-connective).

set-oriented comparisons, which is necessary if the length of
data sets differs from spectrum to spectrum. Typical examples
are the peak list in IR spectrometry or capillary chromatograms.
Figure 7.9 demonstrates the set-oriented comparison of two
spectra.

The peak list of the library spectrum is assumed as errorless or
crisp and the peak positions of the measured unknown spectrum
are characterized by intervals. Comparison is performed usually
by the AND connective, that is, by the intersection of both sets.

In the case of fuzzy intervals, the spectra have to be compared
on the basis of fuzzy set theory (cf. Section 8.3).

Similarity Measures for Chemical Structures

If the chemical structures are encoded in fragmentation codes, a
preselection of substructures is feasible. The comparison between
the coded vectors of the unknown and library structures is possi-
ble by means of AND connection.

A comparison of structures atom by atom is based on the
connection tables. Consider the classical example presented by
E. Meyer in 1970 as given in Figure 7.10.
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Example 7.4 Substructure Search

The task is to check whether the specified substructure is con-
tained in the given molecule. Starting atom-wise comparison
at nitrogen atom no. 1, in both structures the attached atom
is carbon. The next atom, however, is oxygen in the molecule
and carbon in the substructure. At this point, the search is
stopped and backtracked. A new trial starting at the nitrogen
atom no. 8 in the molecule will match the substructure step by
step.

Molecule:

1 2 3 4

5

O

O CH2 CH2C C CH C

O

OHH2N 

NH2H2C

7 8 11

6 9 10 12 13

Figure 7.10 Example of substructure search based on connection tables
of the chemical structures (for representation of the connection table
see Table 7.8).

Connection table:

Atom no. Symbol Atom1 Bond Atom2 Bond Atom3 Bond

1 N 2 1 — — — —
2 C 1 1 3 1 5 2
3 O 2 1 4 1 — —
4 C 3 1 6 1 — —
5 O 2 2 — — — —
6 C 4 1 7 1 9 2
7 C 6 1 8 1 — —
8 N 7 1 — — — —
9 C 6 2 10 1 — —

10 C 9 1 11 2 12 1
11 O 10 2 — — — —
12 C 10 1 13 1 — —
13 O 12 1 — — — —
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Sought-for substructure:

1 2 3 4

CH2 CH CCC

O

H2N

5

7

6

Atom no. Symbol Atom1 Bond Atom2 Bond Atom3 Bond

1 N 2 1 — — — —
2 C 1 1 3 1 — —
3 C 2 1 4 2 — —
4 C 3 2 5 1 — —
5 C 4 1 6 1 7 2
6 C 5 1 — — — —
7 O 5 2 — — — —

Match
Substructure 1 2 3 4 5 6
Molecule structure 7 8 9 10 11 12

7.3
Simulation of Spectra

When there is no spectrum in the library that can be used to elu-
cidate a chemical structure, interpretative methods are needed.
The methods of pattern recognition and of artificial intelligence
must then be used. As a result, different chemical structures will
be obtained as candidates for the unknown molecule. To verify an
assumed structure, simulation of spectra becomes important. In
a final step, the simulated spectrum could be compared with that
measured.

High-performance methods for routine simulations of IR and
mass spectra are not yet available. In IR spectroscopy, the best
simulations are obtained on the basis of quantum-chemical
approaches.

Simulations are more successful for NMR spectroscopy
(Figure 7.11). Simulation of chemical shifts, 𝛿, are based on
increments that are derived from investigations of a set of well-
characterized compounds by means of multiple linear regression
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Figure 7.11 Simulation of the 1H NMR spectrum for cumene (above right)
and 1,3,5-trimethylbenzene (below right) to enable verification of the
measured spectrum (shown left) as being that of cumene.

analysis (cf. Section 6.2):

𝛿 = b0 + b1x1 + b2x2 + · · · + bnxn (7.5)

xi numerical parameter describing the environment
of the structure

bi regression coefficient
n number of descriptors.

The increments used here in the NMR simulation represent in
a more general sense molecular descriptors that can be defined as
follows [5]:

The molecular descriptor is the final result of a logic
and mathematical procedure which transforms chemical
information encoded within a symbolic representation
of a molecule into a useful number or the result of some
standardized experiment.

With this definition, we can consider the structure represen-
tations of molecules in Section 7.2 as topological descriptors. At
present, more than 5000 molecular descriptors can be computed
[5]. They can be categorized by their data types (Table 7.11) or by
their dimensionality (Table 7.12).

In the context of analytical databases, the simulation or pre-
diction of spectra from molecular descriptors is of interest. Of
course, the descriptors can be correlated with any kind of proper-
ties or activities a molecule might have. This is then called QSPR
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Table 7.11 Molecular descriptors categorized by data type.

Data type Example

Logical variable Existence of functional groups
Integer Number of heteroatoms
Natural Molecular mass
Vector Dipole moment
Tensor (3× 3) Electric polarizability
Scalar field Electrostatic field
Vector field Force

Table 7.12 Molecular descriptors categorized by dimensionality of data.

Data type Examples

0D Number of carbon atoms, double bonds, molecular mass
1D Alcohols (aromatic/aliphatic, secondary, tertiary)
2D Topological descriptors (adjacency matrix, BE matrix)
3D Surface properties (area of potential)
4D 3D coordinates plus conformers

(Quantitative Structure–Property Relationship) or QSAR (Quan-
titative Structure–Activity Relationship).
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Questions and Problems

1. Draw the chemical structure of the molecule given by the
following connection table:

Node no. Atom Connected to Bond

1 C — —
2 C 1 1
3 C 2 1
4 C 3 2
5 N 3 1

2. Derive the redundant and nonredundant connec-
tion table for the molecule acetaldehyde with atom
numbering as given in Example 7.3.

3. Which substructures describe the two fragmenta-
tions based on the HOSE codes=OCC(,*C*C,//) and
*C*CC⇒ (*C,*C,C//) ?

4. Compute the SMILES code for caffeine, for example with
the program ChemSpider of the Royal Society of Chem-
istry.

5. Build the BE matrices B and E for the chemical reaction of
formaldehyde with hydrocyanic acid to give cyanohydrin
and calculate the reaction matrix R as given in Example
7.3.

6. How does one derive a peak list from a full spectrum?
7. Which spectral features can be used as keys in sorting

spectra in an inverted list?
8. Mention common similarity measures in retrieving spec-

tra and chemical structures.
9. Which methods can be used to group spectra and struc-

tures?
10. Compare two spectra by the dissimilarity measure given

in (Eq. (7.2)). What is the value of S′?
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8
Knowledge Processing and Soft Computing

Learning objectives

• To introduce representation and processing of knowledge in
the computer for developing analytical expert systems

• To understand the operation of artificial neural networks
and their application to pattern recognition and modeling
of analytical data

• To learn about the theory of fuzzy sets for handling vague
and incomplete data and knowledge

• To demonstrate the genetic algorithms for solving complex
optimization problems.

8.1
Artificial Intelligence and Expert Systems

Introduction to Artificial Intelligence

A definition of artificial intelligence (AI) is as follows [1]:

Artificial intelligence is the study of mental faculties through
the use of computational methods.

Particularly, “intelligent” human faculties, such as abstracting or
reasoning, are not generally considered, but rather quite common
faculties, such as vision and understanding. Another property of
the faculties of interest is that humans can easily cope with them
in contrast to tasks a computer can easily perform, for example,
multiplication of 10-digit numbers (cf. Section 1.3). Modules of
AI research are given in Figure 8.1.

The beginning of AI research is ascribed to the Dartmouth Con-
ference in 1956, organized by the scientists John McCarthy and
Marvin Minsky. Intensive AI developments were connected in the

Chemometrics: Statistics and Computer Application in Analytical Chemistry, Third Edition. Matthias Otto.
© 2017 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2017 by Wiley-VCH Verlag GmbH & Co. KGaA.
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Figure 8.1 Modules of artificial intelligence (AI) research in analogy to
mental faculties of human beings.

1980s to a Japanese research project on the fifth computer gen-
eration based on the symbolic programming language PROLOG
(recursive programming in logic).

The methods of AI are mainly knowledge-oriented, in con-
trast to algorithmic data processing considered in the previous
chapters. Acquisition and processing of knowledge are feasible in
two ways:
• First, symbolically by means of programming languages, such

as list processing language (LISP) or PROLOG. There, the
knowledge is represented explicitly in the form of facts and
rules. The problem is described, rather than solution strategies
being implemented as is usual with conventional programming
languages.

• Second, neural networks that may store knowledge implicitly
and find appropriate answers after presentation of training
patterns or structures (cf. Section 8.2) are exploited. Neural
networks are built at present by using conventional program-
ming languages. In the future, however, parallel operating
computers or transputers will be applied.

Symbolic programming and neural nets are increasingly devel-
oping as complementary AI techniques. Neural networks are
especially suited for pattern recognition. For example, images and
language can be interpreted similarly to multidimensional data.
Symbolic programming is mainly used for inferring by logical or
approximate reasoning.

Application Areas in Analytics
The most important applications of the methods of AI in analytics
are as follows:
• Expert systems
• Intelligent analyzers and robot systems (cf. Section 1.3).

The development of expert systems is of interest, for example,
for interpretation of spectra. There exist expert systems for
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both molecular spectroscopy (mass spectrometry, nuclear
magnetic resonance (NMR), and infrared (IR) spectroscopy) and
atomic spectroscopy, for example, X-ray fluorescence analysis or
atomic emission spectroscopy. In addition, in chromatography,
the selection and optimization of a method can be based on an
expert system. Also, the selection of analytical methods for a
given area is known, for example, for analyses in a steel laboratory.

Symbolic Knowledge Processing

Knowledge Representation
For internal representation of knowledge in the computer, the
knowledge has to be preprocessed. A sentence is not stored in
its original form, but, for example, on the basis of predicate logic.
Consider the following sentence:

Copper has an atomic line at 324.8 nm

In predicate calculus, we write:

atomic line(copper, 324.8 nm) (8.1)

The predicate is here the term “atomic line.” The predicate is
characterized here by the arguments for the element “copper”
and the wavelength “324.8 nm.” In general, a predicate can be
represented by

predicate(Attribute1, Attribute2,…) (8.2)

The arguments are instantiated by the different terms in the fol-
lowing way:

• Constant symbols, such as “copper,” “324.8 nm”
• Variables, for example, “element,” “wavelength”
• Functions of several predicates.

Complementary forms of knowledge representation are based
on semantic nets and frames (Figure 8.2). Often, they represent
just another form to input knowledge. The internal representation
is usually based on the predicate calculus. The latter can also be
interpreted as a relation of objects:

Relation(Object1, Object2,…) (8.3)

In our example, a relationship between the element “copper”
and its absorption wavelength at “324.8 nm” is defined and
denoted as “atomic line.”

Encoding of knowledge by predicate logic or in another com-
puter internal representation is the task of a knowledge engineer,
who as a rule is a nonexpert for the given knowledge domain.
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Figure 8.2 Representation of knowledge in the form of semantic nets
(a) and frames (b).

Inferences

Logical Connectives For reasoning and inferring on the basis of
the internal knowledge presentation, the relationships or relations
have to be described. This is feasible with logical connectives, as
we know already from Section 1.1 (Table 1.2). Important connec-
tives for compound propositions of p and q are as follows:

Conjunction ( p AND q)
Alternative ( p OR q)
Implication (IF p THEN q)
Negation (NOT p)
Equivalence ( p IF AND ONLY IF q).

Inferences consist of
premises (conditional
part) and consequences
(inference part).

The connectives already represent a kind of a rule. A rule is a
conclusion that is true if other conclusions and facts are true. A
fact is the description of a true proposition, such as that in the
predicate of Eq. (8.1).

Deduction By means of logical connectives, correct inferences
can be derived in the sense of deductive reasoning. In general, for
deduction, true axioms (postulates) are given and the conclusions
drawn are again true. This is denoted a legal inference.

The initially known facts
are termed axioms.
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Example 8.1 Deduction

“An element is a metal,

IF the surface shines
AND the aggregate state is solid
AND the electrical conductivity is high.
:”

Abduction With this kind of inference, explanations are
generated. Example 8.2 demonstrates this.

The best known
inference rule is the
modus ponens:

Given:
IF p=A THEN q=B
p=A
Inference:
q=B

Example 8.2 Abduction

Given: “X has a high conductivity”
and “All metals have a high conductivity”
Inference: “X is a metal.”

Abduction is not a legal inference. If in Example 8.2 X were,
for example, a conducting polymer, then the inference will be
false. Apart from this, abductive inferences are very useful. Think
of a medical or instrumental diagnosis. If certain symptoms are
observed, then an assumed disease or instrument state becomes
plausible.

Induction Learning is usually carried out by the third kind of
inference, that is, induction. The following example explains
this.

Example 8.3 Induction

Given: “Metallic copper is solid”
and “Metallic iron is solid.”
Inference: “All metals are solid.”

Induction is useful, but as for abduction, does not give a legal
inference. The conclusion drawn in Example 8.3 that “all metals
are solid” is inadmissible, for example, for the metal mercury.
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Figure 8.3 Strategies for in-depth search (a) and in-breadth search (b).

Search Strategies

For systematic search in a knowledge base, two strategies
are feasible: first, in-depth searching and second, in-breadth
searching (Figure 8.3). In the case of in-depth search, new states
(facts, rules) are positioned on the top of the logical chain, that
is, the latest retrieved states are eliminated first (last-in/first-out)
if they do not satisfy. In contrast, in the in-breadth search, the
additional states are linked to the end of the chain. The initially
tested rules are eliminated first (first-in/first-out).

In-depth search is also
known as backtracking.

Symbolic Programming

Algorithmic programming languages, such as BASIC, Pascal, or
C, do not support logical programming. Inferences would have to
be performed by means of an additional interpreter that is built
externally. This is feasible in principle, but quite laborious.

LISP was developed in
the United States by John
McCarthy.

For logical inferences, appropriate symbolic languages have
been developed. The mother tongue of AI is LISP [2]. Dialects
of this language are Franz Lisp, Common Lisp, or MacLisp.
The language demands quite large computer memory and a
powerful computer, so that real versions are better used on a
workstation rather than a PC. Facts and rules are arranged in
lists (cf. Figure 8.4). The head of a list characterizes the predicate.
The subsequent positions represent the arguments according to
Eq. (8.2).
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Platzhalter

Figure 8.4 Program to find an
element in a list of elements by
means of list processing language
(LISP) and a recursive program-
ming in logic (PROLOG) procedure.

LISP PROLOG

(member Element List) member(Element, [Element| _]).
member(Element, [_| Restlist]):-
member(Element, Restlist).

Example: Example:
(member “Fe” (Co Cu Fe)) (member(“Fe” (“Co” “Cu” “Fe”))
(Fe) YES

In LISP, all inference mechanisms are implemented by the
user. This guarantees that no constraints exist with respect to the
type of inference. A disadvantage, however, is the relatively high
workload to program the inference schemes.

A symbolic language where a particular inference mechanism
is already predesigned is PROLOG as developed in the 1970s by
Alain Colmerauer. In the development of that language, the aim
was to describe the problem to the computer and not to formulate
individual steps of the solution. Even if this does not completely
work, PROLOG is at present one of the highest level symbolic
programming languages. PROLOG is based on Horn clauses that
form a subset of the formal system of predicate logic. A fact or
rule in PROLOG corresponds, therefore, to the formal structure
of Eq. (8.1). The inference mechanism is based on the backtracking
algorithm.

Horn clauses provide
only one consequence,
for example, IF p=A,
THEN q=B, but not IF
p=A, THEN q=B AND
r =C.

The result of processing rules in a symbolic programming lan-
guage is not a numerical value, but a truth value, that is, “true”
or “false.” In the case of true propositions, additional information
can be output (cf. Figure 8.4).

Expert Systems

The most important application of methods of knowledge
processing on the basis of logical inferences are expert systems:
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Expert systems are computer programs that help to solve
problems at an expert level.

They contain knowledge about a particular, limited, but origi-
nating in the real-world problem, the solution of which requires
expert knowledge.

Aims
The aims for developing an expert system are manifold:

• To copy knowledge of an expert, in order to make it accessible to
less qualified coworkers, to objectivate it, or to make it available
independent of time and conditions.

• To advise an expert for developing or confirming a diagnosis. In
this context, rare cases with unusual combinations of facts and
findings are of special interest. Routine cases are usually better
managed by the expert.

• Extension of the activity of an expert and as a result of his
knowledge.

• Training and education to learn about a particular expert
domain.

The performance of existing expert systems for advising or
replacing the expert is rather different. Without doubt, there is
benefit from developing an expert system with respect to struc-
turing the knowledge domain considered and the complementary
collection of important material. The training of less qualified
personal is also very useful.

Development Tools
The aforementioned symbolic programming languages LISP and
PROLOG are important tools for developing an expert system.
As a rule, however, their use is reserved to the work of a science
engineer. The analyst develops his expert system by means of
the so-called shells. These systems provide predefined inference
mechanisms and contain an “empty” knowledge base. The latter
is to be filled in with the domain knowledge of the given field.

Conventional programming

Structure of Expert Systems
In conventional programming, the different operations are pro-
cessed in the sense of a spreadsheet. In an expert system, there is
a clear division between the knowledge base, which contains the
facts and rules, and the inference engine. Facts and rules can be
easily added to or removed from the knowledge base.

The structure, in principle, of an expert system is given in
Figure 8.5. As a rule, knowledge acquisition is carried out in
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Figure 8.5 Structure of an expert system.

the dialog between the domain expert, here the analyst, and a
knowledge engineer. If the knowledge engineer works in too
much isolation, the problem emerges that the knowledge base
might become too detailed. Redundant information, available
by the in-depth knowledge of the analyst, is then maintained.
Since, on the other hand, the analyst will not be the only user of
the tools of AI in the future, methods for machine learning of
symbolic knowledge will become increasingly important.

The inference engine operation is usually rule-based. Such
a system exploits IF–THEN rules (implications). Production
systems are termed systems, where a rule interpreter applies
the given production rules on a working memory. A PROLOG
interpreter is a typical production system.

AI program

Facts

Rules

Inference

engine

Rule

IF → THEN

(Conditional part) (action part)

Apart from the knowledge acquisition component, the expert
system should also contain an explanation component.

Expert Systems in Analytical Chemistry
The very first expert system – Dendral – was developed for
interpretation of organic mass spectra [3]. A dialect of LISP was
used as the language: Inter-LISP. Although this system could
not be developed as a routinely used expert system, it provided
important experience in developing expert systems in analytics.
Perhaps the most intensive studies for developing expert systems
in analytics were done in the framework of the ESPRIT project
of the EU [5]. Developments from this project are summarized
together with other expert systems in Table 8.1.
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Table 8.1 Examples of expert systems in analytics.

Area Aim Language References

MS Interpretation of mass spectra LISP [3]
HPLC Method selection/optimization PROLOG, shells [4, 5]
GC Selection of separation system/Operating conditions LISP [6]
XRA Spectra interpretation (energy dispersive) Pascal [7]

Spectra interpretation (wavelength dispersive) PROLOG [8]
Titration Karl Fischer titration INSIGHT 2-Shell [9]
Steel analysis Sample preparation/analysis management Kappa-PC-Shell [10]

8.2
Neural Networks

Fundamentals

Application of artificial neural networks for data and knowledge
processing is characterized by analogy to a biological neuron. If
the firing frequency of a neuron (about 1 kHz) is compared to
that of a computer (greater than 100 MHz), then for the neuron,
this frequency is rather low. The high performance of biological
systems therefore is most probably reasoned by the 1000-fold
interconnections of about 10 billions of cells in the brain.

Based on this knowledge, one tries to simulate the biologic neu-
ron by means of an artificial neuron. In the biological neuron, the
input signal arriving through the axon ends in the synapse. There
the information is transformed and sent by passing the dendrites
to the next neuron (Figure 8.6a). This signal transfer is simulated
in the artificial neuron by multiplication of the input signal, x, with
the synaptic weight, w, to derive the output signal y (Figure 8.6b).

Synonymous terms for
data processing with
neural nets are neural
computing, parallel
distributed processing
(PDP), or artificial neural
networks.

Dendrites

Cell body (soma)

Axon What remains in comparison with the biological neuron is a
much simplified neuron based on a simple product formation.
Good performance of artificial neural networks is therefore to be
attributed to a high degree of interconnections rather from its
analogy to a biological neuron.

Neurons, Weights, and Transfer Functions
The neural networks considered here consist of an input layer,
which receives the input signals and in the simplest case is
connected to a second layer, the output layer (two-layer network).
Between the input and output layers, additional layers may be
arranged. They are termed hidden layers (Figure 8.7).

