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Preface

Unlike Newton’s mechanics, or Maxwell’s electrodynamics, or Einstein’s
relativity, quantum theory was not created—or even definitively packaged
—by one individual, and it retains to this day some of the scars of its
exhilarating but traumatic youth. There is no general consensus as to what
its fundamental principles are, how it should be taught, or what it really
“means.” Every competent physicist can “do” quantum mechanics, but the
stories we tell ourselves about what we are doing are as various as the tales
of Scheherazade, and almost as implausible. Niels Bohr said, “If you are
not confused by quantum physics then you haven’t really understood it”;
Richard Feynman remarked, “I think I can safely say that nobody
understands quantum mechanics.”

The purpose of this book is to teach you how to do quantum
mechanics. Apart from some essential background in Chapter 1, the deeper
quasi-philosophical questions are saved for the end. We do not believe one
can intelligently discuss what quantum mechanics means until one has a
firm sense of what quantum mechanics does. But if you absolutely cannot
wait, by all means read the Afterword immediately after finishing
Chapter 1.

Not only is quantum theory conceptually rich, it is also technically
difficult, and exact solutions to all but the most artificial textbook
examples are few and far between. It is therefore essential to develop
special techniques for attacking more realistic problems. Accordingly, this
book is divided into two parts;1 Part I covers the basic theory, and Part II
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assembles an arsenal of approximation schemes, with illustrative
applications. Although it is important to keep the two parts logically
separate, it is not necessary to study the material in the order presented
here. Some instructors, for example, may wish to treat time-independent
perturbation theory right after Chapter 2.

This book is intended for a one-semester or one-year course at the
junior or senior level. A one-semester course will have to concentrate
mainly on Part I; a full-year course should have room for supplementary
material beyond Part II. The reader must be familiar with the rudiments of
linear algebra (as summarized in the Appendix), complex numbers, and
calculus up through partial derivatives; some acquaintance with Fourier
analysis and the Dirac delta function would help. Elementary classical
mechanics is essential, of course, and a little electrodynamics would be
useful in places. As always, the more physics and math you know the
easier it will be, and the more you will get out of your study. But quantum
mechanics is not something that flows smoothly and naturally from earlier
theories. On the contrary, it represents an abrupt and revolutionary
departure from classical ideas, calling forth a wholly new and radically
counterintuitive way of thinking about the world. That, indeed, is what
makes it such a fascinating subject.

At first glance, this book may strike you as forbiddingly
mathematical. We encounter Legendre, Hermite, and Laguerre
polynomials, spherical harmonics, Bessel, Neumann, and Hankel
functions, Airy functions, and even the Riemann zeta function—not to
mention Fourier transforms, Hilbert spaces, hermitian operators, and
Clebsch–Gordan coefficients. Is all this baggage really necessary? Perhaps
not, but physics is like carpentry: Using the right tool makes the job easier,
not more difficult, and teaching quantum mechanics without the
appropriate mathematical equipment is like having a tooth extracted with a
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pair of pliers—it’s possible, but painful. (On the other hand, it can be
tedious and diverting if the instructor feels obliged to give elaborate
lessons on the proper use of each tool. Our instinct is to hand the students
shovels and tell them to start digging. They may develop blisters at first,
but we still think this is the most efficient and exciting way to learn.) At
any rate, we can assure you that there is no deep mathematics in this book,
and if you run into something unfamiliar, and you don’t find our
explanation adequate, by all means ask someone about it, or look it up.
There are many good books on mathematical methods—we particularly
recommend Mary Boas, Mathematical Methods in the Physical Sciences,
3rd edn, Wiley, New York (2006), or George Arfken and Hans-Jurgen
Weber, Mathematical Methods for Physicists, 7th edn, Academic Press,
Orlando (2013). But whatever you do, don’t let the mathematics—which,
for us, is only a tool—obscure the physics.

Several readers have noted that there are fewer worked examples in
this book than is customary, and that some important material is relegated
to the problems. This is no accident. We don’t believe you can learn
quantum mechanics without doing many exercises for yourself. Instructors
should of course go over as many problems in class as time allows, but
students should be warned that this is not a subject about which anyone
has natural intuitions—you’re developing a whole new set of muscles
here, and there is simply no substitute for calisthenics. Mark Semon
suggested that we offer a “Michelin Guide” to the problems, with varying
numbers of stars to indicate the level of difficulty and importance. This
seemed like a good idea (though, like the quality of a restaurant, the
significance of a problem is partly a matter of taste); we have adopted the
following rating scheme:

an essential problem that every reader should study;
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a somewhat more difficult or peripheral problem;

an unusually challenging problem, that may take over an hour.

(No stars at all means fast food: OK if you’re hungry, but not very
nourishing.) Most of the one-star problems appear at the end of the
relevant section; most of the three-star problems are at the end of the
chapter. If a computer is required, we put a mouse in the margin. A
solution manual is available (to instructors only) from the publisher.

In preparing this third edition we have tried to retain as much as
possible the spirit of the first and second. Although there are now two
authors, we still use the singular (“I”) in addressing the reader—it feels
more intimate, and after all only one of us can speak at a time (“we” in the
text means you, the reader, and I, the author, working together). Schroeter
brings the fresh perspective of a solid state theorist, and he is largely
responsible for the new chapter on symmetries. We have added a number
of problems, clarified many explanations, and revised the Afterword. But
we were determined not to allow the book to grow fat, and for that reason
we have eliminated the chapter on the adiabatic approximation (significant
insights from that chapter have been incorporated into Chapter 11), and
removed material from Chapter 5 on statistical mechanics (which properly
belongs in a book on thermal physics). It goes without saying that
instructors are welcome to cover such other topics as they see fit, but we
want the textbook itself to represent the essential core of the subject.

We have benefitted from the comments and advice of many
colleagues, who read the original manuscript, pointed out weaknesses (or
errors) in the first two editions, suggested improvements in the
presentation, and supplied interesting problems. We especially thank
P. K. Aravind (Worcester Polytech), Greg Benesh (Baylor), James
Bernhard (Puget Sound), Burt Brody (Bard), Ash Carter (Drew), Edward
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Chang (Massachusetts), Peter Collings (Swarthmore), Richard Crandall
(Reed), Jeff Dunham (Middlebury), Greg Elliott (Puget Sound), John
Essick (Reed), Gregg Franklin (Carnegie Mellon), Joel Franklin (Reed),
Henry Greenside (Duke), Paul Haines (Dartmouth), J. R. Huddle (Navy),
Larry Hunter (Amherst), David Kaplan (Washington), Don Koks
(Adelaide), Peter Leung (Portland State), Tony Liss (Illinois), Jeffry
Mallow (Chicago Loyola), James McTavish (Liverpool), James Nearing
(Miami), Dick Palas, Johnny Powell (Reed), Krishna Rajagopal (MIT),
Brian Raue (Florida International), Robert Reynolds (Reed), Keith Riles
(Michigan), Klaus Schmidt-Rohr (Brandeis), Kenny Scott (London), Dan
Schroeder (Weber State), Mark Semon (Bates), Herschel Snodgrass
(Lewis and Clark), John Taylor (Colorado), Stavros Theodorakis (Cyprus),
A. S. Tremsin (Berkeley), Dan Velleman (Amherst), Nicholas Wheeler
(Reed), Scott Willenbrock (Illinois), William Wootters (Williams), and
Jens Zorn (Michigan).

1   This structure was inspired by David Park’s classic text Introduction to the
Quantum Theory, 3rd edn, McGraw-Hill, New York (1992).
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Part I
Theory

◈
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1
The Wave Function

◈

1.1 The Schrödinger Equation

Imagine a particle of mass m, constrained to move along the x axis, subject
to some specified force  (Figure 1.1). The program of classical
mechanics is to determine the position of the particle at any given time: 

. Once we know that, we can figure out the velocity , the
momentum , the kinetic energy , or any other
dynamical variable of interest. And how do we go about determining ?
We apply Newton’s second law: . (For conservative systems—the
only kind we shall consider, and, fortunately, the only kind that occur at
the microscopic level—the force can be expressed as the derivative of a
potential energy function,1 , and Newton’s law reads 

.) This, together with appropriate initial conditions
(typically the position and velocity at ), determines .

 

Figure 1.1: A “particle” constrained to move in one dimension under the
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(1.1)

(1.2)

influence of a specified force.

Quantum mechanics approaches this same problem quite differently.
In this case what we’re looking for is the particle’s wave function, ,
and we get it by solving the Schrödinger equation:

Here i is the square root of  , and  is Planck’s constant—or rather, his
original constant (h) divided by :

The Schrödinger equation plays a role logically analogous to Newton’s
second law: Given suitable initial conditions (typically, ), the
Schrödinger equation determines  for all future time, just as, in
classical mechanics, Newton’s law determines  for all future time.2

1.2 The Statistical Interpretation

But what exactly is this “wave function,” and what does it do for you once
you’ve got it? After all, a particle, by its nature, is localized at a point,
whereas the wave function (as its name suggests) is spread out in space
(it’s a function of x, for any given t). How can such an object represent the
state of a particle? The answer is provided by Born’s statistical
interpretation, which says that  gives the probability of finding
the particle at point x, at time t—or, more precisely,3
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(1.3)Probability is the area under the graph of . For the
wave function in Figure 1.2, you would be quite likely to find the particle
in the vicinity of point A, where  is large, and relatively unlikely to find
it near point B.

 

Figure 1.2: A typical wave function. The shaded area represents the
probability of finding the particle between a and b. The particle would be
relatively likely to be found near A, and unlikely to be found near B.

The statistical interpretation introduces a kind of indeterminacy into
quantum mechanics, for even if you know everything the theory has to tell
you about the particle (to wit: its wave function), still you cannot predict
with certainty the outcome of a simple experiment to measure its position
—all quantum mechanics has to offer is statistical information about the
possible results. This indeterminacy has been profoundly disturbing to
physicists and philosophers alike, and it is natural to wonder whether it is a
fact of nature, or a defect in the theory.

Suppose I do measure the position of the particle, and I find it to be at
point C.4 Question: Where was the particle just before I made the
measurement? There are three plausible answers to this question, and they
serve to characterize the main schools of thought regarding quantum
indeterminacy:

    1. The realist position: The particle was at C. This certainly seems reasonable,
and it is the response Einstein advocated. Note, however, that if this is true then
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quantum mechanics is an incomplete theory, since the particle really was at C, and
yet quantum mechanics was unable to tell us so. To the realist, indeterminacy is
not a fact of nature, but a reflection of our ignorance. As d’Espagnat put it, “the
position of the particle was never indeterminate, but was merely unknown to the
experimenter.”5 Evidently  is not the whole story—some additional information
(known as a hidden variable) is needed to provide a complete description of the
particle.

2. The orthodox position: The particle wasn’t really anywhere. It was the act of
measurement that forced it to “take a stand” (though how and why it decided on
the point C we dare not ask). Jordan said it most starkly: “Observations not only
disturb what is to be measured, they produce it …We compel [the particle] to
assume a definite position.”6 This view (the so-called Copenhagen
interpretation), is associated with Bohr and his followers. Among physicists it
has always been the most widely accepted position. Note, however, that if it is
correct there is something very peculiar about the act of measurement—something
that almost a century of debate has done precious little to illuminate.

3. The agnostic position: Refuse to answer. This is not quite as silly as it sounds
—after all, what sense can there be in making assertions about the status of a
particle before a measurement, when the only way of knowing whether you were
right is precisely to make a measurement, in which case what you get is no longer
“before the measurement”? It is metaphysics (in the pejorative sense of the word)
to worry about something that cannot, by its nature, be tested. Pauli said: “One
should no more rack one’s brain about the problem of whether something one
cannot know anything about exists all the same, than about the ancient question of
how many angels are able to sit on the point of a needle.”7 For decades this was
the “fall-back” position of most physicists: they’d try to sell you the orthodox
answer, but if you were persistent they’d retreat to the agnostic response, and
terminate the conversation.

Until fairly recently, all three positions (realist, orthodox, and
agnostic) had their partisans. But in 1964 John Bell astonished the physics
community by showing that it makes an observable difference whether the
particle had a precise (though unknown) position prior to the
measurement, or not. Bell’s discovery effectively eliminated agnosticism
as a viable option, and made it an experimental question whether 1 or 2 is
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the correct choice. I’ll return to this story at the end of the book, when you
will be in a better position to appreciate Bell’s argument; for now, suffice
it to say that the experiments have decisively confirmed the orthodox

interpretation:8 a particle simply does not have a precise position prior to
measurement, any more than the ripples on a pond do; it is the
measurement process that insists on one particular number, and thereby in
a sense creates the specific result, limited only by the statistical weighting
imposed by the wave function.

What if I made a second measurement, immediately after the first?
Would I get C again, or does the act of measurement cough up some
completely new number each time? On this question everyone is in
agreement: A repeated measurement (on the same particle) must return the
same value. Indeed, it would be tough to prove that the particle was really
found at C in the first instance, if this could not be confirmed by
immediate repetition of the measurement. How does the orthodox
interpretation account for the fact that the second measurement is bound to
yield the value C? It must be that the first measurement radically alters the
wave function, so that it is now sharply peaked about C (Figure 1.3). We
say that the wave function collapses, upon measurement, to a spike at the
point C (it soon spreads out again, in accordance with the Schrödinger
equation, so the second measurement must be made quickly). There are,
then, two entirely distinct kinds of physical processes: “ordinary” ones, in
which the wave function evolves in a leisurely fashion under the
Schrödinger equation, and “measurements,” in which  suddenly and
discontinuously collapses.9
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Figure 1.3: Collapse of the wave function: graph of  immediately after a
measurement has found the particle at point C.

Example 1.1
Electron Interference. I have asserted that particles (electrons, for
example) have a wave nature, encoded in . How might we check
this, in the laboratory?

The classic signature of a wave phenomenon is interference:
two waves in phase interfere constructively, and out of phase they
interfere destructively. The wave nature of light was confirmed in
1801 by Young’s famous double-slit experiment, showing
interference “fringes” on a distant screen when a monochromatic
beam passes through two slits. If essentially the same experiment
is done with electrons, the same pattern develops,10  confirming
the wave nature of electrons.

Now suppose we decrease the intensity of the electron beam,
until only one electron is present in the apparatus at any particular
time. According to the statistical interpretation each electron will
produce a spot on the screen. Quantum mechanics cannot predict
the precise location of that spot—all it can tell us is the probability
of a given electron landing at a particular place. But if we are
patient, and wait for a hundred thousand electrons—one at a time
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—to make the trip, the accumulating spots reveal the classic two-
slit interference pattern (Figure 1.4). 11

 

Figure 1.4:  Build-up of the electron interference pattern. (a) Eight
electrons, (b) 270 electrons, (c) 2000 electrons, (d) 160,000 electrons.
Reprinted courtesy of the Central Research Laboratory, Hitachi, Ltd.,
Japan.

Of course, if you close off one slit, or somehow contrive to detect
which slit each electron passes through, the interference pattern
disappears; the wave function of the emerging particle is now
entirely different (in the first case because the boundary conditions
for the Schrödinger equation have been changed, and in the second
because of the collapse of the wave function upon measurement).
But with both slits open, and no interruption of the electron in
flight, each electron interferes with itself; it didn’t pass through
one slit or the other, but through both at once, just as a water wave,
impinging on a jetty with two openings, interferes with itself.
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There is nothing mysterious about this, once you have accepted the
notion that particles obey a wave equation. The truly astonishing
thing is the blip-by-blip assembly of the pattern. In any classical
wave theory the pattern would develop smoothly and continuously,
simply getting more intense as time goes on. The quantum process
is more like the pointillist painting of Seurat: The picture emerges

from the cumulative contributions of all the individual dots.12

1.3 Probability

1.3.1 Discrete Variables

Because of the statistical interpretation, probability plays a central role in
quantum mechanics, so I digress now for a brief discussion of probability
theory. It is mainly a question of introducing some notation and
terminology, and I shall do it in the context of a simple example.

Imagine a room containing fourteen people, whose ages are as
follows:

one person aged 14,
one person aged 15,
three people aged 16,
two people aged 22,
two people aged 24,
five people aged 25.

If we let  represent the number of people of age j, then
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(1.4)

(1.5)

while , for instance, is zero. The total number of people in the room
is

(In the example, of course, .) Figure 1.5 is a histogram of the data.
The following are some questions one might ask about this distribution.

 

Figure 1.5: Histogram showing the number of people, , with age j, for the
example in Section 1.3.1.

Question 1   If you selected one individual at random from this group,
what is the probability that this person’s age would be 15?
Answer   One chance in 14, since there are 14 possible choices, all equally
likely, of whom only one has that particular age. If  is the probability
of getting age j, then , and so
on. In general,
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(1.6)

(1.7)

Notice that the probability of getting either 14 or 15 is the sum of the
individual probabilities (in this case, 1/7). In particular, the sum of all the
probabilities is 1—the person you select must have some age:

Question 2   What is the most probable age?
Answer   25, obviously; five people share this age, whereas at most three
have any other age. The most probable j is the j for which  is a
maximum.
Question 3   What is the median age?
Answer   23, for 7 people are younger than 23, and 7 are older. (The
median is that value of j such that the probability of getting a larger result
is the same as the probability of getting a smaller result.)
Question 4   What is the average (or mean) age?
Answer

In general, the average value of j (which we shall write thus: ) is

Notice that there need not be anyone with the average age or the median
age—in this example nobody happens to be 21 or 23. In quantum
mechanics the average is usually the quantity of interest; in that context it
has come to be called the expectation value. It’s a misleading term, since
it suggests that this is the outcome you would be most likely to get if you
made a single measurement (that would be the most probable value, not
the average value)—but I’m afraid we’re stuck with it.
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(1.8)

(1.9)

(1.10)

Question 5   What is the average of the squares of the ages?
Answer   You could get , with probability 1/14, or ,
with probability 1/14, or , with probability 3/14, and so on. The
average, then, is

In general, the average value of some function of j is given by

(Equations 1.6, 1.7, and 1.8 are, if you like, special cases of this formula.)
Beware: The average of the squares, , is not equal, in general, to the
square of the average, . For instance, if the room contains just two
babies, aged 1 and 3, then , but .

Now, there is a conspicuous difference between the two histograms in
Figure 1.6, even though they have the same median, the same average, the
same most probable value, and the same number of elements: The first is
sharply peaked about the average value, whereas the second is broad and
flat. (The first might represent the age profile for students in a big-city
classroom, the second, perhaps, a rural one-room schoolhouse.) We need a
numerical measure of the amount of “spread” in a distribution, with
respect to the average. The most obvious way to do this would be to find
out how far each individual is from the average,

and compute the average of . Trouble is, of course, that you get zero:
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(1.11)

(Note that  is constant—it does not change as you go from one member
of the sample to another—so it can be taken outside the summation.) To
avoid this irritating problem you might decide to average the absolute
value of . But absolute values are nasty to work with; instead, we get
around the sign problem by squaring before averaging:

This quantity is known as the variance of the distribution; σ itself (the
square root of the average of the square of the deviation from the average
—gulp!) is called the standard deviation. The latter is the customary
measure of the spread about .