Consider the operation of a single neuron j (cf. Figure 8.8). It
receives from n other neurons the input signals, xi, aggregates
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(a) (b)

Electrical signal

Axon

Synapse

Neurotransmitter

Dendrite

x

w

y = wx

Figure 8.6 Analogy between a biological (a) and an artificial neuron (b).

Input layer

Hidden layer

Output layer

Figure 8.7 Structure of an artificial neural network.

Output
yj

Input

Sum function Transfer function

X1

X3

X2

W1j

W2j

W3j

Figure 8.8 Operation of a single neuron.

them by using the weights of the synapses, and passes the result
after suitable transformation as the output signal yj.

Typically, for aggregation of the input signal, their summation
is applied. If the result of the aggregation in neuron j is denoted as
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Table 8.2 Transfer functions for neural nets.

Transfer function 0. Derivative 1. Derivative

Threshold logic (binary) f (Net) =
{

1 for Net ≥ s
0 for Net < s —

Threshold logic (bipolar) f (Net) =
{

1 for Net ≥ s
−1 for Net < s —

Linear transfer function f (Net) = c ⋅ Net f ′(Net) = c > 0

Linear threshold function f (Net) =
⎧⎪⎨⎪⎩

1 for c ⋅ Net ≥ s
0 for c ⋅ Net < s
c ⋅ Net else

f ′(Net) = c > 0

Sigmoid function f (Net) = 1
1 + e−c⋅Net f ′(Net) = cf (Net)[1 − f (Net)] > 0

Hyperbolic tangent f (Net) = ecNet − c−cNet

ecNet + e−c⋅Net f ′(Net) = c[1 − f (Net)2] > 0

s Threshold and c constant

the net signal, Netj, then we obtain

Netj =
n∑

i=1
xiwij (8.4)

Other aggregation operators are possible, for example, forma-
tion of the minimum or maximum over all n signals xi. Before
the aggregated signal leaves the neuron, a transformation is per-
formed by means of a transfer function f to get the output signal yj:

yj = f (Netj) (8.5)

Important transfer functions are given in Table 8.2. For learning
algorithms, the derivatives of the transfer functions are needed
(also given in Table 8.2). Apart from linear transfer functions,
all transformations provide a nonlinear transformation of the
aggregated signals. The use of neural networks is therefore
especially interesting for solving nonlinear problems.

Transfer functions for
threshold logic (a), linear
threshold function (b),
and sigmoid function (c)

(a)

(b)

(c)

f(
N

e
t)

f(
N

e
t)

f(
N

e
t)

1

–1

1

1

0

–1

s

s

Net

Net

Net

A Simple Neural Net: BAM

The bidirectional associative memory (BAM) is used here to
explain the operation of a neural network in more detail.

The BAM consists of an input layer, x, and an output layer, y,
as well as of the layer with weights, W. Since the BAM passes and
transforms signals in the input and output layers, the neurons are
simultaneously characterized by circles and squares.

To learn m different associations of patterns (xi, yj), correla-
tion learning is used. The synaptic weights wij are obtained by
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Input layer

Weights

Y

X

Output layer

Figure 8.9 Bidirectional associative memory (BAM) consisting of n input
and p output neurons.

(Figure 8.9):

wij = xiyj (8.6)

The weights for all m associations are stored in a correlation
matrix W:

W = x1
Ty1 + x2

Ty2 + · · · + xm
Tym (8.7)

If an unknown data vector, x, is to be recognized, then it is
presented at the input of the net and a first y vector is estimated:

y = xW (8.8)

The output vector, y, is passed in backward direction by

x = yW T (8.9)

This procedure is repeated iteratively as long as a stable state of
the network is reached:

x → W → y(0)

x(1) ← W T ← y(0)

x(1) → W → y(1)

x(2) ← W T ← y(1)

⋮

x(f ) → W → y(f )

x(f ) ← W T ← y(f ) (8.10)

The network takes on a resonant state. We should also mention
the threshold function, which is applied at each computation of
new x and y values. Consider the calculations in Example 8.4.

Example 8.4 BAM

For two bipolar associations (x1, y1) and (x2, y2), the weights
of a BAM are to be trained:

x1 =
(
1 −1 1 −1 1 −1

)
, y1 =

(
1 1 −1 −1

)
(8.11)
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x2 =
(
1 1 1 −1 −1 −1

)
, y2 =

(
1 −1 1 −1

)
(8.12)

After that, a new x vector is to be assigned consisting of the
following values:

x =
(
−1 1 1 −1 −1 −1

)
(8.13)

To code the two associations, we calculate the matrix of
weights (correlation matrix) according to Eq. (8.7):

x1
Ty1 =

⎛⎜⎜⎜⎜⎜⎜⎝

1
−1

1
−1

1
−1

⎞⎟⎟⎟⎟⎟⎟⎠
(
1 1 −1 −1

)
=

⎛⎜⎜⎜⎜⎜⎜⎝

1 1 −1 −1
−1 −1 1 1

1 1 −1 −1
−1 −1 1 1

1 1 −1 −1
−1 −1 1 1

⎞⎟⎟⎟⎟⎟⎟⎠

x2
Ty2 =

⎛⎜⎜⎜⎜⎜⎜⎝

1
1
1

−1
−1
−1

⎞⎟⎟⎟⎟⎟⎟⎠
(
1 −1 1 −1

)
=

⎛⎜⎜⎜⎜⎜⎜⎝

1 −1 1 −1
1 −1 1 −1
1 −1 1 −1

−1 1 −1 1
−1 1 −1 1
−1 1 −1 1

⎞⎟⎟⎟⎟⎟⎟⎠

W = x1
Ty1 + x2

Ty2 =

⎛⎜⎜⎜⎜⎜⎜⎝

2 0 0 −2
0 −2 2 0
2 0 0 −2

−2 0 0 2
0 2 −2 2

−2 0 0 2

⎞⎟⎟⎟⎟⎟⎟⎠
To assign the y vector associated with the given x vector

in 8.13, multiplication by the weight matrix is carried out
(cf. Eq. (8.8)):

y = xW = (−1 1 1 − 1 − 1 − 1)

⎡⎢⎢⎢⎢⎢⎢⎣

2 0 0 −2
0 −2 2 0
2 0 0 −2

−2 0 0 2
0 2 −2 2

−2 0 0 2

⎤⎥⎥⎥⎥⎥⎥⎦
= (4 − 4 4 − 4)

Threshold formation according to the bipolar threshold
logic leads to

y =
(
1 −1 1 −1

)
The sought vector y is found in the first iteration cycle, so

that no additional iterations are necessary. The found vector
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corresponds to y2, that is, to association given in Eq. (8.12).
Note that the net is error tolerant. The tested vector x is not
identical to vector x2 of the found association, but differs in
the first element of that vector.

Learning Paradigms

Neural networks can be used for supervised and unsupervised
learning as we know from the statistical methods of pattern
recognition (Chapter 5).

In the case of unsupervised learning, only input vectors are
presented as known from factorial methods and cluster analysis
(cf. Section 5.2). The objects are grouped on the basis of their
features. Unknown objects can then be automatically recognized.
We will learn about the Kohonen network as a typical neural net
of that kind.

Neuronal networks for
learning of
heteroassociative (a) and
autoassociative
(b) patterns as well as for
classification (c)

(a)

(b)

(c) 1 0

For supervised learning, the network receives additional infor-
mation about the associated patterns or classifiers in the learning
phase, which helps to adjust the weights. Unknown patterns and
classes can subsequently be classified.

With respect to associations of patterns, we distinguish between
auto- and heteroassociations. In the first case, the number of
input and output neurons is equal. Heteroassociative networks
have a different number of neurons in the input and output layers.
Pattern associations can be used, for example, to learn about char-
acter or image combinations or spectra–structure relationships.

For classification of data vectors, the output of the net is coded
by the class that corresponds with the input vector. At the end
of the network training, the unknown data vectors, for example,
spectra, can be assigned on the basis of the value of the output
neurons. Without particular constraints, however, a pattern or
class is always assigned. We already know of this disadvantage
from the statistical methods of pattern recognition (Section 5.2).

Finally, neural networks can also be applied for the purpose of
modeling. Model parameters are in a general sense the weights, w,
of the network. Consider the following linear model for a depen-
dent variable y and three independent variables, xi:

y = w0 + w1x1 + w2x2 + w3x3 (8.14)

This function is mapped in the simplest case by a net consisting
of a single layer of weights, w0, w1, w2, and w3. The shift along the
ordinate is accounted for by presentation of ones at one neuron,
so that the intercept w0 can be estimated (cf. Eq. (6.1)). This
particular neuron is termed bias neuron.
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Learning Laws

Learning in neural networks happens by associative or competi-
tive learning laws. In this context, learning means the following:
• Linking new or elimination of existing synaptic connections.
• Change of the weights of existing connections by minimizing a

predefined objective function.

Neural net for parameter
estimation in Eq. (8.14)
1 x1 x2 x3

w0
w1 w2 w3

y

bias

Associative Learning Laws
The simplest learning law of that kind is the Hebb law. We have
already used this rule in the BAM network (Eq. (8.6)). Accord-
ing to the Hebb law, a weight is strengthened if the corresponding
neurons xi and yj are simultaneously activated:

wij(t + 1) = wij(t) + 𝜂txiyj (8.15)
Δwij = 𝜂txiyj (8.16)

where 𝜂t is the learning coefficient as a function of time t, for
example,

𝜂t = 0.1
(

1 − t
5000

)
Time t denotes cycles
here, since the network
training is carried out in
discrete iterations.

Delta Rule This rule changes the weights in relation to a target
pattern t, which is presented at the input (ti) or output (tj) for
comparison:

Δwij = 𝜂t(ti − xi)yj (8.17)
Δwij = 𝜂txi(tj − yj) (8.18)

A direct application of Hebb’s law is given in simple
input–output networks. We will learn about a more general
application in the backpropagation network, in the form of the
generalized delta rule.

Competitive Learning Laws
In the case of competitive learning, the distance between the input
vector, x, is compared to the weight vector, w, by using an appro-
priate distance measure. Usually, the Euclidian distance is applied
(cf. Eq. (5.87)). In detail, the following steps are followed:
• Find the winning neuron j. It is that neuron that possesses the

smallest distance to the input vector among all neurons i= 1, n:‖wj(t) − x(t)‖ = min
i
‖wi(t) − x(t)‖ (8.19)

where ‖ . ‖ is the Euclidian vector norm of x.
• Improve wj(t) by applying one of the following learning

algorithms.
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Unsupervised Competitive Learning This learning algorithm is
used if no information about the class membership of the training
data vectors is available. The change of the weights at iteration t
is updated by

wj(t + 1) = wj(t) + 𝜂t[x(t) − wj(t)] (8.20)
wi(t + 1) = wi(t) for i ≠ j (8.21)

Competitive learning
operates on the basis of a
next neighbor classifier
x = (x1

wj= (  w1

x2

yj

w2...

xn)

w3)

If the difference [x(t)−wj(t)] is higher or lower than zero, the
weight of the winning neuron wj(t) is increased or decreased,
respectively. The weights of the other neurons are not changed
(Eq. (8.21)).

Supervised Competitive Learning If class assignments of x vectors
are feasible, the weights can be trained in a supervised fashion. If
we denote the class membership of the neuron j by Dj, then we
have for the algorithm

wj(t + 1) =

{
wj (t) + 𝜂t[x(t) − wj(t)] for x ∈ Dj

wj(t) − 𝜂t[w(t) − wj(t)] for x ∉ Dj
(8.22)

The weight vector wj learns positive, if x is correctly classified.
It learns negative or forgets in the case of misclassification. This
means the synaptic changes are carried out supervised or “rein-
forced.”

Network Architecture

For optimization of the architecture of a neural network, different
possibilities exist:

• Variation of the number of input and output neurons
• Change of the number of hidden layers
• Addition or elimination of neurons in a particular layer
• Modification of the connections of neurons within a layer and

between layers. As a consequence, the number of weights is
modified

• Selection of those neurons that receive a correction signal
• Definition of the information flow, which can be directed for-

ward, backward, or recurrent.

The variety of network architectures complicates optimization
of a neural network. In addition, further parameters, such as the
learning coefficient, have to be adjusted. The danger of designing
overdimensioned networks, which are redundant with respect to
several parameters, is therefore large.
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Neural Network Models

Perceptron
The simplest neural network is the perceptron. It was introduced
by E. Rosenblatt (1950) and served the purpose of optical pattern
recognition, that is, it represents a very simple model of the retina
of the eye.

Formally, it can be categorized as a one-layer net with two
inputs, x1 and x2, and one output, y, in the sense of a classifier for
linearly separable classes. For this classifier, it is valid at time or
cycle t that

y(t) = f (Net) = f

( n∑
i=1

wi (t) xi(t) + s

)
(8.23)

y(t) =

{
1 for Net ≥ s
0 for Net < s

(8.24)

here, s is again a threshold.

X
1

X2

A
A

A

B
B

B

B

The learning procedure corresponds to a supervised learning
process according to an associative learning law, that is,

wi(t + 1) = wi(t) + 𝜂t[D(t) − y(t)]xi(t) (8.25)

D(t) represents the class membership:

D(t) =

{
1 for class A
0 for class B

(8.26)

The perceptron can be compared with the linear learning
machine (Section 5.3). As demonstrated by Minsky and Papert
(1969), certain problems cannot be solved by using a simple
perceptron. As an example, there is the exclusive OR connection
as given in Table 8.3 (cf. Figure 7.8).X1

W1 W2

X2

S

y

In the case of two input neurons, x1 and x2, for the following
model for the separation plane

y = f (Net) =

{
1 for w1x2 + w2x2 ≥ s
0 for w1x2 + w2x2 < s

(8.27)

Table 8.3 Exclusive OR (XOR problem).

x1 x2 y Class

0 0 0 A
0 1 1 B
1 0 1 B
1 1 0 A
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A graphical interpretation of the XOR problem is given in
Examples 8.5 and 8.6.

Example 8.5 XOR problem

The problem of the exclusive OR is illustrated in Figure 8.10.
The problem is to find a plane that separates the classes A and B
from each other. As the separation plane drawn in Figure 8.10
demonstrates, this is not possible. Also no “better” separation
planes could be found.

B(0,1)

B(1,0)

A(1,1)

A(0,0)

X1

X20

0

1

1

s = w1x1+w2x2

Figure 8.10 Insolubility of
the XOR problem by using
a network based on a single
separation plane.

A solution exists if a network is constructed that contains at
least two neurons in the hidden layer. Example 8.6 gives one
possibility to solve the XOR problem.

Example 8.6 Solution of the XOR problem

To solve the XOR problem in Table 8.3, we construct the
following neural net with two neurons in the hidden layer:

X1 X2

1
1 1

–0.20.6

s = 0.4 s = 1.2

s = 0.5

1

y
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If the weights are adjusted such as given in the figure, then
the following initial values are obtained for the two input
vectors in (a) and (b):

a) x1 = 1 and x2 = 1;

y = s0.5(0.6 ⋅ (s0.4(1 ⋅ 1 + 1 ⋅ 1)) − 0.2 ⋅ (s1.2(1 ⋅ 1 + 1 ⋅ 1)))
= s0.5(0.6 ⋅ (s0.4(2)) − 0.2 ⋅ (s1.2(2))) = s0.5(0.6 − 0.2) = 0

b) x1 = 0 and x2 = 1;

y = s0.5(0.6 ⋅ (s0.4(1 ⋅ 0 + 1 ⋅ 1)) − 0.2 ⋅ (s1.2(1 ⋅ 0 + 1 ⋅ 1)))
= s0.5(0.6 ⋅ (s0.4(1)) − 0.2 ⋅ (s1.2(1))) = s0.5(0.6 − 0) = 1

Graphical interpretation of the net provides Figure 8.11.

1.2

0.4

X1

X2

A(1,1)

A(0,0)

B(0,1)

B(1,0)

0.4

y = 0

y = 0

y = 1

1.2

Figure 8.11 Solution of the XOR
problem with a network that con-
tains two neurons in the hidden
layer.

Backpropagation Networks

Multilayer perceptrons are used nowadays in connection with
the backpropagation algorithm. In analytics, more than 90%
of applications are based on this learning algorithm. A first
approach for this forward directed learning algorithm was made
by Werbos (1974). This was further developed by McClelland
and Rumelhart [11] (Figure 8.12).

The notion
backpropagation
characterizes the kind of
error correction done
backward from the
output layer:

W1

W2

Output

Target

Corrected W2

Corrected W1

Correction

Error

Input

Learning Algorithm The basis of the backpropagation algorithm
is the generalized delta rule (cf. Eq. (8.18)). The signal vector
produced at the output of the net, y, is compared to a target vec-
tor, t. Mathematically, the path of steepest descend is traced (cf.
Section 6.3). The individual steps of the algorithm are as follows:

Δwl
ij(t + 1) = 𝜂t𝛿

l−1
j yl−1

i + 𝛼Δwl
ij(t) (8.28)

where l is the index of the actual layer, t is time, 𝜂t the learning
coefficient, 𝛿 the error, and 𝛼 the momentum.
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Hidden layer

Output layer

Input layer

Bias

Bias

1

Figure 8.12 Multilayer perceptron as basis for a backpropagation net-
work.

The momentum is applied to increase the convergence rate
for learning. By means of a momentum parameter, 𝛼, during
computation, part of the hitherto performed weight changes is
maintained.

The error signal in the output layer is obtained by

𝛿last
j = (tj − yj)f ′(yj) (8.29)

For the neurons in the hidden layer, the error signal is calculated
by

𝛿l
j =

r∑
k=1

𝛿l+1
k wl+1

kj f ′(yl
j) (8.30)

where r is the number of neurons in the layer l + 1 and the deriva-
tion of the sigmoid function is

f ′(y) = y(1 − y) (8.31)

Before training of a backpropagation network, the following set-
tlements are required:

• Selection of the network architecture including the labeling of
the bias neurons.

• Initialization of weights by random numbers in a predefined
interval, for example, [−0.1, +0.1], or by least squares
estimations.

• Adjusting values for the learning rate and the momentum in
Eq. (8.28).

• Selection of a stopping criterion based on a maximum iteration
number, a threshold for the error between the output and target
value, or a threshold for the change of weights.

The backpropagation net is an example of a supervised learning
neural network. Its applications in analytics are given in Table 8.4.



318 8 Knowledge Processing and Soft Computing

In the following, we consider models of unsupervised learning
networks.

Kohonen networks are
also termed
self-organizing nets or
self-organizing feature
maps.

Kohonen Network

Neural networks for unsupervised learning are based on a
competitive layer of weights arranged linearly or in a plane
(Figure 8.13). If arranged in a plane, the nets are termed a
Kohonen network. The peculiarity of this network type is the
maintenance of topology or, more general, the pattern of the data
vector to be learned.

The preservation of topology results from the introduction of
neighborhood relationships of neurons in the learning algorithm.
These relationships are described by a neighborhood function
with the distance measure d as the independent variable. This
function characterizes the distance to the winning neuron:

nf = nf (d) (8.32)

Typical distance functions are based on triangular functions or
the Mexican hat function (Figure 8.14).

Winning neuron

1.Neighborhood

(a)

(b)

Stimulus layer

Input layer

Competitive layer

Kohonen layer

Weights

Input layer

Figure 8.13 Structure of self-organizing networks in linear arrangement
(a) of the competitive layer and in Kohonen representation (b).
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nf(d)

nf(d)

d

d
(a)

(b)

Figure 8.14 Neighborhood func-
tion in the form of a triangle (a)
and a Mexican hat (b).

The learning algorithm for the Kohonen net operates in analogy
to the competitive learning laws in Eqs. 8.19–8.21:

• Presentation of an input vector x.
• Calculation of the distance between the input vector and each

output unit i to evaluate the winning neuron j:

‖wj(t) − x(t)‖ = min
i
‖wi(t) − x(t)‖ (8.33)

• Change of the weight for the winning neuron and its neighbors
by using the neighborhood function is carried out according to
Eq. (8.32):

wik(t + 1) = wik(t) + 𝜂tnf (d)[xi(t) − wik(t)] (8.34)

where k is the neighborhood element at time t.
• Continuation of the learning process with the subsequent x

pattern.

As a result of learning, the patterns are arranged in clusters, pre-
supposed the data vectors can be grouped in a Kohonen layer. The
clusters can be explored now for assigning objects to them.

The result of unsupervised Kohonen learning, however, can
also be used for classification. For this, an additional layer is
introduced. The output information trained by the Kohonen net
is further trained on the known patterns or class information
by means of an associative learning law. After adjustment of
the additional weights, the net can be subsequently applied for
classifications.