 

Figure 1.6: Two histograms with the same median, same average, and same
most probable value, but different standard deviations.

There is a useful little theorem on variances:
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(1.12)

(1.13)

Taking the square root, the standard deviation itself can be written as

In practice, this is a much faster way to get σ than by direct application of
Equation 1.11: simply calculate  and , subtract, and take the square
root. Incidentally, I warned you a moment ago that  is not, in general,
equal to . Since  is plainly non-negative (from its definition 1.11),
Equation 1.12 implies that

and the two are equal only when , which is to say, for distributions
with no spread at all (every member having the same value).

1.3.2 Continuous Variables

So far, I have assumed that we are dealing with a discrete variable—that
is, one that can take on only certain isolated values (in the example, j had
to be an integer, since I gave ages only in years). But it is simple enough to
generalize to continuous distributions. If I select a random person off the
street, the probability that her age is precisely 16 years, 4 hours, 27
minutes, and 3.333… seconds is zero. The only sensible thing to speak
about is the probability that her age lies in some interval—say, between 16
and 17. If the interval is sufficiently short, this probability is proportional
to the length of the interval. For example, the chance that her age is
between 16 and 16 plus two days is presumably twice the probability that
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(1.14)

(1.15)

(1.16)

(1.17)

(1.18)

(1.19)

it is between 16 and 16 plus one day. (Unless, I suppose, there was some
extraordinary baby boom 16 years ago, on exactly that day—in which case
we have simply chosen an interval too long for the rule to apply. If the
baby boom lasted six hours, we’ll take intervals of a second or less, to be
on the safe side. Technically, we’re talking about infinitesimal intervals.)
Thus

The proportionality factor, , is often loosely called “the probability of
getting x,” but this is sloppy language; a better term is probability
density. The probability that x lies between a and b (a finite interval) is
given by the integral of :

and the rules we deduced for discrete distributions translate in the obvious
way:

Example 1.2
Suppose someone drops a rock off a cliff of height h. As it falls, I
snap a million photographs, at random intervals. On each picture I
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measure the distance the rock has fallen. Question: What is the
average of all these distances? That is to say, what is the time
average of the distance traveled?13

Solution: The rock starts out at rest, and picks up speed as it falls;
it spends more time near the top, so the average distance will
surely be less than . Ignoring air resistance, the distance x at
time t is

The velocity is , and the total flight time is .
The probability that a particular photograph was taken between t
and  is , so the probability that it shows a distance in the
corresponding range x to  is

Thus the probability density (Equation 1.14) is

(outside this range, of course, the probability density is zero).
We can check this result, using Equation 1.16:

The average distance (Equation 1.17) is

which is somewhat less than , as anticipated.
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Figure 1.7 shows the graph of . Notice that a probability
density can be infinite, though probability itself (the integral of ρ)
must of course be finite (indeed, less than or equal to 1).

 

Figure 1.7:  The probability density in Example 1.2: 
.

Problem 1.1 For the distribution of ages in the
example in Section 1.3.1:

(a)   Compute  and .
(b)   Determine  for each j, and use

Equation 1.11 to compute the standard
deviation.

(c)   Use your results in (a) and (b) to check
Equation 1.12.

Problem 1.2
(a)   Find the standard deviation of the

distribution in Example 1.2.
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(1.20)

(b)   What is the probability that a
photograph, selected at random, would
show a distance x more than one
standard deviation away from the
average?

Problem 1.3 Consider the gaussian
distribution

where A, a, and  are positive real
constants. (The necessary integrals are
inside the  back cover.)
(a)   Use Equation 1.16 to determine A.
(b)   Find , , and σ.
(c)   Sketch the graph of .

1.4 Normalization

We return now to the statistical interpretation of the wave function
(Equation 1.3), which says that  is the probability density for
finding the particle at point x, at time t. It follows (Equation 1.16) that the
integral of  over all x must be 1 (the particle’s got to be somewhere):

Without this, the statistical interpretation would be nonsense.
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(1.21)

However, this requirement should disturb you: After all, the wave
function is supposed to be determined by the Schrödinger equation—we
can’t go imposing an extraneous condition on  without checking that the
two are consistent. Well, a glance at Equation 1.1 reveals that if  is a
solution, so too is , where A is any (complex) constant. What we
must do, then, is pick this undetermined multiplicative factor so as to
ensure that Equation 1.20 is satisfied. This process is called normalizing
the wave function. For some solutions to the Schrödinger equation the
integral is infinite; in that case no multiplicative factor is going to make it
1. The same goes for the trivial solution . Such non-normalizable
solutions cannot represent particles, and must be rejected. Physically
realizable states correspond to the square-integrable solutions to
Schrödinger’s equation.14

But wait a minute! Suppose I have normalized the wave function at
time . How do I know that it will stay normalized, as time goes on,
and  evolves? (You can’t keep renormalizing the wave function, for then
A becomes a function of t, and you no longer have a solution to the
Schrödinger equation.) Fortunately, the Schrödinger equation has the
remarkable property that it automatically preserves the normalization of
the wave function—without this crucial feature the Schrödinger equation
would be incompatible with the statistical interpretation, and the whole
theory would crumble.

This is important, so we’d better pause for a careful proof. To begin
with,

(Note that the integral is a function only of t, so I use a total derivative 
 on the left, but the integrand is a function of x as well as t, so it’s a

partial derivative  on the right.) By the product rule,
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(1.22)

(1.23)

(1.24)

(1.26)

(1.27)

(1.25)

Now the Schrödinger equation says that

and hence also (taking the complex conjugate of Equation 1.23)

so

The integral in Equation 1.21 can now be evaluated
explicitly:

But  must go to zero as x goes to  infinity—otherwise the wave
function would not be normalizable.15 It follows that

and hence that the integral is constant (independent of time); if  is
normalized at , it stays normalized for all future time. QED

Problem 1.4 At time  a particle is
represented by the wave function
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where A, a, and b are (positive) constants.
(a)   Normalize  (that is, find A, in terms

of a and b).
(b)   Sketch , as a function of x.
(c)   Where is the particle most likely to be

found, at ?
(d)   What is the probability of finding the

particle to the left of a? Check your
result in the limiting cases  and 

.
(e)   What is the expectation value of x?

Problem 1.5 Consider the wave function

where A, , and ω are positive real
constants. (We’ll see in Chapter 2 for what
potential  (V) this wave function satisfies
the Schrödinger equation.)
(a)   Normalize .
(b)   Determine the expectation values of x

and .
(c)   Find the standard deviation of x.

Sketch the graph of , as a function
of x, and mark the points  and 
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(1.28)

, to illustrate the sense in
which σ represents the “spread” in x.
What is the probability that the particle
would be found outside this range?

1.5 Momentum

For a particle in state , the expectation value of x is

What exactly does this mean? It emphatically does not mean that if you
measure the position of one particle over and over again,  is the
average of the results you’ll get. On the contrary: The first measurement
(whose outcome is indeterminate) will collapse the wave function to a
spike at the value actually obtained, and the subsequent measurements (if
they’re performed quickly) will simply repeat that same result. Rather, 
is the average of measurements performed on particles all in the state ,
which means that either you must find some way of returning the particle
to its original state after each measurement, or else you have to prepare a
whole ensemble of particles, each in the same state , and measure the
positions of all of them:  is the average of these results. I like to picture
a row of bottles on a shelf, each containing a particle in the state 
(relative to the center of the bottle). A graduate student with a ruler is
assigned to each bottle, and at a signal they all measure the positions of
their respective particles. We then construct a histogram of the results,
which should match , and compute the average, which should agree
with . (Of course, since we’re only using a finite sample, we can’t
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(1.30)

(1.31)

(1.29)

expect perfect agreement, but the more bottles we use, the closer we ought
to come.) In short, the expectation value is the average of measurements
on an ensemble of identically-prepared systems, not the average of
repeated measurements on one and the same system.

Now, as time goes on,  will change (because of the time
dependence of ), and we might be interested in knowing how fast it
moves. Referring to Equations 1.25 and 1.28, we see that16

This expression can be simplified using integration-by-
parts:17

(I used the fact that , and threw away the boundary term, on the
ground that  goes to zero at  infinity.) Performing another integration-
by-parts, on the second term, we conclude:

What are we to make of this result? Note that we’re talking about the
“velocity” of the expectation value of x, which is not the same thing as the
velocity of the particle. Nothing we have seen so far would enable us to
calculate the velocity of a particle. It’s not even clear what velocity means
in quantum mechanics: If the particle doesn’t have a determinate position
(prior to measurement), neither does it have a well-defined velocity. All
we could reasonably ask for is the probability of getting a particular value.
We’ll see in Chapter 3 how to construct the probability density for
velocity, given ; for the moment it will suffice to postulate that the
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(1.32)

(1.33)

(1.34)

(1.35)

expectation value of the velocity is equal to the time derivative of the
expectation value of position:

Equation 1.31 tells us, then, how to calculate  directly from .
Actually, it is customary to work with momentum , rather

than velocity:

Let me write the expressions for  and  in a more suggestive way:

We say that the operator18 x “represents” position, and the operator 
 “represents” momentum; to calculate expectation values we

“sandwich” the appropriate operator between  and , and integrate.
That’s cute, but what about other quantities? The fact is, all classical

dynamical variables can be expressed in terms of position and momentum.
Kinetic energy, for example, is

and angular momentum is

(the latter, of course, does not occur for motion in one dimension). To
calculate the expectation value of any such quantity, , we simply
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(1.36)

(1.37)

∗

(1.38)

replace every p by , insert the resulting operator between 
and , and integrate:

For example, the expectation value of the kinetic energy is

Equation 1.36 is a recipe for computing the expectation value of any
dynamical quantity, for a particle in state ; it subsumes Equations 1.34
and 1.35 as special cases. I have tried to make Equation 1.36 seem
plausible, given Born’s statistical interpretation, but in truth this represents
such a radically new way of doing business (as compared with classical
mechanics) that it’s a good idea to get some practice using it before we
come back (in Chapter 3) and put it on a firmer theoretical foundation. In
the mean time, if you prefer to think of it as an axiom, that’s fine with me.

Problem 1.6 Why can’t you do integration-by-
parts directly on the middle expression in
Equation 1.29—pull the time derivative over
onto x, note that , and conclude that 

?

Problem 1.7 Calculate . Answer:
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This is an instance of Ehrenfest’s theorem,
which asserts that expectation values obey the
classical laws.19

Problem 1.8 Suppose you add a constant  to
the potential energy (by “constant” I mean
independent of x as well as t). In classical
mechanics this doesn’t change anything, but
what about quantum mechanics? Show that the
wave function picks up a time-dependent phase
factor: . What effect does this
have on the expectation value of a dynamical
variable?

1.6 The Uncertainty Principle

Imagine that you’re holding one end of a very long rope, and you generate
a wave by shaking it up and down rhythmically (Figure 1.8). If someone
asked you “Precisely where is that wave?” you’d probably think he was a
little bit nutty: The wave isn’t precisely anywhere—it’s spread out over 50
feet or so. On the other hand, if he asked you what its wavelength is, you
could give him a reasonable answer: it looks like about 6 feet. By contrast,
if you gave the rope a sudden jerk (Figure 1.9), you’d get a relatively
narrow bump traveling down the line. This time the first question (Where
precisely is the wave?) is a sensible one, and the second (What is its
wavelength?) seems nutty—it isn’t even vaguely periodic, so how can you
assign a wavelength to it? Of course, you can draw intermediate cases, in
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(1.39)

(1.40)

which the wave is fairly well localized and the wavelength is fairly well
defined, but there is an inescapable trade-off here: the more precise a

wave’s position is, the less precise is its wavelength, and vice versa.20 A
theorem in Fourier analysis makes all this rigorous, but for the moment I
am only concerned with the qualitative argument.

 

Figure 1.8: A wave with a (fairly) well-defined wavelength, but an ill-defined
position.

 

Figure 1.9: A wave with a (fairly) well-defined position, but an ill-defined
wavelength.

This applies, of course, to any wave phenomenon, and hence in
particular to the quantum mechanical wave function. But the wavelength
of  is related to the momentum of the particle by the de Broglie
formula:21

Thus a spread in wavelength corresponds to a spread in momentum, and
our general observation now says that the more precisely determined a
particle’s position is, the less precisely is its momentum. Quantitatively,
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where  is the standard deviation in x, and  is the standard deviation in
p. This is Heisenberg’s famous uncertainty principle. (We’ll prove it in
Chapter 3, but I wanted to mention it right away, so you can test it out on
the examples in Chapter 2.)

Please understand what the uncertainty principle means: Like position
measurements, momentum measurements yield precise answers—the
“spread” here refers to the fact that measurements made on identically
prepared systems do not yield identical results. You can, if you want,
construct a state such that position measurements will be very close
together (by making  a localized “spike”), but you will pay a price:
Momentum measurements on this state will be widely scattered. Or you
can prepare a state with a definite momentum (by making  a long
sinusoidal wave), but in that case position measurements will be widely
scattered. And, of course, if you’re in a really bad mood you can create a
state for which neither position nor momentum is well defined: Equation
1.40 is an inequality, and there’s no limit on how big  and  can be—
just make  some long wiggly line with lots of bumps and potholes and no
periodic structure.

Problem 1.9 A particle of mass m has the
wave function

where A and a are positive real constants.
(a)   Find A.
(b)   For what potential energy function, 

, is this a solution to the
Schrödinger equation?
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(c)   Calculate the expectation values of 
, and .

(d)   Find  and . Is their product
consistent with the uncertainty
principle?

Further Problems on Chapter 1

Problem 1.10 Consider the first 25 digits
in the decimal expansion of π (3, 1, 4, 1, 5,
9, … ).
(a)   If you selected one number at random,

from this set, what are the probabilities
of getting each of the 10 digits?

(b)   What is the most probable digit? What
is the median digit? What is the
average value?

(c)   Find the standard deviation for this
distribution.

Problem 1.11 [This problem generalizes
Example 1.2.] Imagine a particle of mass m
and energy E in a potential well ,
sliding frictionlessly back and forth
between the classical turning points (a and
b in Figure 1.10). Classically, the
probability of finding the particle in the
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(1.42)

(1.43)

(1.41)

range dx (if, for example, you took a
snapshot at a random time t) is equal to the
fraction of the time T it takes to get from a
to b that it spends in the interval dx:

where  is the speed, and

Thus

This is perhaps the closest classical
analog22  to .
(a)   Use conservation of energy to express 

 in terms of E and .
(b)   As an example, find  for the

simple harmonic oscillator, 
. Plot , and check

that it is correctly normalized.
(c)   For the classical harmonic oscillator in

part (b), find , , and .
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Figure 1.10:  Classical particle in a potential
well.

Problem 1.12 What if we were interested in
the distribution of momenta , for
the classical harmonic oscillator (Problem
1.11(b)).
(a)   Find the classical probability

distribution  (note that p ranges
from  to ).

(b)   Calculate , , and .
(c)   What’s the classical uncertainty

product, , for this system? Notice
that this product can be as small as you
like, classically, simply by sending 

. But in quantum mechanics, as
we shall see in Chapter 2, the energy
of a simple harmonic oscillator cannot
be less than , where  is
the classical frequency. In that case
what can you say about the product 

?
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(1.44)

Problem 1.13 Check your results in Problem
1.11(b) with the following “numerical
experiment.” The position of the oscillator
at time t is

You might as well take  (that sets the
scale for time) and  (that sets the
scale for length). Make a plot of x at
10,000 random times, and compare it with 

.
Hint: In Mathematica, first define

then construct a table of positions:

and finally, make a histogram of the data:

Meanwhile, make a plot of the density
function, , and, using Show,
superimpose the two.

Problem 1.14 Let  be the probability of
finding the particle in the range 
, at time t.
(a)   Show that
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where

What are the units of ?
Comment: J is called the probability
current, because it tells you the rate at
which probability is “flowing” past the
point x. If  is increasing, then
more probability is flowing into the
region at one end than flows out at the
other.

(b)   Find the probability current for the
wave function in Problem 1.9. (This is
not a very pithy example, I’m afraid;
we’ll encounter more substantial ones
in due course.)

Problem 1.15 Show that

for any two (normalizable) solutions to the
Schrödinger equation (with the same ),

 and .

Problem 1.16 A particle is represented (at time
) by the wave function
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(a)   Determine the normalization constant
A.

(b)   What is the expectation value of x?
(c)   What is the expectation value of p?

(Note that you cannot get it from 
. Why not?)

(d)   Find the expectation value of .
(e)   Find the expectation value of .
(f)   Find the uncertainty in .
(g)   Find the uncertainty in .
(h)   Check that your results are consistent

with the uncertainty principle.

Problem 1.17 Suppose you wanted to describe
an unstable particle, that spontaneously
disintegrates with a “lifetime” τ. In that
case the total probability of finding the
particle somewhere should not be constant,
but should decrease at (say) an exponential
rate:

A crude way of achieving this result is as
follows. In Equation 1.24 we tacitly
assumed that V (the potential energy) is
real. That is certainly reasonable, but it
leads to the “conservation of probability”
enshrined in Equation 1.27. What if we
assign to V an imaginary part:
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where  is the true potential energy and Γ
is a positive real constant?
(a)   Show that (in place of Equation 1.27)

we now get

(b)   Solve for , and find the lifetime of
the particle in terms of Γ.

Problem 1.18 Very roughly speaking,
quantum mechanics is relevant when the de
Broglie wavelength of the particle in
question  is greater than the
characteristic size of the system . In
thermal equilibrium at (Kelvin)
temperature T, the average kinetic energy
of a particle is

(where  is Boltzmann’s constant), so the
typical de Broglie wavelength is

The purpose of this problem is to
determine which systems will have to be
treated quantum mechanically, and which
can safely be described classically.

53



(a)   Solids. The lattice spacing in a typical
solid is around  nm. Find the
temperature below which the
unbound23  electrons in a solid are
quantum mechanical. Below what
temperature are the nuclei in a solid
quantum mechanical? (Use silicon as
an example.)
Moral: The free electrons in a solid
are always quantum mechanical; the
nuclei are generally not quantum
mechanical. The same goes for liquids
(for which the interatomic spacing is
roughly the same), with the exception
of helium below 4 K.