Applications of neural networks are given in Table 8.4. The
applications are, in principle, similar to those discussed in the
statistical Chapters 5 and 6, that is, grouping, classification, and
modeling of data. In addition, the nets also serve the purpose of
knowledge processing, for example, for machine learning of rules.
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Table 8.4 Applications of neural networks in analytics.

Objective Neural net Area Reference

Parameter estimation Backpropagation Quantitative analysis in NIR [14]
Clustering Kohonen IR spectra grouping [15]
Classification Backpropagation MS structure elucidation [16]
Identification Backpropagation HPLC diode array detection [17]

If used for modeling, it should be noted that estimation
of confidence intervals for the weights (parameters) or for
predictions cannot be performed analytically because of the
nonlinearity of the networks. As with other nonlinear methods,
the confidence intervals have to be estimated by means of Monte
Carlo simulations or bootstrapping methods.

Bootstrapping is
restrained to the use of
the original data set to
estimate confidence
intervals. Part of the data
(rows of the data matrix)
is sorted out and used
for later predictions. The
missing rows in the
matrix are replaced
randomly by data vectors
kept. The latter vectors
are then used twice in a
computational run (cf.
“Tree-Based
Classification” Section).

At present, investigations for applying neural networks in
analytics are done without reference to statistical methods.
Future studies will show which applications of the networks
could be superior to existing multivariate methods including the
nonlinear statistical methods.

In Example 8.7, the use of a multilayer perceptron for classifi-
cation of data sets in two dimensions is explored.

Example 8.7 Artificial neural network

The performance of a neural network is explored here for
classification of two-dimensional input data by means of a
feedforward neural network. The simulated data are known
from Example 5.12 and describe 200 cases from four classes
(Figure 8.16).

The network consists of two input neurons for presentation
of the two x-values as well as four output neurons, y, which
represent the four classes (cf. Figure 8.15). In addition, a hid-
den layer was added with up to 20 neurons and the intercepts
of the surfaces are modeled by bias neurons to both the hidden
and output layers. The transfer function in the neurons of
the hidden layer was of sigmoid type, and aggregation of the
neurons in the output layer was carried out by calculating the
normalized exponentials (softmax criterion).

The optimum number of neurons in the hidden layer varied
with the type of training algorithm. If a Bayesian regulation
backpropagation algorithm is used, the optimum number of
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x1 x2

bias

y1

1

bias ...

y4y3y2

1

Figure 8.15 Artificial neural network for classification of four classes
based on two-dimensional input data.

hidden neuros was found to be 16. The decision boundaries for
this training algorithm are depicted in Figure 8.16a. Although
only three wrong assignments (1.5% misclassifications) were
found with this training algorithm for resubstitution of the
cases, it is to be expected that predictions of new cases on
the basis of these flexible decision boundaries will not be
at the same misclassification level. A less flexible decision
boundary is found with a conjugate gradient backpropagation
algorithm. The number of neurons in the hidden layer then
amounts to only nine, which is, however, connected with
a somewhat higher fraction of misclassification of 7% for
resubstitution (Figure 8.16b).

10 10

8 8

6 6

4 4

2 2
2 24 46 68 810 1012 12

x1 x1

x 2 x 2

(a) (b)

Figure 8.16 Decision boundaries of a feedforward neural network
trained by a Bayesian regulation (a) and a conjugate gradient backpropa-
gation algorithm (b).
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8.3
Fuzzy Theory

The theory of fuzzy sets enables representation and processing
of vague propositions and uncertain information. In contrast to
probability theory, fuzzy theory is a possibilistic approach, that
is, it is based on possibility theory. The concept of fuzzy sets was
introduced by Lotfi A. Zadeh of the University of California (USA)
in 1965.

Venn diagram

A

X X

X
X

X

X

Fundamentals

Fuzzy Sets

In classical set theory, the containment of an element x to a subset
A of the universe of discourse X is described by a characteristic
function. It is called membership function, m(x). A membership
value of 1 is assigned an element x, that is, contained in a set A.
If x is not an element of the set A, a membership value of zero
results:

m(x) =

{
1 for x ∈ A
0 for x ∉ A

(8.35)

The concept of fuzzy sets extends this crisp assignment by
allowing membership values between 0 and 1. These fuzzy sets
are normalized to the interval [0,1]. They can be represented
either as discrete or by means of a function (cf. Eqs. 8.36–8.39).

Example 8.8 Set theory

The set of all elements detectable by an analytical method can
be expressed by a set over the atomic number, x. According
to classical set theory, detection of elements with atomic
numbers greater than a particular value is feasible, for
example, X-ray fluorescence analysis can be used for analyses
of elements from sodium with atomic number 11. The mem-
bership function is given by the solid line in Figure 8.17.

In practice, however, there is a transition between the
detectability and nondetectability of an element. Thus, it is
not unusual with this analytical principle, given instrumenta-
tion of reasonable quality that even the element with atomic
number 9 (fluorine) can be detected. The transition between
the sets of detectable and nondetectable chemical elements is
better described by a membership function based on a fuzzy
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set. This membership function is plotted in Figure 8.17 as
broken line.

m
(x

)

1

0
0 5 10 15

Atomic number, x

“Detectable”“Not detectable”

Figure 8.17 Membership function for the detectability of elements by
X-ray fluorescence analysis. Solid line Classical (crisp) set, broken line
fuzzy set.

Types of Membership Functions

Many possibilities exist for characterization of a fuzzy set.
Depending on the objective, different types of membership
functions are used.

Note: membership
functions are not
probability distribution
functions. A
membership function
can be specified by a
single observation.

Fuzzy Observations Consider first the description of uncertainty
of experimental observations, such as the uncertain position of a
spectroscopic line.

The fuzzy set is characterized, for example, by means of an
exponential function of the following type:

m(x) = exp
(
− |x − a|2

b2

)
(8.36)

here a is equal to the x value with membership value m(x)= 1. The
constant 1/b2 normalizes the membership function to the inter-
val [0,1]. As an example, Figure 8.18a demonstrates exponential
membership functions with a= 9 and b= 3.

For operations with exponential functions, truncation at a
certain spread by setting the membership value, m(x), to zero is
recommended. Some membership function types provide a more
“natural” truncation, for example, a function of quadratic type:

m(x) =
[

1 − |x − a|2
b2

]+
(8.37)
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Figure 8.18 Membership functions for characterization of uncertainty of
experimental observations in the form of exponential (a), quadratic (b),
and linear (c) functions.

The plus sign denotes the restricted validity for positive values
of the membership function. Negative values for m(x) are set to
zero (Figure 8.18b).

Important is the monotonicity of the membership function. The
special form of the membership function has only a weak influ-
ence on the result of fuzzy operations. The parabola function in
Eq. (8.37) can be approached, therefore, by a triangular function
(Figure 8.18c):

m(x) =
[

1 − |x − a|
b

]+
(8.38)

where + again denotes truncation of the function to positive
membership values.

In general, there are no restrictions for specification of
membership functions. They can be based either on experi-
mental observations or on experience. In addition, membership
functions are not restricted to a single x variable. A membership
function for experimental observations i in dependence on the
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Figure 8.19 Two-dimensional membership function for fitting a straight
line.

variables x and y could have, for example, the following form:

m(x, y) =
{

1 −
[ ||x − xi

||
ui

+
|y − yi|

vi

]}
(8.39)

where ui and vi are constants.
The function describes a pyramid-shaped membership function

(cf. Figure 8.19).

Linguistic Variables Verbal fuzzy expressions are described by
fuzzy theory by means of linguistic variables; for example, the
solubility of a substance in water can be characterized by the
fuzzy terms “high” and “low.” If the linguistic variables are further
to be distinguished, the so-called modifiers are applied.

Figure 8.18 provides examples for linguistic modifiers, such as
“very,” “more or less,” and “middle.” The membership function
“high” is normalized to the interval [0,1] and reads as (Figure 8.20)

mh(x) =
⎧⎪⎨⎪⎩

0 for x < 0
2x2 for 0 ≤ x ≤ 0.5
1 − 2(x − 1)2 for 0.5 ≤ x ≤ 1
1 for x > 1

(8.40)

Calculation of the modifiers is summarized in Table 8.5.

Truth Values For applications of multivalued logic, we need
further graduation in addition to the binary truth values “true”
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Figure 8.20 Membership functions for the linguistic variable “high”
according to Eq. (8.40) together with different modifiers.

Table 8.5 Calculation of modifiers for the membership
functions of the linguistic variables “high” according to
Eq. (8.40).

Modifier Formula

Very high mvh(x) = m(x)2

More or less high mmlh(x) =
√

m(x)
Low (not high) ml(x) = 1 − m(x)
Very low mvl(x) = [1 − m(x)]2

More or less low mmll(x) =
√

1 − m(x)
Middle mm(x) = min{m(x), 1 − m(x)}

and “false.” For this, we construct membership functions, which
are normalized in the universe of discourse X to the interval
[0,1]. The membership function is expressed, for example, by the
functions introduced by Baldwin (Figure 8.21).

1

m
(x

)

0
1 2

x
3

Discrete Membership Functions Often specification of continuous
membership functions does not make sense. If, for example, the
qualification of a sample state for a spectrophotometric analysis
is to be described, discrete values, such as solid, gas, or liquid, are
required.

Discrete membership functions in relation to the fuzzy set A
are represented as pairs consisting of the variable value and the
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Figure 8.21 Membership functions for truth values after E. Baldwin.

corresponding membership value, for example:

A = |(1, 0.5), (2, 0.7)(3, 1.0)| (8.41)
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Operations with Fuzzy Sets

Fuzzy set operations are derived from classical set theory. In
addition, there exist theories for calculating with fuzzy numbers,
functions, relations, measures, or integrals.

The intersection of two sets A and B corresponds, according to
classical theory, to all elements that are simultaneously contained
in both sets. For two fuzzy sets, the intersection, A∩B, is derived
from the minimum of both of the membership functions mA(x)
and mB(x):

mA∩B(x) = min{mA(x),mB(x)} (8.42)
Union

A B

x
x

x

x
x

x
x

x
x

x

Two common sets are unified by aggregating all elements that
belong to at least one of the two sets into one set. The union
of fuzzy sets results from calculating the maximum of their
membership functions:

mA∪B(x) = max{mA(x),mB(x)} (8.43)
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The complement of a set A corresponds to all elements that are
not contained in A. In analogy, the complement of a fuzzy set A is

mA(x) = 1 − mA(x) (8.44)

The number of elements in a set is termed cardinality in clas-
sical theory. The latter is obtained for fuzzy sets from summation
or integration over the membership function of that set:

card A =
∑

i
m(xi) or card A = ∫X

m(x)dx (8.45)

Cardinalities in the interval [0,1] are obtained by calculating
their relative cardinalities. For this, the standard set S is taken as
the basis:

relS card A = card A
card S

(8.46)

Figure 8.22 illustrates the set operations.
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Figure 8.22 Intersection (a) and union (b) of two fuzzy sets and the
cardinality of a fuzzy set (c).
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Example 8.9 Cardinality of a fuzzy set

The relative cardinality of the fuzzy set in Figure 8.22c is to be
calculated. The membership function for this set is

m(x) = [1 − |x − a|2]+ (8.47)

Integration over the membership function in the interval
x= 2 to x= 4 provides for the relative cardinality according to
Eq. (8.46):

relS card A =
∫

4

2
[1 − |x − 3|2]dx

4 − 2
= 0.666 (8.48)

Fuzzy inference systems
are also known as fuzzy
associative memories,
fuzzy models,
fuzzy-rule-based systems,
or fuzzy controllers.

Rule-Based Fuzzy Systems
We learned the fundamentals about inferences on rule-based
systems in Section 8.1 on symbolic knowledge processing. One
possibility to infer on the knowledge represented in the computer
is based on IF–THEN rules. In fuzzy logic, the premises and
consequences are described by a fuzzy relation. Consider the
following rules:

IF x = A1 THEN y = B1

IF x = A2 THEN y = B2

⋮

IF x = An THEN y = Bn (8.49)

With the additional proposition

x = A′ (8.50)

one can reason about the unknown fuzzy set of x, that is, B′,
by means of one of the different inference schemes. In those
inference schemes, the fuzzy relation between the fuzzy sets
A and B, A×B, for the IF–THEN rule, is described by their
membership functions. The most used scheme is based on
Zadeh’s compositional rule of inference:

MA×B(x, y) = min{mA(x),mB(y)} (8.51)

According to the compositional rule of inference, the member-
ship function for the consequence B′ is obtained over all rules by

mB′ (y) = max min{mA′ (x),mA×B(x, y)} (8.52)

Finally, the results for the Bi
′s have to be aggregated, for

example, by calculating the minimum over all Bi
′s.
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Tagaki and Sugeno suggested rule-based systems that involve
fuzzy sets only in the premise part and the consequence part
consists of a nonfuzzy function, for example,

IF blank = high THEN detection limit = yB + 3sB (8.53)

Here, the premise is described by a membership function for the
linguistic variable “high” and the function for the detection limit
is the sum of the blank signal, yB, and three times the standard
deviation of the blank signal, sB, (cf. Eq. (4.3)). Optimization of
the parameters in the premise part of the rules is adaptively done
by combining the fuzzy rule-based system with a neural network.
Consider an adaptive neuro-fuzzy system with two inputs, x1, and
x2, and one output, y. Then, the following fuzzy IF–THEN rules
might be valid:

IF x1 = A1 AND x2 = B1 THEN f1 = p1x1 + q1x2 + r1

IF x1 = A2 AND x2 = B2 THEN f2 = p2x1 + q2x2 + r2
(8.54)

A square (adaptive) node
has parameters in
contrast to a circle
(fixed) node that has
none.

with p, q, and r being parameters of the output functions f.
The structure for such an adaptive neuro-fuzzy inference system
is illustrated in Figure 8.23. In layer 1, each node is a square node
that receives the input value of x and outputs the membership
value from the membership function, mAi(x) and mBi(x). The
nodes in layer 2 are represented by circle nodes that multiply the
incoming signals and send the product out according to

wi = mAi(x1) × mBi(x2), i = 1, 2 (8.55)

The weight, w, is also called the firing strength of a node. In the
circle node in layer 3, the firing strengths are normalized to the
sum of all rules’ firing strengths:

wi =
wi

w1 + w2
, i = 1, 2 (8.56)

x1

x2 

A1

w1

w2

N

N
w1

w2

w1f1

w2f2

y

x1 x2

x1 x2

Layer 1 Layer 2 Layer 4Layer 3 Layer 5

A2

B1

B2

Figure 8.23 Adaptive neuro-fuzzy inference system.
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The square nodes in layer 4 multiply the normalized firing
strengths with the node functions as follows:

wi fi = wi(pix1 + qix2 + ri), i = 1, 2 (8.57)

The circle node in layer 5 aggregates the incoming signals by
summation and provides as overall output:

y =
∑

wi fi =
w1 f1 + w2 f2

w1 + w2
(8.58)

In Example 8.9, the performance of this adaptive neuro-
fuzzy inference system is demonstrated for classification of
two-dimensional data.

Example 8.10 Adaptive neuro-fuzzy inference system (ANFIS)

Here we consider again the data in two dimensions
(Figure 8.24a) given for a four-class problem in Example
5.12 on k-NN classification. For validation of the neuro-fuzzy
system, the 200 cases were divided into a training data set of
160 cases and a test data set of 40 cases.
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Figure 8.24 Simulated data (a) and assignment of cases in the test data
set (b).
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The number of bell-shaped membership functions in layer
1 (Figure 8.23) was varied between 4 and 12. In case of a
high number of membership functions and up to 200 training
epochs resubstitution of the training data revealed perfect
classification. However, the assignment of the test cases is
rather poor. Therefore, for stable classification of the test data,
only 4 membership functions (cf. Figure 8.23) and 20 training
epochs were found to be optimal. There were only three
misclassified objects of the test data set found, that is, the
fraction of misclassifications was 7.5%. The result of validation
is visualized in Figure 8.24b, where the assigned 40 test cases
are labeled by a greater marker size than the cases of the train-
ing set. The three wrong assignments are labeled by an even
larger size of the marker. Whereas the two misclassifications
around x1-values of 12 (star and hexagram markers) are just
wrong assignments to one of the four classes, it also happened
that the neuro-fuzzy system predicted class assignments to
additional classes. Thus, the downward-pointing triangle in
the middle of the plot characterizes an assignment to a fifth
class that was not trained in the model.

Applications

Fuzzy theory can be used either for data analysis or for deal-
ing with fuzzy logic. Typical applications in analytics are [20]
as follows:

• Pattern recognition based on unsupervised and supervised
learning

• Multicriteria optimization
• Comparisons of spectra, chromatograms, or depth profiles on

the basis of fuzzy functions
• Fuzzy modeling
• Fuzzy logic for fuzzy control and for approximate reasoning.

We have already discussed an example for grouping data on the
basis of unsupervised learning with respect to fuzzy cluster anal-
ysis by the c-means algorithm (Section 5.2).

For solving problems of supervised learning, fuzzy methods are
useful if irregularly cast data sets are to be handled. For example,
in the analysis of human cell tissues by means of capillary gas
chromatography (GC), the number of chromatographic peaks
(components) varies by ±15 peaks per chromatogram. This is
explained by the high biological variability and not due to random
(analytical) error. A statistical procedure for pattern recognition
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cannot be used here, since the vectors (chromatograms) to be
compared would require an equal number of elements in the
vector, that is, the same number of peaks in the chromatogram.
By means of set theoretic approaches, differently long data
vectors can be evaluated.

For multicriteria optimization, the individual criteria are
described by means of fuzzy sets and are aggregated then to
an appropriate objective function. To define the membership
functions of those objective functions, heuristic knowledge can
be included.

For fuzzy modeling or for comparison of fuzzy functions, the
fundamentals of fuzzy arithmetics are needed (cf. Figure 8.25).
These fundamentals are given, for example, in references [19]
or [20]. Applications are known for calibration of analytical
methods and for qualitative and quantitative comparison of
chromatograms, spectra, or depth profiles.

Another important area of application is approximate reason-
ing based on fuzzy logic. Fuzzy inferences are applied in analytical
expert systems or for controlling chemical or biotechnological
reactors.

Table 8.6 comprises some applications of fuzzy theory in
analytics.

m
(x

)

1

0
0

2 4 86 10 12 14 18
x

20

c=a–b b a

Figure 8.25 Example of a fuzzy difference of two numbers, that is, about
20 minus about 14 gives about 6.

Table 8.6 Applications of fuzzy theory in analytics [20].

Aim Fuzzy method Area

Unsupervised learning Fuzzy clustering Beer sorts
Supervised learning Fuzzy pattern recognition Chromatograms
Library search/identification Set operations IR spectra
Quality control Fuzzy functions Depth profiles, spectra
Modeling Fuzzy numbers Calibration with errors in x and y
Multicriteria optimization Fuzzy sets Enzymatic determination
Expert system Fuzzy logic X-ray fluorescence analysis [8]
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8.4
Genetic Algorithms and Other Global Search Strategies

Genetic Algorithms

Genetic algorithms belong to methods that have a biological
analog as do neural nets. These methods are based on evolutional
components, such as population of living beings, competition
between living beings, and reproduction of life. As a result, new
living beings are formed that are more highly developed, or those
living beings that have reached the end of their lives are to be
replaced.

Natural computation
denotes the following
methods: simulated
annealing, simulated
evolution strategy,
genetic algorithms,
artificial
immunonetworks,
artificial neural nets,
artificial chemical
reaction systems, and
artificial live (cellular
atoms and fractals).

Genetic algorithms are especially useful for dealing with highly
complex and highly dimensional search problems. This can be
related to optimization of a set of variables in the sense of feature
selection. A typical application is the selection of wavelength
in spectrometric multicomponent analysis (cf. Section 6.2). A
second application concerns optimization of parameters, for
example, for multicriteria optimization or for parameter estima-
tion in nonlinear models. Here, multipeaked objective areas are
operating. Many other optimization methods may not find the
global optimum in such cases.

Apart from these numerical applications, genetic algorithms
can also be used to solve combinatorial problems, for example,
the processing of a sample queue in a lab.

Heredity in the Computer

The starting point with genetic algorithms is a population of
living beings. A computer-adaptable living being consists of a
particular set of variables. Each variable is represented by a
chromosome that is characterized by a set of genes. Usually, the
chromosomes are binary coded (cf. Section 1.3), so that each bit
corresponds to a gene. If an 8-bit representation is used, then the
chromosome consists of eight genes and each gene can takes as
an allele the value of either 0 or 1.