(b)   Gases. For what temperatures are the
atoms in an ideal gas at pressure P
quantum mechanical? Hint: Use the
ideal gas law  to deduce
the interatomic spacing.
Answer: .
Obviously (for the gas to show
quantum behavior) we want m to be as
small as possible, and P as large as
possible. Put in the numbers for
helium at atmospheric pressure. Is
hydrogen in outer space (where the
interatomic spacing is about 1 cm and
the temperature is 3 K) quantum
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mechanical? (Assume it’s monatomic
hydrogen, not H .)

1   Magnetic forces are an exception, but let’s not worry about them just yet. By
the way, we shall assume throughout this book that the motion is nonrelativistic

.
2   For a delightful first-hand account of the origins of the Schrödinger equation

see the article by Felix Bloch in Physics Today, December 1976.
3   The wave function itself is complex, but  (where  is the complex

conjugate of ) is real and non-negative—as a probability, of course, must be.
4   Of course, no measuring instrument is perfectly precise; what I mean is that the

particle was found in the vicinity of C, as defined by the precision of the
equipment.

5   Bernard d’Espagnat, “The Quantum Theory and Reality” (Scientific American,
November 1979, p. 165).

6   Quoted in a lovely article by N. David Mermin, “Is the moon there when
nobody looks?” (Physics Today, April 1985, p. 38).

7   Ibid., p. 40.
8   This statement is a little too strong: there exist viable nonlocal hidden variable

theories (notably David Bohm’s), and other formulations (such as the many
worlds interpretation) that do not fit cleanly into any of my three categories.
But I think it is wise, at least from a pedagogical point of view, to adopt a clear
and coherent platform at this stage, and worry about the alternatives later.

9   The role of measurement in quantum mechanics is so critical and so bizarre that
you may well be wondering what precisely constitutes a measurement. I’ll
return to this thorny issue in the Afterword; for the moment let’s take the naive
view: a measurement is the kind of thing that a scientist in a white coat does in
the laboratory, with rulers, stopwatches, Geiger counters, and so on.

10   Because the wavelength of electrons is typically very small, the slits have to be
extremely close together. Historically, this was first achieved by Davisson and
Germer, in 1925, using the atomic layers in a crystal as “slits.” For an
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interesting account, see R. K. Gehrenbeck, Physics Today, January 1978, page
34.

11   See Tonomura et al., American Journal of Physics, Volume 57, Issue 2, pp.
117–120 (1989), and the amazing associated video at
www.hitachi.com/rd/portal/highlight/quantum/doubleslit/. This experiment can
now be done with much more massive particles, including “Bucky-balls”; see
M. Arndt, et al., Nature 40, 680 (1999). Incidentally, the same thing can be
done with light: turn the intensity so low that only one “photon” is present at a
time and you get an identical point-by-point assembly of the interference
pattern. See R. S. Aspden, M. J. Padgett, and G. C. Spalding, Am. J. Phys. 84,
671 (2016).

12   I think it is important to distinguish things like interference and diffraction that
would hold for any wave theory from the uniquely quantum mechanical
features of the measurement process, which derive from the statistical
interpretation.

13   A statistician will complain that I am confusing the average of a finite sample
(a million, in this case) with the “true” average (over the whole continuum).
This can be an awkward problem for the experimentalist, especially when the
sample size is small, but here I am only concerned with the true average, to
which the sample average is presumably a good approximation.

14   Evidently  must go to zero faster than , as . Incidentally,
normalization only fixes the modulus of A; the phase remains undetermined.
However, as we shall see, the latter carries no physical significance anyway.

15   A competent mathematician can supply you with pathological
counterexamples, but they do not arise in physics; for us the wave function and
all its derivatives go to zero at infinity.

16   To keep things from getting too cluttered, I’ll suppress the limits of integration 
.

17   The product rule says that

from which it follows that
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Under the integral sign, then, you can peel a derivative off one factor in a
product, and slap it onto the other one—it’ll cost you a minus sign, and you’ll
pick up a boundary term.

18   An “operator” is an instruction to do something to the function that follows; it
takes in one function, and spits out some other function. The position operator
tells you to multiply by x; the momentum operator tells you to differentiate with
respect to x (and multiply the result by ).

19   Some authors limit the term to the pair of equations  and 

20   That’s why a piccolo player must be right on pitch, whereas a double-bass
player can afford to wear garden gloves. For the piccolo, a sixty-fourth note
contains many full cycles, and the frequency (we’re working in the time
domain now, instead of space) is well defined, whereas for the bass, at a much
lower register, the sixty-fourth note contains only a few cycles, and all you hear
is a general sort of “oomph,” with no very clear pitch.

21   I’ll explain this in due course. Many authors take the de Broglie formula as an
axiom, from which they then deduce the association of momentum with the
operator . Although this is a conceptually cleaner approach, it
involves diverting mathematical complications that I would rather save for
later.

22   If you like, instead of photos of one system at random times, picture an
ensemble of such systems, all with the same energy but with random starting
positions, and photograph them all at the same time. The analysis is identical,
but this interpretation is closer to the quantum notion of indeterminacy.

23   In a solid the inner electrons are attached to a particular nucleus, and for them
the relevant size would be the radius of the atom. But the outer-most electrons
are not attached, and for them the relevant distance is the lattice spacing. This
problem pertains to the outer electrons.
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(2.1)

(2.2)

2
Time-Independent Schrödinger Equation

◈

2.1 Stationary States

In Chapter 1 we talked a lot about the wave function, and how you use it to
calculate various quantities of interest. The time has come to stop
procrastinating, and confront what is, logically, the prior question: How do
you get  in the first place? We need to solve the Schrödinger
equation,

for a specified potential1 . In this chapter (and most of this book) I
shall assume that V is independent of t. In that case the Schrödinger
equation can be solved by the method of separation of variables (the
physicist’s first line of attack on any partial differential equation): We look
for solutions that are products,

where  (lower-case) is a function of x alone, and  is a function of t
alone. On its face, this is an absurd restriction, and we cannot hope to
obtain more than a tiny subset of all solutions in this way. But hang on,
because the solutions we do get turn out to be of great interest. Moreover
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(2.3)

(2.4)

(as is typically the case with separation of variables) we will be able at the
end to patch together the separable solutions in such a way as to construct
the most general solution.

For separable solutions we have

(ordinary derivatives, now), and the Schrödinger equation reads

Or, dividing through by :

Now, the left side is a function of t alone, and the right side is a function of
x alone.2 The only way this can possibly be true is if both sides are in fact
constant—otherwise, by varying t, I could change the left side without
touching the right side, and the two would no longer be equal. (That’s a
subtle but crucial argument, so if it’s new to you, be sure to pause and
think it through.) For reasons that will appear in a moment, we shall call
the separation constant E. Then

or

and
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(2.5)

(2.6)

(2.7)

(2.8)

or

Separation of variables has turned a partial differential equation into
two ordinary differential equations (Equations 2.4 and 2.5). The first of
these is easy to solve (just multiply through by dt and integrate); the
general solution is , but we might as well absorb the
constant C into  (since the quantity of interest is the product . Then3

The second (Equation 2.5) is called the time-independent Schrödinger
equation; we can go no further with it until the potential  is specified.

The rest of this chapter will be devoted to solving the time-
independent Schrödinger equation, for a variety of simple potentials. But
before I get to that you have every right to ask: What’s so great about
separable solutions? After all, most solutions to the (time dependent)
Schrödinger equation do not take the form . I offer three answers
—two of them physical, and one mathematical:

1.   They are stationary states. Although the wave function itself,

does(obviously) depend on t, the probability density,

does not—the time-dependence cancels out.4 The same thing
happens in calculating the expectation value of any dynamical
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(2.10)

(2.11)

(2.13)

(2.12)

variable; Equation 1.36 reduces to

Every expectation value is constant in time; we might as well drop
the factor  altogether, and simply use  in place of . (Indeed,
it is common to refer to  as “the wave function,” but this is sloppy
language that can be dangerous, and it is important to remember
that the true wave function always carries that time-dependent
wiggle factor.) In particular,  is constant, and hence (Equation
1.33) . Nothing ever happens in a stationary state.

2.   They are states of definite total energy. In classical mechanics, the
total energy (kinetic plus potential) is called the Hamiltonian:

The corresponding Hamiltonian operator, obtained by the
canonical substitution , is therefore5

Thus the time-independent Schrödinger equation (Equation 2.5)
can be written

and the expectation value of the total energy is

(Notice that the normalization of  entails the normalization of .)
Moreover,

61



(2.14)

and hence

So the variance of H is

But remember, if , then every member of the sample must
share the same value (the distribution has zero spread). Conclusion:
A separable solution has the property that every measurement of
the total energy is certain to return the value E. (That’s why I
chose that letter for the separation constant.)

3.   The general solution is a linear combination of separable
solutions. As we’re about to discover, the time-independent
Schrödinger equation (Equation 2.5) yields an infinite collection of
solutions ,  , which we write as ,
each with its associated separation constant 

; thus there is a different wave function for
each allowed energy:

Now (as you can easily check for yourself) the (time-dependent)
Schrödinger equation (Equation 2.1) has the property that any
linear combination6 of solutions is itself a solution. Once we have
found the separable solutions, then, we can immediately construct a
much more general solution, of the form
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(2.15)

(2.16)

It so happens that every solution to the (time-dependent)
Schrödinger equation can be written in this form—it is simply a
matter of finding the right constants  so as to fit the
initial conditions for the problem at hand. You’ll see in the
following sections how all this works out in practice, and in
Chapter 3 we’ll put it into more elegant language, but the main
point is this: Once you’ve solved the time-independent Schrödinger
equation, you’re essentially done; getting from there to the general
solution of the time-dependent Schrödinger equation is, in
principle, simple and straightforward.