8-Bit chromosome

0 0 0 0 01 1 1

Initial Population

A genetic algorithm starts with an initial population of living
beings, which are coded as character strings. Generation of the
initial population can be performed, for example, by random coin
throws providing the bits 1 and 0 (cf. Example 8.10). Subsequent
populations are generated by the genetic algorithm by heredity
in the form of selection, crossover, and mutation of the living
beings.
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Selection

Selection or reproduction means multiplication as adaptation
to environment or survival of dangers. Formalized, the selection
is based on the value of the objective function y for the living
considered. In the simplest case, the objective function is a signal.
However, it can also be a composed quantity (cf. Section 4.1).

The new living being should develop a maximum (minimum)
output signal. Typically, the signal values are averaged. A good
living being reveals a signal that is greater than the average signal.
A bad living being provides one that is lower than the average.
The number of living beings prone to multiplication can be
derived from the signal value, which is weighted over the sum of
all signals of the population.

Crossover

In case of crossover, randomly, a father and mother are selected.
Also, a crossover position is fixed in the chromosome or in the
bit character string, which is used to derive the aggregation of the
genes of the parents. All bits left of the crossover point are trans-
ferred to the child from the father and all bits right of the point
are given by the mother and vice versa.

Mutation

Mutations are changes as a result of external effects. For individual
bits, it is decided on the basis of a predefined probability whether
a bit switches or not.

Objective function
according to Eq. (8.49):

y
=

f(
x)

100

0
0 15 30

x

A prerequisite for a well-operating genetic algorithm is a well-
performing random generator. However, one should note that
genetic algorithms are not solely based on chance (randomness),
as is valid for Monte Carlo simulations. In this case, randomness
is only a tool to successfully proceed in the space of the objective
area.

Example 8.11 Genetic algorithm

By means of a genetic algorithm, the optimum for a response
(objective function) y in dependence on the variable x is
sought. To facilitate understanding and following of the cal-
culations, the response values are generated by the function
in Eq. (8.59). In practice, the responses are experimental
observations.

y = [100 − 0.44(x − 15)2]+ (8.59)
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First, variable x is to be coded as chromosome. For the x
values of interest between 0 and 30, a single 5-bit string is
sufficient. Random selection of the initial population reveals
the following four living beings (cf. x values in Table 8.7):

1 0 0 1 1
0 0 0 0 1
1 1 0 1 0
0 0 1 0 1

Table 8.7 Selection in the genetic algorithm in Example 8.11.

No. Initial
population

x y = f (x) yi
∑

y
Expected
number, yi

y

Actual
number

1 1 0 0 1 1 19 93 0.44 1.77 2
2 0 0 0 0 1 1 14 0.07 0.27 0
3 1 1 0 1 0 26 47 0.22 0.89 1
4 0 0 1 0 1 5 56 0.27 1.07 1

Sum — 210 1.00 4.00 4
Average — 52.5 0.25 1.00 1

For selection, the corresponding responses are measured or
calculated according to Eq. (8.49). Then, the living beings can
be judged in relation to their adaptational ability. The new pop-
ulation is to be formed from the surviving exemplars.

Table 8.7 summarizes the individual steps of the genetic
algorithm. The four-character strings of the initial population
are given with the corresponding x values and the responses y
in columns 3 and 4. The weights of the y values related to the
sum of all responses of the population (selection probability)
show a higher value compared to the average for living being
1, but the response for living being 2 is obviously below
the population average. In the sense of propagation, more
frequent reproduction is expected for living being 1 than
for being 2. The expected number of reproductions can be
estimated from the relationship to the average of the response
values (column 6 of Table 8.7). As the discrete number of
reproductions, we obtain two copies for living being 1, no
copy for living being 2, and for living beings 3 and 4, one copy
each. The new population is then

1. 1 0 0 1 1
2. 1 0 0 1 1
3. 1 1 0 1 0
4. 0 0 1 0 1
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In the next step, crossover of living beings is carried out.
In our example, from the new population, the living beings 1
and 3 and 2 and 4 are randomly chosen as pairs for crossover.
Crossover points are the positions 4 and 2. As a result, one
obtains the crossovers given in Table 8.8.

Table 8.8 Crossovers in the genetic algorithm in Example 8.11.

No. Father Mother Crossover point Child x y = f (x)

1 1 0 0 1|1 1 1 0 1|0 4 1 0 0 1 0 18 96
2 1 0 0 1|1 1 1 0 1|0 4 1 1 0 1 1 21 84
3 1 0|0 1 1 0 0|1 0 1 2 1 0 1 0 1 27 37
4 1 0|0 1 1 0 0|1 0 1 2 0 0 0 1 1 3 37

Total 254
Average 63.5

As a result of crossover, a population emerges for which the
sum of y values or their average became larger (cf. Tables 8.7
and 8.8), so we have approached the maximum of the objective
function more closely.

An additional change in the population would be feasible
on the basis of mutations. For a probability of, for example,
0.005 in total 20 of the transferred bits should switch, that is,
20× 0.005= 0.1. This means, practically, that no bit will mutate
from 0 to 1 or vice versa.

Applications

The applications of genetic algorithms are determined by some
particularities, which are as follows:

• The algorithms do not operate on the basis of the input variables
themselves, but on coded variables.

• The search for the optimum starts from several points.
• The criterion for optimization is the objective function and not,

for example, its derivative.
• The forward movements are not deterministically based, but

probabilistically.

Traditional search methods move in the objective area from one
point to the next on the basis of a given search rule. In multimodal
objective areas, one would end up by this point-by-point forward
movement at the closest peak, which might be far from the global
optimum. Genetic algorithms start on the basis of a population of
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Table 8.9 Applications of genetic algorithms.

Aim Strategy Area

Learning algorithm for neural nets Optimization of weights X-ray fluorescence analysis
Wavelength selection Selection of subsets Multicomponent analysis
Multicriteria optimization Optimization Atomic emission spectrometry
Prediction of retention data Numerics HPLC

points and move from those positions in parallel in the direction
of the optimum.

Genetic algorithms are most frequently used for wavelength
selection in multicomponent analysis. If, for example, 5 wave-
lengths are to be chosen out of 30 wavelengths in total, then a
30-bit chromosome could be defined. The actual wavelength was
coded by 1’s and all other bits are set to 0. If the wavelengths 3, 7,
13, 22, and 27 were tested, then the chromosome resembles the
following:

001000100000100000000100001000

Further applications range from multicriteria optimization up
to the replacement of the backpropagation learning algorithm
for training neural networks (Section 8.2) by genetic learning
algorithms (Table 8.9).

Simulated Annealing

Another strategy to circumvent to be trapped in a local optimum
is simulated annealing (SA). Annealing is a process in which a
solid material is first melted and then allowed to cool by slowly
decreasing the temperature. In contrast to conventional, local
optimization methods, in SA steps are allowed in a direction
that yields inferior solutions. To control these steps, a probability
function that originates from Metropolis work in statistical
thermodynamics is exploited.

Movement of a system to a state with higher energy, E, can be
described in thermodynamics by

p(δE) = e−
δE
kT (8.60)

where p(𝛿E) is the probability, T is the temperature, E is the
energy, and k is the Boltzmann constant. After introducing a
perturbation in the system, the corresponding energy change
is computed. If the energy is lower, the perturbation will be
accepted. If the energy is higher, the perturbation is accepted
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with the probability computed by Eq. (8.60). Decreasing the
temperature iteratively, the system is cooled into a frozen state
where no changes yielding energy increase would be accepted.

Comparable to genetic algorithms, there are candidate solu-
tions that are determined in SA by the different states of the
system and the energy of the state as the objective function.
The control parameter in SA is called temperature, as used in
thermodynamics. The Boltzmann constant is termed a cooling
parameter, 𝛼, which ranges between 0 and 1.

In analogy to a typical local optimization method, such as the
simplex method (cf. Section 4.3), SA could be programmed as
given in Example 8.10.

Example 8.12 Simulated annealing algorithm

1. Select a starting point, S0.
2. Compute S0 by evaluating f (S0).
3. Select an initial temperature value, T.
4. Select an initial cooling parameter value, 𝛼, to reduce

temperature.
5. Select a neighboring solution randomly.
6. Compute 𝛿 = f (S) − f (S0).
7. If 𝛿 < 0, accept S as the new solution.
8. If 𝛿 > 0, accept S with a probability, p(𝛿E); keep S0 with a

probability, 1 − p(𝛿E).
9. Repeat steps 5–8 k times.

10. Update the control parameter T = 𝛼T .
11. Repeat steps 5–10 until convergence is reached.

The probability of acceptance is compared to a ran-
dom number 𝜌 generated uniformly in the interval [0,1].
If 𝜌 ≤ p(𝛿E), the solution is accepted. Otherwise, another
solution is randomly selected and evaluated.

The temperature and cooling parameter 𝛼 have to be chosen
carefully. Too high a temperature leads to acceptance of almost
all inferior solutions and the search might tend toward a random
search. If the temperature is too low, almost no inferior solution
will be accepted and the search approaches one of the local opti-
mization methods. Commonly, the probability for acceptance of
an inferior solution should be higher than 0.5. If no information
on the temperature is at hand, the algorithm can be initiated at a
lower temperature that is gradually increased until an acceptable
probability of inferior solutions is found. Then the cooling process
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can be started in a manner comparable to heating a system until
it is melted before initiating the cooling process.

The rate of cooling is influenced by the choice of cooling
parameter 𝛼 and the number of iterations (steps 5–8 in Example
8.12). There should be enough iteration allowed to fully explore
the neighborhood of a local optimum. Often, the iteration
number is allowed to increase in the cooling process.

Another approach is to combine the product of Boltzmann
constant and temperature in a new constant c = kT . To reduce
the value for control parameter, c, in the next series of move-
ments, the interval [0, c0] could be divided into a fixed number of
K subintervals and c determined by

ck = K − k
K

c0 for k = 1,… ,K (8.61)

Initial applications of SA were related to combinatorial
optimization problems, for example, wavelength selection in
multicomponent analysis (cf. “Applications for Multicomponent
Analysis” Section). However, continuous functions can also be
optimized. Thus, the parameters in a nonlinear model can be
found by SA if the objective function is defined in analogy to the
𝜒2 criterion in nonlinear regression analysis (Eq. (6.110)).

One of the drawbacks in applying SA is its inability to compete
with other optimization strategies that have been distinctively for-
mulated for unique problems. The efficiency might be limited. On
the other hand, SA is very easy to implement.

Tabu Search

Another strategy to solve optimization problems with many local
optima is tabu search (TS). TS searches an optimum and the
location of the optimum is remembered. In future searches, this
optimum is avoided.

The algorithm starts by computing solutions in the neighbor-
hood of a selected candidate solution. A neighborhood solution
is generated by flipping one bit in the best preceding bit string.
If there are no improving neighbored solutions TS accepts the
mildest detrimental step and allows, in addition, variables to be
added and removed. To avoid an immediate revisiting of a local
optimum after leaving it with a detrimental step, the complement
of this move must be set tabu. All moves set tabu are listed in
a tabu list. The decision on how many and which moves have
to be set tabu within any iteration is carried out on the basis of
different strategies.
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In the static method, moves are set tabu as soon as their com-
plements (inverse moves) have been selected and stay tabu for
a fixed number of iterations. Thereafter, these moves are reac-
tivated, for example, after 10 iterations. A possible algorithm is
given in Example 8.13. Although this method might work well,
there is still the danger that the search cycles around the same
solutions in a fixed sequence.

Example 8.13 Tabu search algorithm [24]

Given a feasible solution x* with the objective function value
z*, let x = x∗ with z = z∗.

Iteration
while the stopping criterion is not fulfilled do the following:

1. Select the best admissible move that transforms x into x*
with objective function value z(x′) and add its attributes to
the running list.

2. Perform tabu list management: compute moves (or
attributes) to be set tabu and add those to the tabu list.

3. Update solutions: x = x′, z(x) = z(x′); if z(x) < z∗ then
z∗ = z(x), x∗ = x endif

endwhile
Result: x* is the best of all determined solutions, with objec-

tive function value z*.

The dynamic method for TS circumvents this problem by vary-
ing the tabu status according to the moves considered in a way
that rigorously excludes cycling behavior. An efficient dynamic
TS method is the reverse elimination method. This algorithm is
based on the idea that a given solution can be used again only if it
lies in the neighborhood of the actual solution. The list of already
worked steps is reexamined in order to find all steps that were
already set tabu and, therefore, led to a successful solution. For
this purpose, a residual cancelation sequence is built up for each
tracing step. In the beginning, the residual cancelation sequence
is empty. In the following, only those moves are added whose
complements are not in the sequence. At each tracing step, it is
then known which moves have to be reversed in order to turn
the actual solution back into one examined at an earlier itera-
tion step. Example 8.14 demonstrates this reverse elimination
approach.
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Example 8.14 Dynamic tabu search by the reverse elimination
method

A solution can only be revisited in the next iteration if it is a
neighbor N(x) of the current solution. Here we consider the
selection of wavelength in a multivariate calibration problem
(cf. Section 6.2):

Bit string for five wavelengths: [1 1 0 0 1 0]
Move 1: [0 0 0 0 1 0]
Move 6: [0 0 0 0 1 1]

Running list: 1 6 7 3 1 5 6 4 6 5 (latest move: 5, complemen-
tary (inverse) moves are underlined)

Reverse elimination method:

Iteration Tracing step Residual cancelation sequence Length Tabu move

10 1 5 1 5
9 2 6 5 2 —
8 3 4 6 5 3 —
7 4 4 5 2 —
6 5 4 1 4
5 6 1 4 2 —
4 7 3 1 4 3 —
3 8 7 3 1 4 4 —
2 9 6 7 3 1 4 5 —
1 10 6 7 3 4 4 —

Tracing back the running list, there exists a residual cance-
lation sequence with a single element (move 4), that is, the
corresponding complement move 4 will be set tabu and the
running of the algorithm is continued.

First applications of TS within Chemometrics are known for
optimization of quantitative structure–activity relationship mod-
els and for multivariate spectrometric calibration.
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Questions and Problems

1. What are the differences between PROLOG, LISP, and an
expert system shell?

2. Discuss the difference between search by the simplex
method and that by an in-depth strategy.

3. Summarize typical signal transfer functions used with
artificial neural networks.

4. How would we arrange the neurons in a multilayer
perceptron to classify gas chromatograms consisting of
20 peaks and belonging to four different classes?

5. What makes the difference between an associative and
competitive learning law?

6. A bidirectional associative memory (BAM) is to be
trained for the following three bipolar associations:

x1 = (1 − 1 1 1), y1 = (1 − 1 1)
x2 = (−1 − 1 1 − 1), y1 = (−1 − 1 1)
x3 = (1 1 − 1 1), y1 = (1 1 − 1)

Calculate the weight matrix according to Eq. (8.7) for
those associations. What is the value for y, if a new
x-vector, x= (−1 1 −1 1), is presented to the BAM and
bipolar thresholding is operative?

7. Which neural network preserves the topological struc-
ture of data?

8. What is the difference between probability and possibility
theory, and which methods represent the two particular
approaches?

9. Repeat the set-theoretic operations for union, intersec-
tion, complement, and cardinality for the crisp sets A and
B as given: A= (2 1 5 3 7), B= (1 4 6 2).

10. Compare symbolic knowledge processing in case of crisp
and fuzzy-rule-based systems.

11. How are genetic algorithms used for feature selection in
the framework of pattern recognition?

12. Calculate the y-value according to Eq. (8.49) for a binary
coded chromosome [0 1 1 0 1 1 1]. What value would
result if the vigesimal system was used?

13. Compare the optimization strategies of genetic
algorithms, simulated annealing, and tabu search
with those of local optimization methods.
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9
Quality Assurance and Good Laboratory Practice

Learning Objectives

• To introduce the tools available to ensure the quality of
analytical–chemical measurement

• To learn about regulatory and legal aspects of quality assur-
ance and quality control.

Analytical data need to be comparable between different
laboratories on an international scale. This presupposes that the
quality of the data is assured. In addition, planning, performance,
reporting, and archiving of tests should be regulated.

A central point of comparability of analytical data is an appro-
priate system of quality assurance. According to DIN 55350,
quality is defined by

The total of properties and features of a product or an
operation to fulfill predefined requirements.

It therefore becomes necessary to quantify quality in the
frame of quality assurance tests. Quality assurance comprises
all activities that lead to fulfillment of the defined requirements.
They include the totality of operations in quality management,
quality planning, quality directing, and quality tests.

If the requirement cannot be fulfilled, then an error is made
according to the DIN directive. If the error restricts the appli-
cability, it is termed a lack. Typical in analysis are random and
systematic errors, false-positive or false-negative detection
results, or the complete failure of an analytical determination.

Chemometrics: Statistics and Computer Application in Analytical Chemistry, Third Edition. Matthias Otto.
© 2017 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2017 by Wiley-VCH Verlag GmbH & Co. KGaA.
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To control errors in an analysis, the individual steps of the
procedure must be fixed in detail. In addition, the analyti-
cal procedure has to be tested for its performance, that is, it
must be validated. For the use of procedures in routine anal-
ysis, additional checks are necessary that will be explained as
follows.

9.1
Validation and Quality Control

Validation in Analytics

Validation describes in general the assurance that an analytical
procedure provides reproducible and secure results that are
required for the application intended.

Validation criteria are as
follows:
Trueness
Precision
Dynamic range
Selectivity
Limit of detection
Limit of determination
Robustness.

The first step in developing a relative analytical method is
calibration. It is based on the use of standard solutions or of
a solid standard. The calibration function (Eq. (4.1)) is con-
structed by means of linear regression analysis as discussed in
Section 6.1.

The precision of the procedure can be characterized by
the standard deviation of the procedure. As additional per-
formance characteristics, the limit of detection (Eq. (4.3)) and
working range are reported.

To test for systematic deviations, explained by influences due to
different steps of an analytical procedure or by the sample matrix,
the recovery rate is calculated (cf. Eq. (4.6)). To investigate an ana-
lytical procedure for systematic deviations, the recovery function
is applied.

The limit of detection is
that analyte
concentration that
corresponds to the
averaged signal of the
blank plus three times
the standard deviation.

Recovery Function

The recovery function describes the relationship between the
found, xfound, and true, xtrue, concentrations by means of a
straight-line model:

The limit of
determination is the
lowest analyte
concentration that can
be determined with an
acceptable accuracy.

xfound = a0 + a1xtrue (9.1)

where a0 and a1 are the regression parameters. In an ideal case,
the recovery function should pass through the origin of the coor-
dinate system and have a slope of 1, that is,

a0 = 0 and a1 = 1.0 (9.2)

The working range of an
analytical method
denotes the range
between the lower and
upper concentration, for
which accurate
determinations are
feasible.

In practice, these conditions will only be approximately valid.
The test for significance of the deviations can be carried out by
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means of the confidence intervals for the parameter a0 and a1 on
the basis of a t test (cf. Eq. (6.47)). The confidence intervals for the
parameters are as follows:

Δa0 = a0 ± t(1 − 𝛼∕2; f )sa0
(9.3)

Δa1 = a1 ± t(1 − 𝛼∕2; f )sa1
(9.4)

where t is the quantile of the Student distribution (Table A.3), 𝛼 is
the significance level, and f is the degree of freedom.

Accuracy stands for both
trueness and precision.

The standard deviations for the parameters, sa0
and sa1

, are cal-
culated according to Eqs. (6.7) and (6.8).

The standard deviation
of a procedure is
calculated by Eq. (6.9):

sy =

√√√√√√
n∑

i=1
(yi − ŷi)2

n − 2

A constant systematic deviation is given at a significance level,
𝛼, if the confidence interval, Δa0, does not include the value a0 =
0. In the case that the confidence interval Δa1 does not contain
the value a1 = 1, a proportional systematic deviation holds.

Finally, the robustness of analytical procedures must be investi-
gated, to give assurance that the quality of data is independent of
small variations during the performance of the procedure.

Based on the
concentration, x, we
obtain

sx =
sy

b1

Robustness can be checked by round-robin tests, the perfor-
mance of which will be discussed later in this section. Within the
single laboratory, robustness can be checked by variation of the
experimental variables within tolerable limits.

The elaborated analytical procedure is the basis for quality
assurance in routine analysis. It is summarized in a standard oper-
ating procedure (SOP). The SOP defines the range of application
and the quality goals.

Internal Quality Assurance

Quality control of a procedure in routine analysis is based primar-
ily on the evaluation of quantities that characterize precision and
reliability, such as the mean, standard deviation, dynamic range,
recovery rate, and reliability ranges (dispersion and confidence
interval).

For internal quality assurance, control samples are applied as

• standard solutions
• blank samples
• real samples
• synthetic samples
• certified standard reference materials.