A lot has happened in the past four pages, so let me recapitulate, from
a somewhat different perspective. Here’s the generic problem: You’re
given a (time-independent) potential , and the starting wave function 

; your job is to find the wave function, , for any subsequent
time t. To do this you must solve the (time-dependent) Schrödinger
equation (Equation 2.1). The strategy is first to solve the time-independent
Schrödinger equation (Equation 2.5); this yields, in general, an infinite set
of solutions, , each with its own associated energy, . To fit 

 you write down the general linear combination of these solutions:

the miracle is that you can always match the specified initial state7 by
appropriate choice of the constants . To construct  you simply
tack onto each term its characteristic time dependence (its “wiggle
factor”), :8
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(2.18)

The separable solutions themselves,

are stationary states, in the sense that all probabilities and expectation
values are independent of time, but this property is emphatically not shared
by the general solution (Equation 2.17): the energies are different, for
different stationary states, and the exponentials do not cancel, when you
construct .

Example 2.1
Suppose a particle starts out in a linear combination of just two
stationary states:

(To keep things simple I’ll assume that the constants  and the
states  are real.) What is the wave function  at
subsequent times? Find the probability density, and describe its
motion.
Solution: The first part is easy:

where  and  are the energies associated with  and . It
follows that
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(2.20)

(2.21)

The probability density oscillates sinusoidally, at an angular
frequency ; this is certainly not a stationary state.
But notice that it took a linear combination of stationary states
(with different energies) to produce motion.9

You may be wondering what the coefficients  represent
physically. I’ll tell you the answer, though the explanation will have to
await Chapter 3:

A competent measurement will always yield one of the “allowed” values
(hence the name), and  is the probability of getting the particular value

.10 Of course, the sum of these probabilities should be 1:

and the expectation value of the energy must be

We’ll soon see how this works out in some concrete examples. Notice,
finally, that becausethe constants  are independent of time, so too is the
probability of getting a particular energy, and, a fortiori, the expectation
value of H. These are manifestations of energy conservation in quantum
mechanics.
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∗ Problem 2.1 Prove the following three
theorems:

(a)   For normalizable solutions, the
separation constant E must be real.
Hint: Write E (in Equation 2.7) as 

 (with  and Γ real), and show
that if Equation 1.20 is to hold for all t,
Γ must be zero.

(b)   The time-independent wave function 
 can always be taken to be real

(unlike , which is necessarily
complex). This doesn’t mean that
every solution to the time-independent
Schrödinger equation is real; what it
says is that if you’ve got one that is
not, it can always be expressed as a
linear combination of solutions (with
the same energy) that are. So you
might as well stick to s that are real.
Hint: If  satisfies Equation 2.5,
for a given E, so too does its complex
conjugate, and hence also the real
linear combinations  and 

.
(c)   If  is an even function (that is, 

 then  can always
be taken to be either even or odd. Hint:
If  satisfies Equation 2.5, for a
given E, so too does , and hence
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(2.22)

also the even and odd linear
combinations .

Problem 2.2 Show that E must exceed the
minimum value of , for every
normalizable solution to the time-independent
Schrödinger equation. What is the classical
analog to this statement? Hint: Rewrite
Equation 2.5 in the form

if , then  and its second derivative
always have the same sign—argue that such a
function cannot be normalized.

2.2 The Infinite Square Well

Suppose

(Figure 2.1). A particle in this potential is completely free, except at the
two ends  and , where an infinite force prevents it from
escaping. A classical model would be a cart on a frictionless horizontal air
track, with perfectly elastic bumpers—it just keeps bouncing back and
forth forever. (This potential is artificial, of course, but I urge you to treat
it with respect. Despite its simplicity—or rather, precisely because of its
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(2.23)

(2.24)

(2.25)

simplicity—it serves as a wonderfully accessible test case for all the fancy
machinery that comes later. We’ll refer back to it frequently.)

Figure 2.1: The infinite square well potential (Equation 2.22).

Outside the well,  (the probability of finding the particle
there is zero). Inside the well, where , the time-independent
Schrödinger equation (Equation 2.5) reads

or

(By writing it in this way, I have tacitly assumed that ; we know
from Problem 2.2 that  won’t work.) Equation 2.24 is the classical
simple harmonic oscillator equation; the general solution is

where A and B are arbitrary constants. Typically, these constants are fixed
by the boundary conditions of the problem. What are the appropriate
boundary conditions for ? Ordinarily, both  and  are
continuous,11 but where the potential goes to infinity only the first of these
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(2.30)

(2.26)

(2.27)

(2.28)

applies. (I’ll justify these boundary conditions, and account for the
exception when , in Section 2.5; for now I hope you will trust me.)

Continuity of  requires that

so as to join onto the solution outside the well. What does this tell us about
A and B? Well,

so , and hence

Then , so either  (in which case we’re left with the
trivial—non-normalizable—solution , or else , which
means that

But  is no good (again, that would imply , and the negative
solutions give nothing new, since  and we can absorb
the minus sign into A. So the distinct solutions are

Curiously, the boundary condition at  does not determine the
constant A, but rather the constant k, and hence the possible values of E:

In radical contrast to the classical case, a quantum particle in the infinite
square well cannot have just any old energy—it has to be one of these
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(2.32)

special (“allowed”) values.12 To find A, we normalize :13

This only determines the magnitude of A, but it is simplest to pick the
positive real root:  (the phase of A carries no physical
significance anyway). Inside the well, then, the solutions are

As promised, the time-independent Schrödinger equation has
delivered an infinite set of solutions (one for each positive integer . The
first few of these are plotted in Figure 2.2. They look just like the standing
waves on a string of length a; , which carries the lowest energy, is called
the ground state, the others, whose energies increase in proportion to ,
are called excited states. As a collection, the functions  have some
interesting and important properties:

1.   They are alternately even and odd, with respect to the center of the
well:  is even,  is odd,  is even, and so on.14

2.   As you go up in energy, each successive state has one more node
(zero-crossing):  has none (the end points don’t count),  has
one,  has two, and so on.

3.   They are mutually orthogonal, in the sense that15
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(2.34)

(2.35)

Figure 2.2: The first three stationary states of the infinite square well
(Equation 2.31).

Proof:

Note that this argument does not work if . (Can you spot the
point at which it fails?) In that case normalization tells us that the integral
is 1. In fact, we can combine orthogonality and normalization into a single
statement:

where  (the so-called Kronecker delta) is defined by

We say that the s are orthonormal.
4.   They are complete, in the sense that any other function, , can

be expressed as a linear combination of them:

I’m not about to prove the completeness of the functions 
, but if you’ve studied advanced calculus you will
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(2.37)

(2.36)

(2.38)

recognize that Equation 2.35 is nothing but the Fourier series for 
, and the fact that “any” function can be expanded in this way is

sometimes called Dirichlet’s theorem.16

The coefficients  can be evaluated—for a given —by a
method I call Fourier’s trick, which beautifully exploits the
orthonormality of : Multiply both sides of Equation 2.35 by 

, and integrate.

(Notice how the Kronecker delta kills every term in
the sum except the one for which .) Thus the nth coefficient in
the expansion of  is17

These four properties are extremely powerful, and they are not
peculiar to the infinite square well. The first is true whenever the potential
itself is a symmetric function; the second is universal, regardless of the
shape of the potential.18 Orthogonality is also quite general—I’ll show you
the proof in Chapter 3. Completeness holds for all the potentials you are
likely to encounter, but the proofs tend to be nasty and laborious; I’m
afraid most physicists simply assume completeness, and hope for the best.

The stationary states (Equation 2.18) of the infinite square well are

I claimed (Equation 2.17) that the most general solution to the (time-
dependent) Schrödinger equation is a linear combination of stationary
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(2.40)

states:

(If you doubt that this is a solution, by all means check it!) It remains only
for me to demonstrate that I can fit any prescribed initial wave function, 

 by appropriate choice of the coefficients :

The completeness of the s (confirmed in this case by Dirichlet’s theorem)
guarantees that I can always express  in this way, and their
orthonormality licenses the use of Fourier’s trick to determine the actual
coefficients:

That does it: Given the initial wave function, , we first
compute the expansion coefficients , using Equation 2.40, and then plug
these into Equation 2.39 to obtain . Armed with the wave function,
we are in a position to compute any dynamical quantities of interest, using
the procedures in Chapter 1. And this same ritual applies to any potential
—the only things that change are the functional form of the s and the
equation for the allowed energies.

Example 2.2
A particle in the infinite square well has the initial wave function
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for some constant A (see Figure 2.3). Outside the well, of course, 
. Find .

Figure 2.3:  The starting wave function in Example 2.2.

Solution: First we need to determine A, by normalizing :

so

The nth coefficient is (Equation 2.40)
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Thus (Equation 2.39):

Example 2.3
Check that Equation 2.20 is satisfied, for the wave function in
Example 2.2. If you measured the energy of a particle in this state,
what is the most probable result? What is the expectation value of
the energy?
Solution: The starting wave function (Figure 2.3) closely
resembles the ground state  (Figure 2.2). This suggests that 
should dominate,19 and in fact
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The rest of the coefficients make up the difference:20

The most likely outcome of an energy measurement is 
—more than 99.8% of all measurements will yield

this value. The expectation value of the energy (Equation 2.21) is

As one would expect, it is very close to  (5 in place of 
—slightly larger, because of the admixture of

excited states.