The control samples should be analyzed in each series of
analyses at least once or twice, to control the accuracy of
measurements.
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Figure 9.1 Sequence of objective quantities in a control chart. The dot-
ted lines characterize the lower and upper warning limits. The broken lines
describe the lower and upper control limits.

Control Charts

To monitor test procedures or to ensure the quality of products
and processes by using analytical methods, quality control charts
have proven their success. There, a quality characteristic is
recorded at given spacing in a chart enabling ready recognition
of typical situations (Figure 9.1).

As quality characteristics, the reference value and the control
limits are used. We distinguish according to the kind of the quality
characteristic individual value charts, mean charts, such as the x
chart, median or blank charts, dispersion charts, such as standard
deviation and range charts, and the recovery rate chart. Calcu-
lation of the objective criterion plotted as a central line and its
thresholds is given in Table 9.1 for important control charts. The
limits for the x chart are evaluated on the basis of a t distribution.
In a standard deviation chart, the thresholds are defined by apply-
ing the 𝜒2 distribution. The 𝜒2 quantiles can be taken from Table
A.5. The range charts are based on the ranges between the largest
and smallest observations within a subgroup i (xi,max and xi,min).
The upper and lower limits result from multiplication with the D
factors, which are given for 95% and 99% of statistical certainty in
Table 9.2.

The significance level of 5% serves as a warning limit. A single
crossing of the warning limit requires only an increased attention
for controlling the process. The control limit is fixed at a signifi-
cance limit of 1%. If a value exceeds the control limit, immediate
action will be necessary. This is termed the outer-control situation.

Description of a quality assurance system is given in a qual-
ity assurance handbook, wherein all structures, responsibilities,
SOPs, and tools for realization of the quality assurance are sum-
marized.

The five line control
charts have been
introduced by Walter
Shewhart and are also
termed Shewhart means
and Shewhart range
charts.
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Table 9.2 D factors for calculation of the limits of the range chart for the
probabilities P of 95% and 99%.

P = 95% or 𝜶= 5% P = 99% or 𝜶= 1%
n Dlower Dupper Dlower Dupper

2 0.039 2.809 0.008 3.518
3 0.179 2.176 0.080 3.518
4 0.289 1.935 0.166 2.614
5 0.365 1.804 0.239 2.280
6 0.421 1.721 0.296 2.100
7 0.462 1.662 0.341 1.986
8 0.495 1.617 0.378 1.906
9 0.522 1.583 0.408 1.846
10 0.544 1.555 0.434 1.798

External Quality Assurance

Laboratory Intercomparison Studies

To ensure the comparability of analytical results, round-robin
tests are performed. The aims are as follows:

• Standardization of analytical procedures
• Control of the analyses of a laboratory
• Preparation of certified reference material.

According to DIN 38402, at least 8 laboratories should partic-
ipate in a study or still better more than 15 laboratories. These
laboratories typically perform four parallel determinations each.
The precision of the individual laboratories can be evaluated from
the parallel determinations on the basis of the standard devia-
tions. To judge the trueness, the recovery is determined according
to Eq. (4.6). The laboratory means are then related to a true value
or to the total mean.

Traceability

The results of chemical analyses should be comparable among
each other, just as it is feasible with physical quantities: the length
of an object is exactly given by meters or the mass by kilograms.

The basis for comparability of chemical analyses is the relation
to standard reference materials of which the contents or concen-
trations are exactly known. The elements and compounds con-
tained in a sample are preferably traced back to the mol. Problems
in traceability of chemical analyses frequently result from the lim-
ited selectivity of analytical methods. Determination of the mass



9.2 Accreditation and Good Laboratory Practice 351

of a pure substance can be done in principle without fundamen-
tal errors, but this is not a priori true for determination of the
concentration of a single substance in a complex matrix, such as
blood. Validation of analytical results is therefore often more dif-
ficult than evaluating physical quantities.

9.2
Accreditation and Good Laboratory Practice

Accreditation of Laboratories

An analytical laboratory proves its effective quality assurance
system by accreditation. Accreditation attests to the competence
of a laboratory for performing given analytical methods versus an
independent customer. In different countries, different accredita-
tion systems have emerged. For example, in Germany, there is no
central accreditation system, but a system that is decentralized to
different sectors.

The Commission of the European Union has harmonized the
national accreditation systems. Unique criteria were developed
for the operation of the test laboratories and for their accredita-
tion and certification. The result of those harmonization policies
is the series of directives Euronorm EN 45000 (Table 9.3). At
present, all accreditations are performed on the basis of EN 45000.

Basics of Good Laboratory Practice

What is to be understood by the system of good laboratory
practice (GLP), which has existed for more than 20 years? GLP
can be traced back to irregularities detected in the beginning of
the 1970s by the American Food and Drug Administration (FDA)
during revision of toxicological studies. The results were regula-
tions for GLP for testing in toxicology. They had to be adhered

Table 9.3 General criteria in the directive series EN 45000.

Euronorm Topic

EN 45001 Running test laboratories
EN 45002 Evaluation of test laboratories
EN 45003 Organization of accreditation offices
EN 45011 Certification of products
EN 45012 Certification of personnel
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to not only by the companies in the United States, but also by all
countries exporting to the United States. The Organization For
Economic Cooperation And Development (OECD) took over the
internationalization of those standards.

GLP is mainly concerned with assuring the repeatability of
investigations. The assurance of quality is guaranteed in the
system by an additional quality assurance unit that is controlled
by continuous inspections to maintain the principles of GLP.

The workload caused by the formalism and archiving is much
larger compared than that attributable to the EN 45000 directives.
The GLP system is applied in areas covered by legislation, for
example, in the case of the introduction of new chemicals, in
toxicology, or in health systems.

General Reading

1. Burgess, C. (2004) Analytical
quality management, in Ana-
lytical Chemistry, 2nd edn (eds
R. Kellner, J.-M. Mermet, M.
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Widmer), Wiley-VCH Verlag
GmbH, Weinheim.

2. Günzler, H. (1996) Accredita-
tion and Quality Assurance in
Analytical Chemistry, Springer,
Berlin.

3. DeBièvre, P. and Günzler,
H. (eds) (2003) Traceability
in Chemical Measurement,
Springer, Berlin.

4. Hibbert, D.B. (2007) Quality
Assurance for the Analytical
Chemistry Laboratory, Oxford
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Questions and Problems

1. Define the analytical performance characteristics pre-
cision, trueness, accuracy, selectivity, dynamic range,
working range, recovery, robustness, detection limit, and
limit of determination.

2. What are reference materials used for?
3. What are control charts used for and which measures are

common?
4. What is the meaning of “traceability to the mol?”
5. What quality assurance system is applied in GLP?
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Statistical Distributions

Tables A.1–A.6.

Digital Filters

Tables A.7 and A.8.

Experimental Designs

Tables A.9–A.12.

Matrix Algebra

A point in n-dimensional space Rn is represented by a vector, that
is,

x =
⎛⎜⎜⎜⎝
x1
x2
⋮
xn

⎞⎟⎟⎟⎠ or in transposed form xT = (x1, x2,… , xn)

The sum of two vectors x, y∈Rn reveals

x + y =
⎛⎜⎜⎜⎝

x1 + y1
x2 + y2

⋮
xn + yn

⎞⎟⎟⎟⎠ example ∶
⎛⎜⎜⎝
1
2
3

⎞⎟⎟⎠ +
⎛⎜⎜⎝
2
4
7

⎞⎟⎟⎠ =
⎛⎜⎜⎝

3
6

10

⎞⎟⎟⎠
Chemometrics: Statistics and Computer Application in Analytical Chemistry, Third Edition. Matthias Otto.
© 2017 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2017 by Wiley-VCH Verlag GmbH & Co. KGaA.
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Table A.1 Probability density function (ordinate values) of the standardized normal distribution.

0 z

f z( )

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.3989 0.3989 0.3989 0.3988 0.3986 0.3984 0.3982 0.3980 0.3977 0.3973
0.1 0.3970 0.3965 0.3961 0.3956 0.3951 0.3945 0.3939 0.3932 0.3925 0.3918
0.2 0.3910 0.3902 0.3894 0.3885 0.3876 0.3867 0.3857 0.3847 0.3836 0.3825
0.3 0.3814 0.3802 0.3790 0.3778 0.3765 0.3752 0.3739 0.3726 0.3712 0.3697
0.4 0.3683 0.3668 0.3653 0.3637 0.3621 0.3605 0.3589 0.3572 0.3555 0.3538
0.5 0.3521 0.3503 0.3485 0.3467 0.3448 0.3429 0.3411 0.3391 0.3372 0.3352
0.6 0.3332 0.3312 0.3292 0.3271 0.3251 0.3230 0.3209 0.3187 0.3166 0.3144
0.7 0.3132 0.3101 0.3079 0.3056 0.3034 0.3011 0.2989 0.2966 0.2943 0.2920
0.8 0.2897 0.2874 0.2850 0.2827 0.2803 0.2779 0.2756 0.2732 0.2709 0.2685
0.9 0.2661 0.2637 0.2613 0.2589 0.2565 0.2541 0.2516 0.2492 0.2468 0.2444
1.0 0.2420 0.2396 0.2371 0.2347 0.2323 0.2299 0.2275 0.2251 0.2227 0.2203
1.1 0.2179 0.2155 0.2131 0.2107 0.2083 0.2059 0.2036 0.2012 0.1989 0.1965
1.2 0.1942 0.1919 0.1895 0.1872 0.1849 0.1827 0.1804 0.1781 0.1759 0.1736
1.3 0.1714 0.1691 0.1669 0.1647 0.1626 0.1604 0.1582 0.1561 0.1539 0.1518
1.4 0.1497 0.1476 0.1456 0.1435 0.1415 0.1394 0.1374 0.1354 0.1334 0.1315
1.5 0.1295 0.1276 0.1257 0.1238 0.1219 0.1205 0.1182 0.1163 0.1445 0.1127
1.6 0.1109 0.1092 0.1074 0.1057 0.1040 0.1223 0.1006 0.09892 0.08728 0.09566
1.7 0.09405 0.09246 0.09089 0.08933 0.08780 0.08628 0.08478 0.08329 0.08183 0.08038
1.8 0.07895 0.07754 0.07614 0.07477 0.07341 0.0721 0.07074 0.06943 0.06814 0.06687
1.9 0.06562 0.06438 0.06316 0.06195 0.06077 0.0596 0.05844 0.05730 0.05618 0.05508
2.0 0.05399 0.05292 0.05186 0.05082 0.04980 0.0488 0.04780 0.04632 0.04586 0.04491
2.1 0.04398 0.04307 0.04217 0.04128 0.04041 0.03955 0.03871 0.03788 0.03706 0.03626
2.2 0.03547 0.03470 0.03394 0.03319 0.03246 0.03174 0 l.03103 0.03034 0.02965 0.02898
2.3 0.02833 0.02768 0.02705 0.02643 0.02582 0.02522 0.02463 0.02406 0.02349 0.02294
2.4 0.02239 0.02186 0.02134 0.02083 0.02033 0.01984 0.01936 0.01889 0.01842 0.01797
2.5 0.01753 0.01709 0.01667 0.01625 0.01585 0.01545 0.01506 0.01468 0.01431 0.01394
2.6 0.01358 0.01323 0.01289 0.01256 0.01223 0.01191 0.01160 0.01130 0.01100 0.01071
2.7 0.01042 0.1014 0.009871 0.009606 0.009347 0.00909 0.00885 0.00861 0.00837 0.00814
2.8 0.00792 0.00770 0.007483 0.007274 0.007071 0.00687 0.00668 0.00649 0.00631 0.00613
2.9 0.00595 0.00578 0.005616 0.005454 0.005296 0.00514 0.00499 0.00485 0.00471 0.00457
3.0 0.00443

Example: f (0.42)= 0.3653.
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Table A.2 Areas for the standard normal variate z (Eq. (2.28)) of the nor-
mal distribution.

0 z

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.0000 0.0040 0.080 0.0120 0.0160 0.0199 0.0239 0.0279 0.0319 0.0359
0.1 0.0398 0.0438 0.0478 0.0517 0.0557 0.0596 0.0636 0.0675 0.0714 0.0753
0.2 0.0793 0.0832 0.0871 0.0910 0.0948 0.0987 0.1026 0.1064 0.1103 0.1141
0.3 0.1179 0.1217 0.1255 0.1293 0.1331 0.1368 0.1406 0.1443 0.1480 0.1517
0.4 0.1554 0.1591 0.1628 0.1664 0.1700 0.1736 0.1772 0.1808 0.1844 0.1879
0.5 0.1915 0.1950 0.1985 0.2019 0.2054 0.2088 0.2123 0.2157 0.2190 0.2224
0.6 0.2257 0.2291 0.2324 0.2357 0.2389 0.2422 0.2454 0.2486 0.2518 0.2549
0.7 0.2580 0.2612 0.2642 0.2673 0.2704 0.2734 0.2764 0.2794 0.2823 0.2852
0.8 0.2881 0.2910 0.2939 0.2967 0.2995 0.3023 0.3051 0.3078 0.3106 0.3133
0.9 0.3159 0.3186 0.3212 0.3238 0.3264 0.3289 0.3315 0.3340 0.3365 0.3389
1.0 0.3413 0.3438 0.3461 0.3485 0.3508 0.3531 0.3554 0.3577 0.3599 0.3621
1.1 0.3643 0.3665 0.3686 0.3708 0.3729 0.3749 0.3770 0.3790 0.3810 0.3830
1.2 0.3849 0.3869 0.3888 0.3907 0.3925 0.3944 0.3962 0.3980 0.3997 0.4015
1.3 0.4032 0.4049 0.4066 0.4082 0.4099 0.4115 0.4131 0.4147 0.4162 0.4177
1.4 0.4192 0.4207 0.4222 0.4236 0.4251 0.4265 0.4279 0.4292 0.4306 0.4319
1.5 0.4332 0.4345 0.4357 0.4370 0.4382 0.4394 0.4406 0.4418 0.4429 0.4441
1.6 0.4452 0.4463 0.4474 0.4484 0.4495 0.4505 0.4515 0.4525 0.4535 0.4545
1.7 0.4554 0.4564 0.4573 0.4582 0.4591 0.4599 0.4608 0.4616 0.4625 0.4633
1.8 0.4641 0.4649 0.4656 0.4664 0.4671 0.4678 0.4686 0.4693 0.4699 0.4706
1.9 0.4713 0.4719 0.4726 0.4732 0.4738 0.4744 0.4750 0.4756 0.4761 0.4767
2.0 0.4772 0.4778 0.4783 0.4788 0.4793 0.4798 0.4803 0.4808 0.4812 0.4817
2.1 0.4821 0.4826 0.4830 0.4834 0.4838 0.4842 0.4846 0.4850 0.4854 0.4857
2.2 0.4861 0.4864 0.4868 0.4871 0.4875 0.4878 0.4881 0.4884 0.4887 0.4890
2.3 0.4893 0.4896 0.4898 0.4901 0.4904 0.4906 0.4909 0.4911 0.4913 0.4916
2.4 0.4918 0.4920 0.4922 0.4925 0.4927 0.4929 0.4931 0.4932 0.4934 0.4936
2.5 0.4938 0.4940 0.4941 0.4943 0.4945 0.4946 0.4948 0.4949 0.4951 0.4952
2.6 0.4953 0.4955 0.4956 0.4957 0.4959 0.4960 0.4961 0.4962 0.4963 0.4964
2.7 0.4965 0.4966 0.4967 0.4968 0.4969 0.4970 0.4971 0.4972 0.4973 0.4974
2.8 0.4974 0.4975 0.4976 0.4977 0.4977 0.4978 0.4979 0.4979 0.4980 0.4981
2.9 0.4981 0.4982 0.4982 0.4983 0.4984 0.4984 0.4985 0.4985 0.4986 0.4986
3.0 0.49865 0.4987 0.4987 0.4988 0.4988 0.4989 0.4989 0.4989 0.4990 0.4990
4.0 0.49997
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Table A.3 Two- and one-sided Student’s t-distribution for different risk
levels 𝛼 and the degrees of freedom from f = 1 to f = 20.

α

0 t0 +t–t

Two-sided Student’s t-distribution One-sided Student’s t-distribution

f 𝜶= 0.05 𝜶= 0.01 f 𝜶= 0.05 𝜶= 0.025

1 12.706 63.657 1 6.314 12.706
2 4.303 9.925 2 2.920 4.303
3 3.182 5.841 3 2.353 3.182
4 2.776 4.604 4 2.132 2.776
5 2.571 4.032 5 2.015 2.574
6 2.447 3.707 6 1.943 2.447
7 2.365 3.499 7 1.895 2.365
8 2.306 3.355 8 1.860 2.306
9 2.262 3.250 9 1.833 2.262
10 2.228 3.169 10 1.812 2.228
11 2.201 3.106 11 1.796 2.201
12 2.179 3.055 12 1.782 2.179
13 2.160 3.012 13 1.771 2.160
14 2.145 2.977 14 1.761 2.145
15 2.131 2.947 15 1.753 2.131
16 2.120 2.921 16 1.746 2.120
17 2.110 2.898 17 1.740 2.110
18 2.101 2.878 18 1.734 2.101
19 2.093 2.861 19 1.729 2.093
20 2.086 2.845 20 1.725 2.086
21 2.080 2.831 21 1.721 2.080
22 2.074 2.819 22 1.717 2.074
23 2.069 2.807 23 1.714 2.069
24 2.064 2.797 24 1.711 2.064
25 2.060 2.787 25 1.708 2.060
26 2.056 2.779 26 1.706 2.056
27 2.052 2.771 27 1.703 2.052
28 2.048 2.763 28 1.701 2.048
29 2.045 2.756 29 1.699 2.045
30 2.042 2.750 30 1.697 2.042
40 2.021 2.704 40 1.684 2.021
50 2.009 2.678 50 1.676 2.009
60 2.000 2.660 60 1.671 2.000
70 1.994 2.648 70 1.667 1.994
80 1.990 2.639 80 1.664 1.990
90 1.987 2.632 90 1.662 1.987
100 1.984 2.626 100 1.660 1.984
∞ 1.960 2.576 ∞ 1.645 1.960
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Table A.4 F-distribution for the risk levels 𝛼 = 0.025 (lightface type) and
𝛼 = 0.01 (boldface type) at the degrees of freedom f 1 and f 2.

α

F

f 2 f 1 = 1 2 3 4 5 6 7 8 9 10 12 20 50 ∝

1 647
4052

779
4999

864
5403

899
5625

922
5764

937
5859

948
5928

956
5981

963
6022

968
6056

976
6106

993
6208

1008
6302

1018
6366

2 38.51
98.49

39.00
99.00

39.17
99.17

39.25
99.25

39.30
99.30

39.33
99.33

39.36
99.36

39.37
99.37

39.39
99.39

39.40
99.40

39.41
99.42

39.54
99.45

39.48
99.48

39.50
99.50

3 17.44
34.12

16.04
30.82

15.44
29.46

15.10
28.71

14.88
28.24

14.73
27.91

14.62
27.67

14.54
27.49

14.47
27.34

14.42
27.23

14.34
27.05

14.17
26.65

14.01
26.35

13.90
26.12

4 12.22
21.20

10.65
18.00

9.98
16.69

9.60
15.98

9.36
15.52

9.20
15.21

9.07
14.98

8.98
14.80

8.90
14.66

8.84
14.54

8.75
14.37

8.56
14.02

8.38
13.69

8.26
13.46

5 10.01
16.26

8.43
13.27

7.76
12.06

7.39
11.39

7.15
10.97

6.98
10.67

6.85
10.45

6.76
10.29

6.68
10.15

6.62
10.05

6.52
9.89

6.33
9.55

6.14
9.24

6.02
9.02

6 8.81
13.74

7.26
10.92

6.60
9.78

6.23
9.15

5.99
8.75

5.82
8.47

5.70
8.26

5.60
8.10

5.52
7.98

4.06
7.87

5.46
7.72

5.37
7.40

4.98
7.10

4.85
6.88

7 8.07
12.25

6.54
9.55

5.89
8.45

5.52
7.85

5.29
7.46

5.12
7.19

4.99
7.00

4.90
6.84

4.82
6.71

4.76
6.62

4.67
6.47

4.47
6.16

4.28
5.87

4.14
5.65

8 7.57
11.26

6.06
8.65

5.42
7.59

5.05
7.01

4.82
6.63

4.65
6.37

4.53
6.19

4.43
6.03

4.36
5.91

4.29
5.82

4.20
5.67

4.00
5.36

3.81
5.08

3.67
4.86

9 7.21
10.56

5.71
8.02

5.08
6.99

4.72
6.42

4.84
6.06

4.32
5.80

4.20
5.62

4.10
5.47

4.03
5.35

3.96
5.26

3.87
5.11

3.67
4.81

3.47
4.53

3.33
4.31

10 6.94
10.04

5.46
7.56

4.83
6.55

4.47
5.99

4.24
5.64

4.07
5.39

3.95
5.21

3.85
5.06

3.78
4.95

3.72
4.85

3.62
4.71

3.42
4.41

3.22
4.13

3.08
3.91

12 6.55
9.33

5.10
6.93

4.47
5.95

4.12
5.41

3.89
5.06

3.73
4.82

3.61
4.65

3.51
4.50

3.44
4.39

3.37
4.30

3.28
4.16

3.07
3.86

2.87
3.58

2.72
3.36

20 5.87
8.10

4.46
5.85

3.86
4.94

3.51
4.43

3.29
4.10

3.13
3.87

3.01
3.70

2.91
3.56

2.84
3.46

2.77
3.37

2.68
3.23

2.46
2.94

2.25
2.65

1.84
2.42

50 5.34
7.20

3.98
5.08

3.39
4.22

3.05
3.74

2.83
3.45

2.67
3.21

2.55
3.04

2.46
2.91

2.38
2.81

2.32
2.72

2.22
2.58

1.99
2.29

1.75
1.98

1.56
1.70

∝ 5.02
6.63

3.69
4.61

3.12
3.78

2.79
3.32

2.57
3.02

2.41
2.80

2.29
2.64

2.19
2.51

2.11
2.41

2.05
2.32

1.94
2.18

1.71
1.88

1.43
1.53

1.00
1.00
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Table A.5 Chi-square distribution for different degrees of freedom f at
different probabilities P, 𝜒2(P;f ).

P

x2

f P = 0.01 0.05 0.10 0.25 0.50 0.75 0.90 0.95 0.99

1 0.00016 0.0039 0.0158 0.102 0.455 1.32 2.71 3.84 6.63
2 0.0201 0.103 0.211 0.575 1.39 2.77 4.61 5.99 9.21
3 0.115 0.352 0.584 1.21 2.37 4.11 6.25 7.81 11.3
4 0.297 0.711 1.06 1.92 3.36 5.39 7.78 9.49 13.3
5 0.554 1.15 1.61 2.67 4.35 6.63 9.24 11.1 15.1
6 0.872 1.64 2.20 3.45 5.35 7.84 10.6 12.6 16.8
7 1.24 2.17 2.83 4.25 6.35 9.04 12.0 14.1 18.5
8 1.65 2.73 3.49 5.07 7.34 10.2 13.4 15.5 20.1
9 2.09 3.33 4.17 5.90 8.34 11.4 14.7 16.9 21.7
10 2.56 3.94 4.87 6.74 9.34 12.5 16.0 18.3 23.2
11 3.05 4.57 5.58 7.58 10.3 13.7 17.3 19.7 24.7
12 3.57 5.23 6.30 8.44 11.3 14.8 18.5 21.0 26.2
13 4.11 5.89 7.04 9.30 12.3 16.0 19.8 22.4 27.7
14 4.66 6.57 7.79 10.2 13.3 17.1 21.1 23.7 29.1
15 5.23 7.26 8.55 11.0 14.3 18.2 22.3 25.0 30.6
16 5.81 7.95 9.31 11.9 15.3 19.4 23.5 26.3 32.0
17 6.41 8.67 10.1 12.8 16.3 20.5 24.8 27.6 33.4
18 7.01 9.39 10.9 13.7 17.3 21.6 26.0 28.9 34.8
19 7.63 10.1 11.7 14.6 18.3 22.7 27.2 30.1 36.2
20 8.26 10.9 12.4 15.5 19.3 23.8 28.4 31.4 37.6
21 8.90 11.6 13.2 16.3 20.3 24.9 29.6 32.7 38.9
22 9.54 12.3 14.0 17.2 21.3 26.0 30.8 34.0 40.3
23 10.2 13.1 14.8 18.1 22.3 27.1 32.0 35.2 41.6
24 10.9 13.8 15.7 19.0 23.3 28.2 33.2 36.4 43.0
25 11.5 14.6 16.5 19.9 24.3 29.3 34.4 37.7 44.3
26 12.2 15.3 17.2 20.8 25.3 30.4 35.5 38.8 45.6
27 12.8 16.1 18.1 21.7 26.3 31.5 36.7 40.1 46.9
28 13.5 16.9 19.9 22.6 27.3 32.6 37.9 41.3 48.2
29 14.2 17.7 19.7 23.5 28.3 33.7 39.0 42.5 49.5
30 14.9 18.4 20.6 24.4 29.3 34.8 40.2 43.7 50.8
40 22.1 26.5 29.0 33.6 39.3 45.6 51.8 55.7 63.6
50 29.7 34.7 37.6 42.9 49.3 56.3 63.1 67.5 76.1
60 37.4 43.1 46.4 52.2 59.3 66.9 74.4 79.0 88.3
70 45.4 51.7 55.3 61.7 69.3 77.5 85.5 90.5 100.4
80 53.5 60.3 64.2 71.1 79.3 88.1 96.5 101.9 112.3
90 61.7 69.1 73.2 80.6 89.3 98.6 107.6 113.1 124.1
100 70.0 77.9 82.3 90.1 99.3 109.1 118.6 124.3 135.8
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Table A.6 Kolmogorov–Smirnov test statistic d(1− 𝛼, n) to test for a
normal distribution at different significance levels 𝛼.

n 0.01 0.05 0.10 0.15 0.20

4 0.417 0.381 0.352 0.319 0.300
5 0.405 0.337 0.315 0.299 0.285
6 0.364 0.319 0.294 0.277 0.265
7 0.348 0.300 0.276 0.258 0.247
8 0.331 0.285 0.261 0.244 0.233
9 0.311 0.271 0.249 0.233 0.223
10 0.294 0.258 0.239 0.224 0.215
11 0.284 0.249 0.230 0.217 0.206
12 0.275 0.242 0.223 0.212 0.199
13 0.268 0.234 0.214 0.202 0.190
14 0.261 0.227 0.207 0.194 0.183
15 0.257 0.220 0.201 0.187 0.177
16 0.250 0.213 0.195 0.182 0.173
17 0.245 0.206 0.189 0.177 0.169
18 0.239 0.200 0.184 0.173 0.166
19 0.235 0.195 0.179 0.169 0.163
20 0.231 0.190 0.174 0.166 0.160
25 0.200 0.173 0.158 0.147 0.142
30 0.187 0.161 0.144 0.136 0.131
n> 30 1.628√

n
1.358√

n
1.224√

n
1.138√

n
1.073√

n

Multiplication of a vector x with a scalar l ∈Rn provides the fol-
lowing vector:

l•x =
⎛⎜⎜⎜⎝
lx1
lx2
⋮

lxn

⎞⎟⎟⎟⎠
A matrix of elements of real numbers consisting of n rows and

m columns, that is, a n×m-matrix, is defined by

A =
⎛⎜⎜⎜⎝
a11 a12 … a1m
a21 a22 a2m
⋮ ⋮

an1 an2 … anm

⎞⎟⎟⎟⎠ example ∶ A =
⎛⎜⎜⎝
2 4 6
3 1 5
5 8 9

⎞⎟⎟⎠
A square matrix has the same number of rows and columns,

that is, its dimension is n× n.
In a transposed matrix AT, the rows and columns are

interchanged, giving for the matrix A
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Table A.7 Coefficients for computing first derivatives (Savitzky and Golay,
1964, see chapter 3.2 in General Reading Section).

Points 25 23 21 19 17 15 13 11 9 7 5

−12 −12
−11 −11 −11
−10 −10 −10 −10
−9 −9 −9 −9 −9
−8 −8 −8 −8 −8 −8
−7 −7 −7 −7 −7 −7 −7
−6 −6 −6 −6 −6 −6 −6 −6
−5 −5 −5 −5 −5 −5 −5 −5 −5
−4 −4 −4 −4 −4 −4 −4 −4 −4 −4
−3 −3 −3 −3 −3 −3 −3 −3 −3 −3 −3
−2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
−0 −0 0 0 0 0 0 0 0 0 0 0
+1 −1 1 1 1 1 1 1 1 1 1 1
+2 −2 2 2 2 2 2 2 2 2 2 2
+3 −3 3 3 3 3 3 3 3 3 3
+4 −4 4 4 4 4 4 4 4 4
+5 −5 5 5 5 5 5 5 5
+6 −6 6 6 6 6 6 6
+7 −7 7 7 7 7 7
+8 −8 8 8 8 8
+9 −9 9 9 9
+10 −10 10 10
+11 −11 11
+12 −12

NORM 1300 1012 770 570 408 280 182 110 60 28 10

AT =
⎛⎜⎜⎜⎝

a11 a21 … an1
a12 a22 an2
⋮ ⋮

a1m a2m … anm

⎞⎟⎟⎟⎠ example ∶ AT =
⎛⎜⎜⎝
2 3 5
4 1 8
6 5 9

⎞⎟⎟⎠
If the transpose of a matrix is identical to the original matrix in

every element, that is, AT =A, it is called a symmetric matrix.
A diagonal matrix is a special case of a symmetric matrix. In

a diagonal matrix, only the main diagonal contains values other
than zero and all off-diagonal elements are zero:

A =
⎛⎜⎜⎜⎝
a11 0 … 0
0 a22 0
⋮ ⋮
0 0 … anm

⎞⎟⎟⎟⎠ example ∶ A =
⎛⎜⎜⎝
2 0 0
0 1 0
0 0 9

⎞⎟⎟⎠
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Table A.8 Coefficients for computing second derivatives (Savitzky and
Golay, 1964).

Points 25 23 21 19 17 15 13 11 9 7 5

−12 92
−11 69 77
−10 48 56 190
−9 29 37 133 51
−8 12 20 82 34 40
−7 −3 5 37 19 25 91
−6 −16 −8 −2 6 12 52 22
−5 −27 −19 −35 −5 1 19 11 15
−4 −36 −28 −62 −14 −8 −8 2 6 28
−3 −43 −35 −83 −21 −15 −29 −5 −1 7 5
−2 −48 −40 −98 −26 −20 −48 −10 −6 −8 0 2
−1 −51 −43 −107 −29 −23 −53 −13 −9 −17 −3 −1
−0 −52 −44 −110 −30 −24 −56 −14 −10 −20 −4 −2
+1 −51 −43 −107 −29 −23 −53 −13 −9 −17 −3 −1
+2 −48 −40 −98 −26 −20 −48 −10 −6 −8 0 2
+3 −43 −35 −83 −21 −15 −29 −5 −1 7 5
+4 −36 −28 −62 −14 −8 −8 2 6 28
+5 −27 −19 −35 −5 1 19 11 15
+6 −16 −8 −2 6 12 52 22
+7 −3 5 37 19 25 91
+8 12 20 82 34 40
+9 29 37 133 51
+10 48 56 190
+11 69 77
+12 92

NORM 26 910 17 710 33 649 6 783 3 876 6 188 1 001 429 462 42 7

The diagonal matrix that has all 1s on the diagonal is termed the
identity matrix:

I =
⎛⎜⎜⎜⎝
1 0 … 0
0 1 0
⋮ ⋮
0 0 … 1

⎞⎟⎟⎟⎠
The following examples describe matrix addition and matrix

subtraction:

A + B =
(

2 4
1 3

)
+
(
−1 2
5 −3

)
=
(

1 6
6 0

)

A − B =
(

2 4
1 3

)
−
(
−1 2
5 −3

)
=
(

3 2
−4 6

)
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Table A.9 Two-level designs (half-cell designs) for three, four, and five
factors.

–1, +1, –1

+1, +1, +1

+1, –1, –1

–1, –1, +1

23−1 design

Run Factors

x1 x2 x3

1 −1 −1 +1
2 +1 −1 −1
3 −1 +1 −1
4 +1 +1 +1

–1, +1, +1

+1, +1, –1

+1, –1, +1

–1, –1, –1

23−1 design

Run Factors

x1 x2 x3

1 −1 −1 −1
2 +1 −1 +1
3 −1 +1 +1
4 +1 +1 −1
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Table A.9 (Continued)

24−1 design

Run Factors

x1 x2 x3 x4

1 −1 −1 −1 −1
2 +1 −1 −1 +1
3 −1 +1 −1 +1
4 +1 +1 −1 −1
5 −1 −1 +1 +1
6 +1 −1 +1 −1
7 −1 +1 +1 −1
8 +1 +1 +1 +1

24−1 design

Run Factors

x1 x2 x3 x4

1 −1 −1 −1 +1
2 +1 −1 −1 −1
3 −1 +1 −1 −1
4 +1 +1 −1 +1
5 −1 −1 +1 −1
6 +1 −1 +1 +1
7 −1 +1 +1 +1
8 +1 +1 +1 −1

25−1 design

Run Factors

x1 x2 x3 x4 x5

1 −1 −1 −1 −1 +1
2 +1 −1 −1 −1 −1
3 −1 +1 −1 −1 −1
4 +1 +1 −1 −1 +1
5 −1 −1 +1 −1 −1
6 +1 −1 +1 −1 +1
7 −1 +1 +1 −1 +1
8 +1 +1 +1 −1 −1
9 −1 −1 −1 +1 −1

10 +1 −1 −1 +1 +1
11 −1 +1 −1 +1 +1
12 +1 +1 −1 +1 −1
13 −1 −1 +1 +1 +1
14 +1 −1 +1 +1 −1
15 −1 +1 +1 +1 −1
16 +1 +1 +1 +1 +1

25−1 design

Run Factors

x1 x2 x3 x4 x5

1 −1 −1 −1 −1 −1
2 +1 −1 −1 −1 +1
3 −1 +1 −1 −1 +1
4 +1 +1 −1 −1 −1
5 −1 −1 +1 −1 +1
6 +1 −1 +1 −1 −1
7 −1 +1 +1 −1 −1
8 +1 +1 +1 −1 +1
9 −1 −1 −1 +1 +1

10 +1 −1 −1 +1 −1
11 −1 +1 −1 +1 −1
12 +1 +1 −1 +1 +1
13 −1 −1 +1 +1 −1
14 +1 −1 +1 +1 +1
15 −1 +1 +1 +1 +1
16 +1 +1 +1 +1 −1

Multiplication of an n× n matrix A and an n× n matrix B gives
the n× n matrix C:

C = AB =
⎛⎜⎜⎝
a11 … a1k
⋮

an1 … ank

⎞⎟⎟⎠
⎛⎜⎜⎝
b11 … b1m
⋮

bk1 bkm

⎞⎟⎟⎠ =
⎛⎜⎜⎝
c11 … c1m
⋮

cn1 cnm

⎞⎟⎟⎠
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Table A.10 Central composite design for four factors with triplicate mea-
surements in the center of the design.

Run Factors

x1 x2 x3 x4

1 1 −1 1 −1
2 −1 −1 1 1
3 −𝛼 0 0 0
4 1 1 −1 1
5 0 0 0 0
6 −1 1 1 1
7 0 0 0 𝛼

8 −1 1 1 −1
9 0 −𝛼 0 0
10 −1 −1 1 −1
11 0 0 0 0
12 −1 −1 −1 1
13 1 −1 1 1
14 0 0 𝛼 0
15 −1 1 −1 −1
16 1 −1 −1 1
17 𝛼 0 0 0
18 1 1 1 1
19 −1 1 −1 1
20 1 1 1 −1
21 1 1 −1 −1
22 0 0 0 0
23 0 𝛼 0 0
24 −1 −1 −1 −1
25 1 −1 −1 −1
26 0 0 0 −𝛼
27 0 0 −𝛼 0

where cij =
k∑

l=1
ailblj for 1 ≤ i ≤ n and 1 ≤ j ≤ m.

Example ∶ C =
(

2 3 1
3 4 1

)⎛⎜⎜⎝
7 4
1 3
5 0

⎞⎟⎟⎠ =
(

22 17
30 24

)

The rank of a matrix is the maximum number of linearly inde-
pendent vectors (rows or columns) in an n× p matrix X denoted
as r(X). Linearly dependent rows or columns reduce the rank of a
matrix.
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Table A.11 Box–Behnken design for four factors with triplicate measure-
ments in the center of the design.

Run Factors

x1 x2 x3 x4

1 0 0 −1 1
2 1 1 0 0
3 0 −1 0 1
4 0 0 −1 −1
5 −1 1 0 0
6 0 −1 0 −1
7 1 0 1 0
8 −1 −1 0 0
9 1 0 0 1
10 0 −1 1 0
11 0 1 −1 0
12 0 0 1 −1
13 1 0 −1 0
14 1 0 0 −1
15 1 −1 0 0
16 0 0 1 1
17 −1 0 0 1
18 0 0 0 0
19 0 1 1 0
20 0 1 0 −1
21 −1 0 −1 0
22 0 1 0 1
23 −1 0 0 −1
24 0 0 0 0
25 0 0 0 0
26 0 −1 −1 0
27 −1 0 1 0

The determinant of a matrix is calculated by

D =

|||||||||
a11 a12 … a1m
a21 a22 a2m
⋮

an1 an2 … anm

|||||||||
=

n∑
i=1

(−1)ithaik det(Mik)

Example ∶ D =
|||||||
2 4 6
3 1 5
7 8 9

||||||| = 2(1•9 − 5•8) − 4(3•9 − 5•7)

+ 6(3•8 − 1•7) = 72

here Mik is the (n− 1)× (n− 1) matrix where the ith row and kth
column have been deleted.



368 Appendix

Table A.12 Mixture designs (lattice designs) for three and four factors.

Run Factor

x1 x2 x3

1 1 0 0
2 0.67 0.33 0
3 0.67 0 0.33
4 0.33 0.67 0
5 0.33 0.33 0.33
6 0.33 0 0.67
7 0 1 0
8 0 0.67 0.33
9 0 0.33 0.67
10 0 0 1

Run Factor

x1 x2 x3 x4

1 1 0 0 0
2 0.67 0.33 0 0
3 0.67 0 0.33 0
4 0.67 0 0 0.33
5 0.33 0.67 0 0
6 0.33 0.33 0.33 0
7 0.33 0.33 0 0.33
8 0.33 0 0.67 0
9 0.33 0 0.33 0.33
10 0.33 0 0 0.67
11 0 1 0 0
12 0 0.67 0.33 0
13 0 0.67 0 0.33
14 0 0.33 0.67 0
15 0 0.33 0.33 0.33
16 0 0.33 0 0.67
17 0 0 1 0
18 0 0 0.67 0.33
19 0 0 0.33 0.67
20 0 0 0 1

For inversion of matrix A, we get for A−1

A =
(

a11 a12
a21 a22

)
A−1 =

( a22
D

− a12
D

− a21
D

a11
D

)
where D is the determinant of the matrix.

Example ∶ A =
(

4 2
3 1

)
A−1 =

(
−0.5 1
1.5 −2

)
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In this example, we have inverted a 2× 2 matrix. Perhaps an
inversion by head could also be performed in the case of a 3× 3
matrix. For larger matrices, however, a computer algorithm is nec-
essary. In addition, matrix inversion is a very sensitive procedure,
so that powerful algorithms, such as singular value decomposition
(cf. Section 5.2), are to be applied.

A linear transformation from Rn to Rm (case a) or from Rm to
Rn (case b) is possible by

a) multiplication of an n-dimensional column vector by an n-by-
m-matrix forming a m-dimensional vector:

xTA = (x1, x2,… , xn)
⎛⎜⎜⎜⎝
a11 … a1m
a21 a2m
⋮

an1 … anm

⎞⎟⎟⎟⎠ =
( n∑

i=1
xiai1,… ,

n∑
i=1

xiaim

)

b) multiplication of an n×m-matrix by an m-dimensional row
vector:

Ax =
⎛⎜⎜⎜⎝
a11 … a1m
a21 a2m
⋮

an1 … anm

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

x1
x2
⋮

xm

⎞⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m∑
i=1

xia1i

m∑
i=1

xia2i

⋮
m∑

i=1
xiani

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Vectors that do not change their direction during a linear
transformation are important. They are termed eigenvectors
of the matrix A. For every eigenvector of A, there exists a real
number 𝜆, the eigenvalue, for which the following equation
holds:

Ax = 𝜆x

Eigenvector analysis is necessary, for example, in “Factorial
Methods” Section for projection of multidimensional data.

Software

General Statistics
Statgraphics
Manugistics, Inc.
Statistica
StatSoft Inc.
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Excel (Analysis functions)
Microsoft Inc.
SPSS
SPSS Inc.