Of course, it’s no accident that Equation 2.20 came out right in
Example 2.3. Indeed, this follows from the normalization of  (the s are
independent of time, so I’m going to do the proof for ; if this bothers
you, you can easily generalize the argument to arbitrary .
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(2.41)

(Again, the Kronecker delta picks out the term  in the summation
over m.) Similarly, the expectation value of the energy (Equation 2.21) can
be checked explicitly: The time-independent Schrödinger equation
(Equation 2.12) says

so

Problem 2.3 Show that there is no acceptable
solution to the (time-independent) Schrödinger
equation for the infinite square well with 
or . (This is a special case of the general
theorem in Problem 2.2, but this time do it by
explicitly solving the Schrödinger equation,
and showing that you cannot satisfy the
boundary conditions.)

Problem 2.4 Calculate ,
and , for the nth stationary state of the
infinite square well. Check that the uncertainty
principle is satisfied. Which state comes
closest to the uncertainty limit?
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∗ Problem 2.5 A particle in the infinite square
well has as its initial wave function an even
mixture of the first two stationary states:

(a)   Normalize . (That is, find A.
This is very easy, if you exploit the
orthonormality of  and . Recall
that, having normalized  at ,
you can rest assured that it stays
normalized—if you doubt this, check
it explicitly after doing part (b).)

(b)   Find  and . Express
the latter as a sinusoidal function of
time, as in Example 2.1. To simplify
the result, let .

(c)   Compute . Notice that it oscillates
in time. What is the angular frequency
of the oscillation? What is the
amplitude of the oscillation? (If your
amplitude is greater than , go
directly to jail.)

(d)   Compute . (As Peter Lorre would
say, “Do it ze kveek vay, Johnny!”)

(e)   If you measured the energy of this
particle, what values might you get,
and what is the probability of getting
each of them? Find the expectation
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value of H. How does it compare with 
 and ?

Problem 2.6 Although the overall phase
constant of the wave function is of no physical
significance (it cancels out whenever you
calculate a measurable quantity), the relative
phase of the coefficients in Equation 2.17 does
matter. For example, suppose we change the
relative phase of  and  in Problem 2.5:

where ϕ is some constant. Find 
, and , and compare your

results with what you got before. Study the
special cases  and . (For a
graphical exploration of this problem see the
applet in footnote 9 of this chapter.)

Problem 2.7 A particle in the infinite square
well has the initial wave function

(a)   Sketch , and determine the
constant A.

(b)   Find .
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(c)   What is the probability that a
measurement of the energy would
yield the value ?

(d)   Find the expectation value of the
energy, using Equation 2.21.21

Problem 2.8 A particle of mass m in the
infinite square well (of width  starts out in
the state

for some constant A, so it is (at  equally
likely to be found at any point in the left half
of the well. What is the probability that a
measurement of the energy (at some later time 

 would yield the value ?

Problem 2.9 For the wave function in
Example 2.2, find the expectation value of H,
at time , the “old fashioned” way:

Compare the result we got in Example 2.3.
Note: Because  is independent of time,
there is no loss of generality in using .
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(2.43)

2.3 The Harmonic Oscillator

The paradigm for a classical harmonic oscillator is a mass m attached to a
spring of force constant k. The motion is governed by Hooke’s law,

(ignoring friction), and the solution is

where

is the (angular) frequency of oscillation. The potential energy is

its graph is a parabola.
Of course, there’s no such thing as a perfect harmonic oscillator—if

you stretch it too far the spring is going to break, and typically Hooke’s
law fails long before that point is reached. But practically any potential is
approximately parabolic, in the neighborhood of a local minimum
(Figure 2.4). Formally, if we expand  in a Taylor series about the
minimum:

subtract  (you can add a constant to  with impunity, since that
doesn’t change the force), recognize that  (since  is a
minimum), and drop the higher-order terms (which are negligible as long
as  stays small), we get
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(2.44)

(2.45)

which describes simple harmonic oscillation (about the point , with an
effective spring constant . That’s why the simple harmonic
oscillator is so important: Virtually any oscillatory motion is
approximately simple harmonic, as long as the amplitude is small.22

 

Figure 2.4: Parabolic approximation (dashed curve) to an arbitrary potential,
in the neighborhood of a local minimum.

The quantum problem is to solve the Schrödinger equation for the
potential

(it is customary to eliminate the spring constant in favor of the classical
frequency, using Equation 2.42). As we have seen, it suffices to solve the
time-independent Schrödinger equation:

In the literature you will find two entirely different approaches to this
problem. The first is a straightforward “brute force” solution to the
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(2.48)

differential equation, using the power series method; it has the virtue that

the same strategy can be applied to many other potentials (in fact, we’ll
use it in Chapter 4 to treat the hydrogen atom). The second is a
diabolically clever algebraic technique, using so-called ladder operators.
I’ll show you the algebraic method first, because it is quicker and simpler
(and a lot more fun);23 if you want to skip the power series method for

now, that’s fine, but you should certainly plan to study it at some stage.

2.3.1 Algebraic Method

To begin with, let’s rewrite Equation 2.45 in a more suggestive form:

where  is the momentum operator.24 The basic idea is to
factor the Hamiltonian,

If these were numbers, it would be easy:

Here, however, it’s not quite so simple, because  and x are operators, and
operators do not, in general, commute  is not the same as , as we’ll
see in a moment—though you might want to stop right now and think it
through for yourself). Still, this does motivate us to examine the quantities

(the factor in front is just there to make the final results look nicer).
Well, what is the product ?
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(2.50)

(2.52)

(2.51)

As anticipated, there’s an extra term, involving . We call this the
commutator of x and ; it is a measure of how badly they fail to
commute. In general, the commutator of operators  and  (written with
square brackets) is

In this notation,

We need to figure out the commutator of x and . Warning: Operators
are notoriously slippery to work with in the abstract, and you are bound to
make mistakes unless you give them a “test function,” , to act on. At
the end you can throw away the test function, and you’ll be left with an
equation involving the operators alone. In the present case we have:

Dropping the test function, which has served its purpose,

This lovely and ubiquitous formula is known as the canonical
commutation relation.25

With this, Equation 2.50 becomes
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(2.54)

(2.55)

(2.57)

(2.58)

(2.56)

or

Evidently the Hamiltonian does not factor perfectly—there’s that extra 
 on the right. Notice that the ordering of  and  is important here;

the same argument, with  on the left, yields

In particular,

Meanwhile, the Hamiltonian can equally well be written

In terms of , then, the Schrödinger equation26 for the harmonic oscillator
takes the form

(in equations like this you read the upper signs all the way across, or else
the lower signs).

Now, here comes the crucial step: I claim that:

If  satisfies the Schrödinger equation with energy E (that is: 
, then  satisfies the Schrödinger equation with

energy : .
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Proof:  

(I used Equation 2.56 to replace  by  in the second
line. Notice that whereas the ordering of  and  does matter, the
ordering of  and any constants—such as , and E—does not; an
operator commutes with any constant.)

By the same token,  is a solution with energy :

Here, then, is a wonderful machine for generating new solutions, with
higher and lower energies—if we could just find one solution, to get
started! We call  ladder operators, because they allow us to climb up
and down in energy;  is the raising operator, and  the lowering
operator. The “ladder” of states is illustrated in Figure 2.5.

 

86



(2.59)

Figure 2.5: The “ladder” of states for the harmonic oscillator.

But wait! What if I apply the lowering operator repeatedly?
Eventually I’m going to reach a state with energy less than zero, which
(according to the general theorem in Problem 2.3) does not exist! At some
point the machine must fail. How can that happen? We know that  is a
new solution to the Schrödinger equation, but there is no guarantee that it
will be normalizable—it might be zero, or its square-integral might be
infinite. In practice it is the former: There occurs a “lowest rung” (call it 

 such that
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(2.61)

We can use this to determine :

or

This differential equation is easy to solve:

so

We might as well normalize it right away:

so , and hence

To determine the energy of this state we plug it into the Schrödinger
equation (in the form of Equation 2.58), , and
exploit the fact that :

With our foot now securely planted on the bottom rung (the ground
state of the quantum oscillator), we simply apply the raising operator
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(2.63)

(repeatedly) to generate the excited states,27 increasing the energy by 
with each step:

where  is the normalization constant. By applying the raising operator
(repeatedly) to , then, we can (in principle) construct all28 the stationary
states of the harmonic oscillator. Meanwhile, without ever doing that
explicitly, we have determined the allowed energies!

Example 2.4
Find the first excited state of the harmonic oscillator.
Solution: Using Equation 2.62,

We can normalize it “by hand”:

so, as it happens, .
I wouldn’t want to calculate  this way (applying the raising

operator fifty times!), but never mind: In principle Equation 2.62
does the job—except for the normalization.

You can even get the normalization algebraically, but it takes some
fancy footwork, so watch closely. We know that  is proportional to 

89



(2.65)
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(2.66)

,

but what are the proportionality factors,  and ? First note that for
“any”29 functions  and ,

In the language of linear algebra,  is the hermitian conjugate (or
adjoint) of .

Proof:  

and integration by parts takes  to 
(the boundary terms vanish, for the reason indicated in footnote 29),
so

In particular,

But (invoking Equations 2.58 and 2.62)

so
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(2.69)

But since  and  are normalized, it follows that  and 
, and hence30

Thus

and so on. Clearly

which is to say that the normalization factor in Equation 2.62 is 
 (in particular, , confirming our result in Example 2.4).