Chemometrics
Unscrambler
CAMO – Computer Aided Modeling A/S
Pirouette
Infometrix, Inc.
Matlab
The MathWorks Inc.
R
The R Foundation for Statistical Computing

Neural Networks
Neuralworks
NeuralWare Inc.
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Index

a
abduction 301
accreditation 351
accuracy 97, 98, 261, 346–348
– of analysis 98
adaptive neuro-fuzzy inference system (ANFIS)

330, 331
adaptive resonance theory (ART net) 258, 265, 330,

331
adjacency matrix 280, 281, 294
aggregation, performance characteristics 100, 102
alignment methods
– DTW 82
– left panel, simulated chromatogram 83
allele 334
𝛼 error 40, 41
alternating conditional expectations (ACE) 258,

262–264, 266, 267
alternating least squares (ALS) 169, 172
alternative 300
alternative hypothesis see hypothesis
American food and drug administration (FDA)

351
analog-to-digital converter (ADC) 3, 5, 7
analysis of variance (ANOVA)
– definition 44
– MANOVA (see multidimensional analysis of

variance (MANOVA))
– multi dimensional (MANOVA) 49–50
– multi-way, 46, 49 (see also multi-way analysis of

variance)
– one-way, 44–46, 48 (see one-way analysis of

variance)
– regression analysis 218
– sums of squares (SS) 216, 217
– two-way, 46–49 (see two-way analysis of variance)
analytical databases

– coding of chemical structures (see chemical
structures coding)

– coding of spectra 276, 277
– examples 273, 274
– exchange files 275, 276
– information types 274
– laboratory information and management systems

(LIMS) 285
– source and library files 275
– structure 275
– working and index file 284
analytical range 97
analyzers 9, 298
– discrete 9
Anthranilic acid 266, 267
apodization function 74
area determination 55, 66, 68
artificial intelligence (AI) 2, 10–12, 11, 292,

297–306
– definition 297
– knowledge acquisition and processing 298
– methods 298
– modules 297, 298
artificial neural networks 306, 320, 321 see also

neural networks
artificial neuron 306, 307
assembler language 7
associative learning law 312
atomic absorption spectrometry 35, 96
atomic emission spectroscopy 83, 299
– inductively coupled plasma (ICP-AES) 83
autocorrelation 55, 83, 84, 86, 87, 90
– correlated data 87
– correlogram 86
– drift and periodicities 88
– empirical 87
– function 86–89
– point-wise 85

Chemometrics: Statistics and Computer Application in Analytical Chemistry, Third Edition. Matthias Otto.
© 2017 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2017 by Wiley-VCH Verlag GmbH & Co. KGaA.
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autocorrelation (contd.)
– stationary process 85
– time lags 84, 86
– uncorrelated data 87
autocovariance 83–85
automation 1, 3, 8–10
autoregression 89–90
autoscaling 138
axiom 300
axon 306, 307

b
background correction 55, 68, 75, 88
backpropagation 312, 316, 317, 320, 321, 338
– networks 316–318
back-tracking 302, 303
bagging 204–206
basic 7, 15–50, 104, 120, 195, 267, 302, 351
Bayesian classification 191
Bayesian regulation backpropagation algorithm 320
Bayes’s theorem 191
Beer’s law 240, 243, 258
𝛽 error 40, 41
best linear unbiased estimator (BLUE) 232
bias 16, 44, 98, 103, 254, 271, 311, 317, 320 see also

error; systematic
bidirectional associative memory (BAM) 308–310,

308–312, 344
binary number system 3–5
biological fluids 83
biplot 148, 149
bit 1, 4–7, 286, 289, 334–338, 340, 342
blank 96, 97, 330, 346, 348
– samples 347
blind source separation problem 165
blocking 104–105, 108, 110, 124
blood 9, 16, 83, 174, 175, 184, 203, 351
bond electron (BE) matrix 281
bootstrapping 204, 262, 320
boosting 204–206
box-and-whisker plots 24, 25, 52
Box–Behnken design 117
bulk storage devices 7
bus 6
byte 6

c
C 7
Calcium 174, 175
calibration 213
– curved 96
– direct 241–243
– function 96–97, 214, 346
– indirect 243–247

– inverse 245–247, 251
– K-matrix approach 243–245
– P-matrix approach 245
calibration function 96
canonization 284
cardinality 328, 329, 344
centering 137, 138, 210, 236
central composite design 115, 117
central limit theorem 21–22
central processing unit (CPU) 6
certified reference materials 350
ceteris paribus principle 102–103
“change and hope” optimization procedure 125
chaos 12
chemical databases 273 see also analytical databases
chemical structure 11, 273–281, 283, 286, 287,

290–292, 295
– matrix representation 149, 280, 281
chemical structures coding
– canonization 284
– connection table 283, 284
– fragmentation codes 278–280, 279
– Markush structures 284
– matrix representation 280, 281, 283
chemometrics
– computer-based methods (see computer-based

laboratory)
– data evaluation and interpretation methods 10
– definition 1
chemometrics in Analytical Chemistry 1
Chernoff faces 182–184, 183, 184
chromatographic response function (CRF) 101
chromatography 9, 100, 101, 118, 135, 161, 164,

168, 256, 277, 299, 332
chromosome 334–336, 338
𝜒2 goodness-of-fit test 37, 38
city-block distance 172
class 11, 16, 17, 23, 38, 135–137, 184, 186–199,

201, 204, 208, 284, 288, 311, 313, 314, 319, 331, 332
classification
– by discriminant analysis 186–193, 198, 199, 267
– by k-nearest neighbors (kNN) 178, 193
– by soft independent modeling of class analogies

(SIMCA) 184, 195–196
classification and regression trees (CART) 201, 202,

209, 267
class width 16, 17
cluster analysis 11, 135, 136, 140, 147, 148,

172–175, 174, 175, 177–182, 178–180, 184, 201,
287, 288, 311, 319, 332

– distance measure 172
– hierarchical 174
– nonhierarchical 179
– similarity measure 173
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clustering
– crisp 179, 180, 290, 322, 323
– fuzzy 179, 180, 332, 333
– hierarchical 174, 180
– non-hierarchical 179–182, 201
c-means algorithm 179, 181, 332
c-means clustering 181, 182
coding
– chemical structures 278–295
– spectra 273
coefficient
– of determination 220, 221, 252
– of variation 23
Coiflet 78, 79
collinearity 243
common factors 150–152, 158
communality 151–153, 156, 160
competitive learning law(s) 319
– steps 312
– supervised 313
– unsupervised 313
compiler 7
complement 328
compositional rule of inference 329
computer application in analytics (COMPANA) 1
computer-based analytical chemistry (COBAC) 1
computer-based information systems 11–12
computer-based laboratory 2–10
– analog and digital data 3
– analog-to-digital converters (ADCs) 5
– binary vs. decimal number system 3, 5
– central processing units and buses 6
– computer terminology 6
– digital-to-analog converters (DACs) 5
– input/output-systems 7
– memory 6
– networking 7, 8
– programming 7
– robotics and automation 8, 10
computer program 3, 6, 7, 304
conditioning 9, 232
condition number 210, 232, 233
confidence
– band 224, 225, 262
– interval 23, 24, 52, 223–231, 234, 271, 320,

347
confidence interval 23, 24
confounding 105, 114
– parameter estimations 105
confusion matrix 188
conjunction 300
connection table 283, 284, 290, 291, 295
– bond atoms and bonds 283
– connection matrix of atoms 283

– nonredundant 283
continuous/discrete continuous quantities 96
control
– chart 348, 349
– sample 347
convolution 55, 68, 73
Cook’s distance 250, 253, 254
correlation
– coefficient 82, 84, 85, 140, 153, 220, 221, 288
– matrix 139, 140, 145, 149, 151, 153, 155, 156, 158,

159, 175, 309, 310
– – reduced 151–153, 156, 157
– measure 16, 84, 148
correlation matrix 140
corticoids 288
cortisone 287, 288
counting rates 20
covariance matrix 62, 63, 83, 139, 140, 144, 151,

188, 192, 193, 195, 223, 224, 262, 266
cross correlation 55, 83, 89
crossover 334, 335, 337
cross-validation 78, 144, 168, 194, 196, 204–206,

209, 236, 238, 247, 253, 255, 268
cross-validation principal components 145

d
data
– analog 3
– correlated 16, 55, 87, 88
– digital 3, 5
– interpretation 10–11
– missing 137
– preprocessing 135, 210
– random 10, 16, 55, 193
– set characterization 22, 137, 141, 145, 146, 168,

172, 174, 189, 204, 207, 249, 263, 265, 278, 286,
288, 290, 320, 331, 332

– three-way 168, 169, 172, 256, 257
– transfer
– – parallel 6
– – serial 6
– two-way 47, 49, 167, 256
database
– analytical 273–297
– model 285
– structure 274–275
data preprocessing
– correlation matrix 140
– mean centering 137
– missing data 137
– scaling methods 138
– variance–covariance matrix 139
data reduction 71, 75, 278, 285
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Daubechies 78, 79, 81
decimal number system 3–5
decision boundary 184–186, 198, 199, 321
deconvolution 55, 68, 73, 74
deduction 298, 300, 301
degrees of freedom 23, 31, 32, 35, 37, 46, 49, 107,

217, 220, 221, 249, 252, 349, 358–360
delta rule 312, 316
dendrite 306, 307
dendrogram 177, 179
density function see frequency function
derivation algorithm 10
descriptive statistics
– box-and-whisker plots 24, 25
– confidence interval 23, 24
– dispersion measure 23
– error propagation 25, 27
– geometric mean 22
– harmonic mean 22
– median 22
– quartiles 22, 23
– random numbers (see random number

distribution)
– uncertainty and error 27
detection limit 97, 330, 346
diagnostic statistics
– hat matrix 248
– influential observations 250, 256
– inverse calibration model 247
– outliers 249
– residuals and prediction error 248
– SEC 247
digit
– least significant 4
– most significant 4, 75
digital smoothing and filtering
– advantages 56
– filter selection process 58, 62
– Kalman filter 62, 63
– moving-average filter 56, 57
– Savitzky–Golay filter (see Savitzky–Golay filter)
– Simpson rules 67, 68
– trapezoidal rule 67
digital-to-analog converter (DAC) 5, 7
discrete membership functions 326, 327
discrete quantities 96
discriminant analysis
– linear (LDA) 186–192, 207–209
– quadratic (QDA) 192, 207–209
– regularized (RDA) 192
dispersion 15, 18, 23, 98, 141, 151, 347, 348
– matrix 141, 151 (see also variance)
– measure 23
dissimilarity measure 288, 289, 295

distance
– matrix 174–176, 178
– measure 172–175, 173, 178, 287, 288, 312, 318
distribution
– binomial 21
– chi-square 360
– F- 35, 36, 359
– function 18, 29, 38, 39, 323
– Gaussian (see normal distribution)
– kurtosis 19, 22, 24, 160
– moment 19
– Poisson 20
– skewness 19
– Student’s 23, 31, 32, 347, 358
Dixon’s Q-test 42, 43
drift 55, 63, 72, 73, 78, 84, 88, 89, 103
dynamic range 97
dynamic time warping (DTW) 82

e
eigenvalue 50, 145, 149, 150, 153–156, 158–160,

165, 187, 188, 210, 232, 245, 247, 369
– one criterion 144, 145
eigenvector
– analysis 141, 153, 369
– projection 141
elemental composition 50, 136, 137, 146, 160, 164,

189, 190
ensemble methods 204
enzyme 105, 111, 113, 121, 124, 129
– ceruloplasmin (CP) 120, 121
equivalence 137, 300
error
– first and second kind 40–41
– of first kind 40, 41
– integral (see distribution function)
– propagation 15, 25, 27, 65, 66, 100
– random 16, 36, 44, 47, 90, 98, 226, 227, 230
– real 159
– round-off 3, 25, 56, 233
– of second kind 40, 41
– systematic 16, 97, 98, 103, 345
ESPRIT 305
Euclidean distance 172, 173, 179, 189, 190, 193, 312
European Union regulation 33
evolutional component 334
evolutionary strategies 11, 12
evolving factor analysis (EVA) 164
exchange file 275, 276
exclusive OR 289, 290, 314, 315
experimental design
– blocking factors 104, 105
– Box–Behnken 115, 117, 118, 120, 121, 367
– central composite 115–117, 366



Index 375

– ceteris paribus principle 102, 103
– confounding 105
– factorial experiments 105
– fractional factorial 107–109, 115
– full factorial 106, 107, 111, 114–116, 125
– Latin square 52, 108, 110
– lattice 119, 368
– mixture 118, 119, 368
– Plackett–Burman 108, 109
– randomization 103
– replication 103
– response surface (see three-level)
– screening (see two-level)
– star 115, 116
– symmetry 105
– three-level 114, 115, 117
– three-level designs (see response surface designs)
– two-level 106, 108, 114–116, 364
– two-level designs (see screening designs)
expert systems 4, 7, 11, 297–306, 333
– aims 304
– analytical chemistry 305, 306
– definition 303
– development tools 304
– structure 304, 305
explained variance principal components 145
extended t-test and F-test 35
externally studentized residual 250

f
fact 2, 56, 71, 75, 141, 145, 165, 179, 184, 187, 190,

244, 245, 255, 259, 265, 281, 300, 303
factor
– coding 122–123
– experimental 15, 133
– loadings 153
– rotation methods 159
– score determination 157
– score matrix 157
– significance 94
factor analysis (FA)
– evolving (EVA) 164, 165
– factorial methods 150
– parallel (PARAFAC) 168–172, 256
– vs. singular value decomposition (SVD) 157
factor effects 50, 93, 105–107, 110, 111, 113, 114,

119, 120, 123–125
– estimation 110, 114
– vs. regression parameters 123, 124
– relation with regression parameters 234, 248
factorial
– experiments 105, 107
– methods 78, 140, 141, 144, 168, 311, 369
– – factor analysis 150

– – principal component analysis (PCA) 141
– – singular value decomposition (SVD) 149
fast Hadamard transformation (FHT) 71
feature 31, 81, 137, 138, 141, 145, 147, 148,

150–153, 156, 157, 159, 160, 163, 164, 172–175,
180, 182–184, 187, 189, 191, 198–202, 204, 256,
276, 286, 288, 289, 295, 311, 318, 334, 345

figure-of-merit see objective function
filter
– high pass 72
– Kalman 55, 62, 63
– low pass 72
– moving average 56–58
– polynomial 55, 61, 64, 65, 78
– recursive 62
– Savitzky–Golay 57–59, 61, 63, 65
– width 56–58, 61, 91
filtering algorithm 63
fixed-size simplex optimization method 127,

128
flowing system 9
forecasting see prediction
FORTRAN 7
forward directed learning algorithm 316
Fourier transformation (FT)
– conventional spectroscopy 69
– convolution and deconvolution 73, 74
– data reduction and background correction 75
– discrete 69
– integration 74, 75
– inverse 70
– Nyquist frequency 68
– signal filtering 72
– time domain 68
fractal structures 12
fractional factorial designs 107, 110
fragmentation codes 278, 280, 290
– HORD code 280
– HOSE code 278, 279
– structure generator 280
frame 299, 300, 345
frequency
– aliased 69
– function 17
frequency function 17
F-tests 35
full-factorial design 106
fuzzy arithmetics 333
fuzzy clustering 180, 181
fuzzy inferences 333
fuzzy inference systems 329
fuzzy logic 333
fuzzy set 180, 290, 297, 322, 323, 326–330, 333
– operation 327–329
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fuzzy theory 11, 322–333
– applications 332, 333
– cardinality 328, 329
– complement 328
– intersection 327
– relative cardinality 328, 329
– set theory 322
– union 327
F value 35, 36, 45, 46, 48, 49, 214, 220–222,

226, 252

g
gas chromatography 135, 256, 277, 332
– GC/MS 8
Gaussian distribution 17, 19 see normal distribution
Gaussian elimination 233
Gauss-Jordan elimination 233
generic structure see Markush structure
genetic algorithms 12, 297, 334–342
– applications 337, 338
– computer heredity 334
– crossover 335, 337
– initial population 334
– mutations 335, 336
– selection/reproduction 335, 336
– simulated annealing (SA) 338–340
– tabu search (TS) 340–342
geometric mean 22
global search strategies see genetic algorithms
glucose 16, 83, 88
good laboratory practice (GLP) 351, 352
goodness-of-fit test 37, 222, 252
graph theory 280
Grubb’s test 43, 52

h
Haar 78, 79
Hadamard transformation (HT)
– data reduction and background correction 75
– FHT 71
– Walsh function 70
– wavelet transformations 70
hair 136, 137, 145–149, 160, 179, 183–185, 189,

190
hamming distance 289
hard disk 7
hardware 6, 56
harmonic mean 22
hat-matrix 254
Hebb learning see learning, associative
Hebb’s law 312
heredity 334
Hessian matrix 261
heteroscedasticity 227, 228

hexadecimal number 4, 5
hidden layer 200, 306, 313, 315–317, 320, 321
hierarchical cluster analysis
– centroid linkage 179
– complete linkage 178
– first reduced matrix 175
– fourth reduced matrix 177
– median linkage 179
– second reduced matrix 176
– single linkage 178
– third reduced matrix 176
– unweighted average linkage 179
– Ward’s method 179
– weighted average linkage 178
hierarchically ordered ring description (HORD) code

280 see also HORD code
hierarchically ordered spherical description of

environment (HOSE) code 279 see also HOSE code
hierarchical search trees 286, 287
histogram 17, 18, 227
hit list 288
homoscedasticity 228
HORD code 280
horn clause 303
HOSE code 278, 279
householder reduction 233
human being 8, 298
3-hydroxypropanal 282
hypotheses testing
– comparison of mean with true value 30
– comparison of two means 34, 35
– comparison of variances 35, 36
– distribution (see hypothetical distribution)
– error of first and second kind 40, 41
– mean vs. true value 34
– steps 30
hypothesis
– alternative 30–33, 38
– null 30–35, 38, 40, 42, 43, 45, 50, 233, 234, 249
– testing 20, 28, 30, 33, 34, 40
hypothetical distribution
– 𝜒2 goodness-of-fit test 37, 38
– Kolmogorov—Smirnov’s test 38, 40

i
ICA see Independent Component Analysis (ICA)
identification 285, 320, 333
identity matrix 63, 154, 192, 363
image processing 10
implication 300, 305
in-breadth searching 302
Independent Component Analysis (ICA) 165, 195
in-depth search 302
indicator function 159
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induction 301
inferences 10, 15, 16, 300–305, 329–331, 333
– abduction 301
– deduction 300, 301
– engine 304, 305
– induction 301
– logical connectives 300
– rule 301
influential observation 227, 250, 253, 254,

272
information and system theory 10
infra red spectroscopy 213
– NIR 213, 239, 240, 251, 252, 320
initial population 334, 336
integration algorithm 74
interface
– lEEE-488 6
– RS-232 6
interference noise 73
interlaboratory comparison 35, 45, 48
interpolating splines 77
interpretable factors 150
interquartile range 22, 23, 25
intersection 286, 290, 327, 328, 344
inverse sensitivity 96
inverted lists 286, 287, 295
– library search 286, 287
I/O system 7

j
jack-knifed residuals 253 see also studentized residual
Jacobian matrix 261
JCAMP/DX exchange file 275, 276
joint committee on atomic and molecular data

(JCAMP/DX) 275, 276

k
Kalman filter 62, 63
Karhunen–Loeve expansion 147
kernel functions 200
kinetic-enzymatic oxidation 113
k-matrix approach 244, 245
k-nearest neighbor classification 193, 195
k-nearest neighbor (k-NN) method 193
knowledge
– acquisition 11, 298
– base 302, 304, 305
– processing 11, 297–342
– representation 299
knowledge processing and soft computing see

artificial intelligence (AI); expert systems; fuzzy
theory; genetic algorithms; neural networks

known factors 105
Kohonen networks 311, 318–320, 318–321

Kolmogoroff–Smirnov’s test 38, 40
kurtosis see distribution

l
laboratory-information-and-management system

(LIMS) 8, 285
lack-of-fit test 222
Lagrangian theory 199
latent variable 143, 210, 235, 264, 265
Latin square see experimental design
Latin square factorial design 108, 110
learning
– algorithm 308, 312, 313, 316, 318, 319, 338
– associative 312, 314, 319
– competitive 312, 313, 319, 344
– law 312, 314, 319, 344
– paradigm 311
– supervised 311, 314, 317, 332, 333
– unsupervised 135, 172, 311, 314, 318, 332, 333
Leary criterion 101
legal inference 300
level attained see p-level
library file 275
library search 193, 273, 286, 287, 333
– hierarchical search trees 286, 287
– inverted lists 286, 287
– sequential search 286
– similarity measures for chemical structures 290,

291
– similarity measures for spectra (see similarity

measures for spectra)
library spectrum 287–290
limited selective method 99
limit of determination 97, 346, 353
linear discriminant analysis (LDA) 186, 207
linearization method 259, 260, 262
linear learning machine (LLM) 184–187,

198
linear model 214
linguistic modifiers 325, 326
linguistic variables 325, 326, 330
linkage
– centroid 179
– complete 178
– median 179
– single 178, 179
– unweighted average 178
– weighted average 175, 178–179
liquid chromatography 118, 161
– HPLC 103, 119, 129, 161, 257, 258, 266, 267, 276,

288, 306, 320, 338
liquid handling 9
LISP language 302–304
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list processing language (LISP) 7, 298, 302–306,
303

local area networks (LANs) 8
location parameter 22
logical connective 5, 289, 300

m
Machine code 7
machine learning 11, 305, 319
Mahalanobis distance 173, 192, 248
Manhattan distance 172, 288
manipulation 8, 9, 11, 55, 285
– software 275
MANOVA see analysis of variance, multidimensional
Markush chemical structures 284
Markush structure 284
Marquardt algorithm 262
mass spectrometry 80, 81, 135, 169, 256, 277, 288,

289, 299
– electrospray-ionization (ESI-MS) 169–171
matrix inversion 245, 369
mean
– arithmetic 19, 22, 24, 52
– centering 137
– geometric 22, 24
– harmonic 22
measurement 1, 3, 8–10, 15–19, 22, 24–32,

39–45, 47–49, 62, 69, 75, 76, 83, 84, 86, 89, 90,
95–98, 101, 103, 111, 120, 214–218, 222, 229, 234,
256, 273, 277, 345, 347, 349, 366, 367

– uncertainty 15, 16
median 22, 24, 52, 179, 180, 231, 348
membership functions 180, 322–330, 332,

333
– characteristic function 322
– discrete 326, 327
– fuzzy observations 323–325
– linguistic variables 325, 326
– truth values 325, 326
memory
– random access (RAM) 6, 286
– read-only (ROM) 6, 7
method of steepest descent 259, 262
Mexican hat 78, 79, 318, 319
Minkowski distance 174
missing data 137
mixture designs 118, 119
mode 3, 22, 23, 151, 158, 170, 256
model(ing)
– dynamical system model 62
– empirical 114, 119, 120, 213, 261, 267, 269
– linear 107, 120, 214, 221, 259, 311
– mechanistic 119, 261, 267
– power 196, 197

model adequacy test 107, 215, 216, 218, 221,
222

moments of distribution 19
Monte Carlo method 261
Moore–Penrose-matrix see pseudo inverse matrix
Morgan’s algorithm 284
Morlet 78, 79
multicomponent analysis 63, 99, 100, 213, 231, 240,

243, 246, 247, 251, 256, 264, 334, 338, 340
multicriteria optimization 333
multidimensional analysis of variance (MANOVA)

49, 50
multilayer perceptrons 316
multiple linear regression
– diagnostic statistics (see diagnostic statistics)
– direct calibration method 241, 243
– indirect calibration methods 243, 245
– multiway regression 256
– OLS (see ordinary least squares (OLS) regression)
– PCR 235, 246
– PLS 235, 238, 247
– P-matrix approach 245
– soft modeling 246
– spectrometric multicomponent analysis 240
multivariate adaptive regression splines (MARS)

258, 265, 267
multivariate regression spline model 265
multi-way analysis of variance 49, 50
multi-way decompositions 167
mutation 334, 335, 337

n
negation 286, 300
Nelder and Mead method 93, 126, 127
network 3, 7–8, 12, 200, 258, 273, 278, 285, 288,

297, 298, 306–309, 311–321, 330, 334, 338
– worldwide 8
Network Common Data Format (Netcdf ) 278
neural networks 12, 288, 297, 298, 306–322, 330,

338
– aggregation 307, 308
– applications 319, 320
– architecture 313
– artificial neuron 306
– associative learning law 312
– backpropagation algorithm 316–318
– bidirectional associative memory (BAM)

308–310
– competitive learning law 312, 313
– hidden layers 306
– Kohonen networks 318–320
– learning paradigms 311
– models 311
– perceptron models 314–316
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– transfer functions 308
– weights of synapses 307
neuron 306–308, 311–313, 318, 319
Nitrate 32–34
noise
– interference 73
– of signal derivatives 63–66
nonhierarchical cluster analysis
– c-means clustering 181, 182
– fuzzy clustering 180, 181
nonlinear iterative least squares algorithm (NIPALS)

143, 148, 149, 195, 196, 237
nonlinear partial least squares (NPLS) 264
nonlinear PLS 264
nonlinear regression (NLR)
– chemical equilibria 258
– grid search method 261
– Hessian matrix 261
– Jacobian matrix 261
– Marquardt algorithm 262
– Monte Carlo method 261
– parameters 259
– regression diagnostics 262
– simplex method 261
– steepest descent 259, 260
normal distribution 17, 19, 21–23, 28–31, 30,

37–40, 42, 191, 192, 195, 227, 356, 357, 361
normalization 26, 58, 138, 210, 259
nuclear magnetic resonance 69, 274, 275, 277, 278,

292, 293, 299
null hypothesis see hypothesis
N-way PLS (N-PLS) 256, 257
Nyquist frequency 68

o
object 22, 137, 138, 141, 145, 148, 172, 174–182,

189–191, 193–198, 350
objective criterion 10, 101, 129, 130, 348, 349
– aggregation of 175
objective function 93–102, 259, 261, 312, 333, 335,

337, 339–341
– accuracy of analysis 98
– aggregation, performance characteristics 100,

102
– calibration function 96
– detection limit and limit of determination 97
– polyoptimization 102
– specificity and selectivity 98, 100
– time, cost and risk 100
oblimax criterion 160
one-variable t-test
– calculated value vs. tabulated value 31, 32
– nonparametric tests 31
– null hypothesis 30

– one-sided t-test 32
– p-level 34
– significance level 30
– standard deviation 31
– two-sided t-test 31
one-way analysis of variance 44, 46
OPLS see orthogonal PLS (OPLS)
optimization
– poly 102
– sequential 94, 125–132
– simultaneous 100
– systematic 93, 94
ordinal scaled values 96
ordinary least squares (OLS) regression
– definition 232
– matrix notation 232
– parameter estimation 232, 233
– parameter significance 233
– prediction 234, 235
– singular value decomposition (SVD) 233
organization for economic cooperation and

development (OECD) 352
orthogonal PLS (OPLS) 238, 239
outlier 15, 22, 24, 25, 41–43, 52, 179, 186, 190, 196,

227, 231, 247, 249, 250, 253, 254, 272
outlier testing
– Dixon’s Q-test 42, 43
– Grubbs’s test 43
overfitting 168, 203, 233

p
parallel factor analysis 168
parameter estimation 105, 121, 123, 136, 215, 223,

231–235, 261, 262, 266, 320, 334
Pareto optimality 102
Pareto scaling 138
partial least squares (PLS) 143, 184, 231, 233, 235,

236, 238, 239, 245–247, 254–257, 264
partial least squares regression (PLS) 235, 238,

247
partition 16, 44, 105, 179–182, 201, 202, 267
– pattern 179–182, 201, 202
pattern recognition 10, 11, 41, 135–211
pattern recognition and classification see cluster

analysis; supervised learning methods;
unsupervised learning methods

PCR see regression, principal component
peak separation after Kaiser 101
peak shape
– Gaussian 61, 74
– Lorentz 58, 61, 65
Pearson distance 173
percentile 23
perceptron 200, 314, 316, 317, 320, 344
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performance characteristic 95, 96, 100, 101, 285, 346
see also objective function

periodicity 84, 86
pharmaceutical industry 118, 240
Phenol 29
pH monitoring 83
Phosgene 280, 281, 283
Phosphate 174, 175
photomultiplier 3, 20, 73
p-level 34, 49, 50, 252
Poisson distribution 20, 21
polycyclic aromatic hydrocarbons (PAH) 42, 161
polyoptimization 102
Potassium 45, 46, 49
Powell’s method 129
p-Phenylenediamine (PPD) 111, 113, 114,

120–123, 129–132
precision 10, 15, 16, 52, 93, 94, 98, 105, 121, 233,

237, 243, 346, 347
prediction 2, 63, 84, 90, 164, 203, 204, 215,

224–226, 229, 234–236, 238, 239, 246–249,
252–255, 257, 263, 264, 268, 269, 320, 321, 338

– error 235, 247–249, 255, 268
principal component 141, 143, 146–149, 195, 196,

210, 231, 235, 237, 239, 243, 246–248, 254, 255,
288

– analysis (PCA) 139, 141, 143, 144, 146, 147, 150,
151, 153, 156–158, 165–167, 170, 210

principal component analysis (PCA) 141, 153, 165,
167

principal component regression (PCR) 235, 246
principal factor analysis 156
probability 16–18, 20, 21, 23, 27–30, 36, 191, 192,

222, 234, 322, 323, 335–339, 356
probability density function see frequency function
probability function of Poisson distribution 20,

338
process
– random 88
– stationary 85, 87
productivity 10
programming 3, 7, 9, 298, 302–304
programming in logic (PROLOG) 7, 298,

303–306
PROLOG language 303–305
Protein 80, 81, 169–171, 213, 239, 240, 251–253,

278
– Apomyoglobin 169
pseudo-inverse matrix 235

q
Q analysis 151, 158
Q and R analysis 151
quadratic discriminant analysis (QDA) 209

quality assurance
– external 350
– internal 347
quality control 10, 333, 345–349
quality, definition 345
quantile 22, 23, 31, 32, 347, 348
quartiles 22–25, 23
quartimax criterion 160

r
R analysis 151, 154, 158
random access memory (RAM) 6 see also memory,

random access
random errors 16, 98
randomization 103, 104, 133
random number distribution
– central limit theorem 21, 22
– classes 16
– frequency distribution 17
– Gaussian distribution 17, 19
– moments of distribution 19
– Poisson distribution 20, 21
– spectrophotometric measurements 16, 17
range
– analytical 73, 96, 97, 346, 347
– dynamic 97, 346, 347
– scaling 138
rank 22, 96, 137, 141, 154, 159, 235, 248, 253, 366
rank annihilation 141
read-only memory (ROM) 6 see memory; read-only

(ROM)
recovery function 252, 262, 268, 269, 346
recursive filters 62
reduced correlation matrix 151
regression
– linear 78, 87, 90, 161, 163, 187, 213, 214, 216, 217,

220, 227, 228, 231, 258, 260, 262, 266, 269, 271,
292, 340, 346

– multiple linear 161, 163, 213, 231–257, 292
– nonlinear (NLR) 258, 259, 264, 266, 267
– nonparametric 267
– ordinary least squares (OLS) 231–233, 235, 243,

245, 252, 253
– partial least squares 235, 238, 247
– principal component (PCR) 231, 233, 235, 245,

246, 254, 255
– robust 228, 231
– tree-based regression 268, 269
– univariate linear 214–231
– weighted 227–230
regression diagnostic 213, 227, 231, 247, 253, 254,

262
regression spline see spline
regression trees 268, 269
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relative cardinality 328, 329
replication 103, 105, 115, 117, 118, 218
residual
– analysis 226–228
– studentized 249–251
resolution
– analytical 99
– chromatographic 100
– visual 56, 64, 65
response 49, 50, 93–95, 101, 102, 106–127,

129–132, 186, 201, 204, 213, 234, 243, 257, 258,
267–269, 335, 336

response surface designs
– blocking of experiments 124, 125
– Box–Behnken design 117
– central composite design 115, 117
– factor effects vs. regression parameters 123,

124
– mixture designs 118, 119
– response surface methods 119, 123
response surface methods (RSM) 93, 95, 119–121,

123, 213
risk 23, 28, 30, 31, 35, 40, 42, 50, 100, 191, 214, 222,

234, 249, 358, 359
robot
– geometry 8, 9
– oblique 159
– orthogonal 159
– target 160
robotics and automation 8, 10
robustness 93, 231, 250, 346, 347, 353
robust regression 231
rotation of factors 159, 160
round-robin test 48, 347, 350
rule 2, 3, 9, 15, 30, 58, 67, 68, 71, 114, 143, 169, 191,

198, 277, 284, 298–305, 312, 316, 319, 329, 330,
337

rule-based fuzzy systems 329, 332

s
sample 5, 15, 82, 99, 135, 215, 274, 306, 346
Savitzky–Golay filter
– filter coefficients 58
– signal derivatives 63, 66
scaling 78, 80, 96, 106, 137–140, 148, 151, 173, 237,

250, 345
– auto 138, 139, 210
– methods 138
– range 137, 138, 210
score 141–144, 146–151, 156–158, 162, 189, 192,

196, 197, 210, 236–239, 247, 248, 264
screening designs
– factor effects estimation 110, 114
– fractional factorial designs 107, 110

– full-factorial design 106
scree test 144, 145, 158
scree test principal components 145
search methods 95, 259, 261, 273
search problems see genetic algorithms
search strategies 273, 286, 302, 334–342
seed 172
selection 58, 94, 104, 227, 286, 288, 290, 299, 306,

313, 317, 334–336, 338, 340, 342
selective analytical method 98
selectivity 94, 98–102, 129, 240, 350
self-organizing feature maps 318 see Kohonen

network; Kohonen networks
self-organizing nets see Kohonen networks
semantic nets 299, 300
sensitivity 93, 94, 96, 97, 99, 104
separation 2, 9, 100, 101, 129, 165, 186, 189, 193,

198, 200, 257, 259, 277, 278, 306, 314, 315
sequential optimization 125, 132
sequential search strategy 286
sequential strategies 95
shell 7, 304, 306
shot noise 72 see noise, white
signal
– derivative 63, 64
– filtering 72, 73, 75
– Gaussian 165
– integration 66–68
– Lorentz 76
– processing 10, 55–90
– smoothing 75, 76
signal-to-background ratio 100, 101
signal-to-noise ratio 72, 93, 100
significance
– level 30, 32, 34, 35, 37, 39, 42, 43, 48, 49, 52, 53,

222–224, 226, 233, 234, 252, 347, 348, 361
– of parameters 233–234
significant factors 158, 159
similarity measure 135, 172–174, 286–289
similarity measures for spectra
– correlation measures 288
– dissimilarity measures 288
– grouping and feature selection 288, 289
– logical operations 289, 290
simplex
– fixed-size 127, 128
– variable-size 128, 129
simplex method 10, 93, 125–132, 261, 339
simplex optimization methods 125, 132
Simpson rules 67, 68
simulated annealing (SA) 338–340
simultaneous strategies 94
singular value decomposition (SVD) 141, 143, 148,

149, 153, 157, 158, 233, 235, 245, 246, 257
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skewness 19, 22, 24
smoothing algorithm 263
smoothing splines 78
soft computing 11, 297–342
soft independent modeling of class analogies

(SIMCA) 195
soft modeling 244–246
software 2, 6, 9, 34, 39, 49, 50, 53, 56, 108, 146, 156,

247, 284, 369
soil 42, 83, 210
source file 275
specific analytical method 99
specificity 98
spectra interpretation 11, 306
spectra simulation 292, 294
spline
– adaptive 77
– function 75–78, 265
– interpolating 77
– regression 258, 265
– smoothing 55, 78
spline functions
– definition 76
– interpolating splines 77
– smoothing 78
standard deviation
– of the procedure 346
– relative 20, 23, 24
standard error
– of calibration (SEC) 247, 253
– of prediction (SEP) 229, 236, 238, 247, 248,

253
standard normal distribution 28, 31 see normal

distribution
standard operating procedure (SOP) 347, 348
standard solution 271, 346, 347
Staphylococcus nuclease (SNase) 81
star and sun-ray plots 182
star design see experimental design
star plot 182–183
statistical testing
– hypotheses (see hypotheses testing)
– normal distribution 28, 30
– outlier (see outlier testing)
statistical tests 28, 30, 32, 34, 41, 94, 104, 216
statistics
– descriptive 16–28, 87
– inference 10, 15, 16
steel 35, 48, 49, 285, 299, 306
storage
– bulk 7, 275, 276
– optical 3, 20, 50, 167, 314
straight-line model see regression, univariate linear
– ANOVA 216, 218

– coefficient of determination 220, 221
– confidence bands 224, 226
– confidence intervals 223, 224
– correlation coefficient 220, 221
– lack-of-fit test 221, 222
– parameter estimations 214, 215
– prediction 215
– residual analysis 226, 227
– residual variance 215
– robust regression 231
– standard deviation 215
– standard generalization 216
– weighted regression 228, 230
structure activity relationships 2, 294, 342
structure generator 280
studentized residual 249–251
Student’s t-value 31, 33, 112, 249
substructure search 284, 291
Sulfate 84, 203
sum of residuals 220
sum of squares
– mean (MSS) 220–224, 252
– predictive residual (PRESS) 249, 253–255, 267
Sun ray plot 182, 183
supervised competitive learning 313
supervised learning 311, 332
supervised learning methods
– discriminant analysis 186
– k-nearest neighbor method (k-NN) 193
– linear learning machine (LMM) 184
– SIMCA 195
– tree-based classification 201
– support vector machines 198
supervision 9
support vector machines (SVM) 184, 198, 200,

207–209
symbolic knowledge processing 299, 329, 344
– inferencing 300
– knowledge representation 299
– programming 302, 303
– search strategies 302
symbolic programming 298, 302–304
symmetry 105, 114
Symmlet 79
systematic errors 16, 98
systematic optimizations 94, 95

t
Tabu search (TS) 340–342
tail area 27, 28
target-transformtion factor analysis (TTFA) 150,

160
Taylor expansion 261
ternary mixture 119
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test
– chi-square 360
– distribution 15, 20, 30, 31, 36–43
– for distributions 36
– F-32
– Kolmogorov–Smirnov 36, 38, 39, 361
– nonparametric 31, 193, 213, 258, 266, 267
– outlier 41–43
– t-, extended 35, 36
– t-, general 30, 35
– t-, one-sided 31–34
– t-, one-variable 30
– t-, two-sided 15, 31, 33, 34, 36
– t-, two-variable 34
– Wilk’s 50
textile industry 118
time-series analysis 16, 55–90
– autocorrelation (see autocorrelation)
– autocovariance 85
– autoregression 89, 90
– cross-correlation 89
Titanium 35, 36
traceability 350
transfer function 306, 308, 320
transformation
– Fourier 10, 68–70, 73, 74, 210, 275
– – discrete 78
– Hadamard 10, 55, 68, 70, 71
– inverse 70
– wavelet discrete (DWT) 80, 81
trapezoidal rule 67
tree-based classification
– CART 201, 202, 209
– classification 201, 203
– ensemble methods 204, 207
– recursive binary partitioning 201
trueness 10, 16, 93, 98, 346, 347, 350
truth value 5, 16, 30, 31, 98, 235, 303, 325, 327, 350
Tucker models 168, 170, 172, 256
two-variable t-tests 34
two-way analysis of variance 46, 49

u
uncertainty 15, 16, 25–28, 63, 323, 324 see also

measurement uncertainty
– vs. error 27
– error propagation 25
– measurement uncertainty 15
– random and systematic errors 16
– sources 25
– vagueness 16
– variability 15
uncontrolled factors 104, 105

undirected graphs 281
univariate linear regression
– straight-line model 214 (see also straight-line

model)
unknown factors 104
unselective/partially selective method 99
unsupervised competitive learning 313
unsupervised learning 311
unsupervised learning methods
– cluster analysis 172
– factorial methods 141
– graphical methods 182
urine 88
UV spectroscopy 161

v
vagueness 15, 16
validation 10, 78, 144, 145, 331, 332, 346, 351
variability 15, 16, 332
variable-size simplex optimization method 128, 132
variance
– explained 144, 145
– meaningful 197
– residual 145, 196–198, 215, 223
variance–covariance matrix 139 see covariance

matrix
variate 20, 28, 357
– standard normal 28, 31, 357
varimax criterion 159, 160

w
Walsh function 70, 75
Walter Shewhart 348
Ward’s method 179
warping 82
water 29, 31, 32, 34, 45, 49, 52, 83, 119, 213, 240,

288, 325
wavelet analysis 78, 82
weighing 9, 256, 257
weight 42, 67, 101, 118, 185, 186, 198, 199, 204, 228,

229, 236, 306, 310, 312, 313, 317, 319, 320, 344
weighted regression 228, 230
Welch test 35
Wilcoxon test 31
Word 2, 5, 6, 31, 87, 141, 222
working range 97 see range, analytical

x
X-ray analysis 20
X-ray diffraction spectrometry 275
X-ray fluorescence analysis 101, 299, 322, 323, 333,

338
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