As in the case of the infinite square well, the stationary states of the
harmonic oscillator are orthogonal:

This can be proved using Equation 2.66, and Equation 2.65 twice—first
moving  and then moving :
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Unless , then,  must be zero. Orthonormality means that
we can again use Fourier’s trick (Equation 2.37) to evaluate the
coefficients , when we expand  as a linear combination of
stationary states (Equation 2.16). As always,  is the probability that a
measurement of the energy would yield the value .

Example 2.5
Find the expectation value of the potential energy in the nth
stationary state of the harmonic oscillator.
Solution:

There’s a beautiful device for evaluating integrals of this kind
(involving powers of x or : Use the definition (Equation 2.48) to
express x and  in terms of the raising and lowering operators:

In this example we are interested in :
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So

But  is (apart from normalization) , which is
orthogonal to , and the same goes for , which is
proportional to . So those terms drop out, and we can use
Equation 2.66 to evaluate the remaining two:

As it happens, the expectation value of the potential energy is
exactly half the total (the other half, of course, is kinetic). This is a
peculiarity of the harmonic oscillator, as we’ll see later on
(Problem 3.37).

Problem 2.10
(a)   Construct .
(b)   Sketch , and .
(c)   Check the orthogonality of , and 

, by explicit integration. Hint: If you
exploit the even-ness and odd-ness of
the functions, there is really only one
integral left to do.

Problem 2.11
(a)   Compute , and , for

the states  (Equation 2.60) and 
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(Equation 2.63), by explicit
integration. Comment: In this and
other problems involving the harmonic
oscillator it simplifies matters if you
introduce the variable 
and the constant .

(b)   Check the uncertainty principle for
these states.

(c)   Compute  and  for these states.
(No new integration allowed!) Is their
sum what you would expect?

Problem 2.12 Find , and ,
for the nth stationary state of the harmonic
oscillator, using the method of Example 2.5.
Check that the uncertainty principle is
satisfied.

Problem 2.13 A particle in the harmonic
oscillator potential starts out in the state

(a)   Find A.
(b)   Construct  and .

Don’t get too excited if 
oscillates at exactly the classical
frequency; what would it have been
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(2.73)

(2.74)

had I specified , instead of 
?31

(c)   Find  and . Check that
Ehrenfest’s theorem (Equation 1.38)
holds, for this wave function.

(d)   If you measured the energy of this
particle, what values might you get,
and with what probabilities?

2.3.2 Analytic Method

We return now to the Schrödinger equation for the harmonic oscillator,

and solve it directly, by the power series method. Things look a little
cleaner if we introduce the dimensionless variable

in terms of ξ the Schrödinger equation reads

where K is the energy, in units of :

Our problem is to solve Equation 2.73, and in the process obtain the
“allowed” values of K (and hence of .
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(2.76)

(2.77)

(2.78)

(2.79)

To begin with, note that at very large ξ (which is to say, at very large 
 completely dominates over the constant K, so in this regime

which has the approximate solution (check it!)

The B term is clearly not normalizable (it blows up as ; the
physically acceptable solutions, then, have the asymptotic form

This suggests that we “peel off” the exponential part,

in hopes that what remains, , has a simpler functional form than 
itself.32 Differentiating Equation 2.78,

and

so the Schrödinger equation (Equation 2.73) becomes

I propose to look for solutions to Equation 2.79 in the form of power
series in ξ:33
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Differentiating the series term by term,

and

Putting these into Equation 2.80, we find

It follows (from the uniqueness of power series expansions34 ) that the
coefficient of each power of ξ must vanish,

and hence that

This recursion formula is entirely equivalent to the Schrödinger
equation. Starting with , it generates all the even-numbered coefficients:

and starting with , it generates the odd coefficients:
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We write the complete solution as

where

is an even function of ξ, built on , and

is an odd function, built on . Thus Equation 2.82 determines  in
terms of two arbitrary constants  and —which is just what we would
expect, for a second-order differential equation.

However, not all the solutions so obtained are normalizable. For at
very large j, the recursion formula becomes (approximately)

with the (approximate) solution

for some constant C, and this yields (at large ξ, where the higher powers
dominate)

Now, if h goes like , then  (remember ?—that’s what we’re
trying to calculate) goes like  (Equation 2.78), which is precisely
the asymptotic behavior we didn’t want.35 There is only one way to wiggle
out of this: For normalizable solutions the power series must terminate.
There must occur some “highest” j (call it , such that the recursion
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formula spits out  (this will truncate either the series  or the
series ; the other one must be zero from the start:  if n is even,
and  if n is odd). For physically acceptable solutions, then, Equation
2.82 requires that

for some positive integer n, which is to say (referring to Equation 2.74)
that the energy must be

Thus we recover, by a completely different method, the fundamental
quantization condition we found algebraically in Equation 2.62.

It seems at first rather surprising that the quantization of energy
should emerge from a technical detail in the power series solution to the
Schrödinger equation, but let’s look at it from a different perspective.
Equation 2.71 has solutions, of course, for any value of E (in fact, it has
two linearly independent solutions for every . But almost all of these
solutions blow up exponentially at large x, and hence are not normalizable.
Imagine, for example, using an E that is slightly less than one of the
allowed values (say, , and plotting the solution: Figure 2.6(a). Now
try an E slightly larger (say, ; the “tail” now blows up in the other
direction (Figure 2.6(b)). As you tweak the parameter in tiny increments
from 0.49 to 0.51, the graph “flips over” at precisely the value 0.5—only
here does the solution escape the exponential asymptotic growth that
renders it physically unacceptable.36
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Figure 2.6: Solutions to the Schrödinger equation for (a) , and (b) 
.

For the allowed values of K, the recursion formula reads

If , there is only one term in the series (we must pick  to kill 
, and  in Equation 2.85 yields :

and hence

100



(2.86)

(which, apart from the normalization, reproduces Equation 2.60). For 
 we take ,37 and Equation 2.85 with  yields , so

and hence

(confirming Equation 2.63). For  yields , and 
gives , so

and

and so on. (Compare Problem 2.10, where this last result was obtained by
algebraic means).

In general,  will be a polynomial of degree n in ξ, involving
even powers only, if n is an even integer, and odd powers only, if n is an
odd integer. Apart from the overall factor  or  they are the so-called
Hermite polynomials, .38 The first few of them are listed in
Table 2.1. By tradition, the arbitrary multiplicative factor is chosen so that
the coefficient of the highest power of ξ is . With this convention, the
normalized39 stationary states for the harmonic oscillator are

They are identical (of course) to the ones we obtained algebraically in
Equation 2.68.

Table 2.1: The first few Hermite polynomials, .
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In Figure 2.7(a) I have plotted  for the first few ns. The quantum
oscillator is strikingly different from its classical counterpart—not only are
the energies quantized, but the position distributions have some bizarre
features. For instance, the probability of finding the particle outside the
classically allowed range (that is, with x greater than the classical
amplitude for the energy in question) is not zero (see Problem 2.14), and in
all odd states the probability of finding the particle at the center is zero.
Only at large n do we begin to see some resemblance to the classical case.
In Figure 2.7(b) I have superimposed the classical position distribution
(Problem 1.11) on the quantum one (for ; if you smoothed out the
bumps, the two would fit pretty well.
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Figure 2.7: (a) The first four stationary states of the harmonic oscillator. (b)
Graph of , with the classical distribution (dashed curve) superimposed.

103



∗∗

(2.87)

Problem 2.14 In the ground state of the
harmonic oscillator, what is the probability
(correct to three significant digits) of finding
the particle outside the classically allowed
region? Hint: Classically, the energy of an
oscillator is ,
where a is the amplitude. So the “classically
allowed region” for an oscillator of energy E
extends from  to .
Look in a math table under “Normal
Distribution” or “Error Function” for the
numerical value of the integral, or evaluate it
by computer.

Problem 2.15 Use the recursion formula
(Equation 2.85) to work out  and .
Invoke the convention that the coefficient of
the highest power of ξ is  to fix the overall
constant.

Problem 2.16 In this problem we explore
some of the more useful theorems (stated
without proof) involving Hermite polynomials.

(a)   The Rodrigues formula says that
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(2.90)

(2.88)

Use it to derive  and .
(b)   The following recursion relation gives

you  in terms of the two
preceding Hermite polynomials:

Use it, together with
your answer in (a), to obtain  and 
.

(c)   If you differentiate an nth-order
polynomial, you get a polynomial of
order . For the Hermite
polynomials, in fact,

Check this, by differentiating  and 
.

(d)    is the nth z-derivative, at ,
of the generating function 

; or, to put it another
way, it is the coefficient of  in the
Taylor series expansion for this
function:

Use this to obtain , and .
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(2.92)

(2.94)

(2.93)

2.4 The Free Particle

We turn next to what should have been the simplest case of all: the free
particle  everywhere). Classically this would just be motion at
constant velocity, but in quantum mechanics the problem is surprisingly
subtle. The time-independent Schrödinger equation reads

or

So far, it’s the same as inside the infinite square well (Equation 2.24),
where the potential is also zero; this time, however, I prefer to write the
general solution in exponential form (instead of sines and cosines), for
reasons that will appear in due course:

Unlike the infinite square well, there are no boundary conditions to restrict
the possible values of k (and hence of ; the free particle can carry any
(positive) energy. Tacking on the standard time dependence, ,

Now, any function of x and t that depends on these variables in the
special combination  (for some constant  represents a wave of
unchanging shape, traveling in the -direction at speed v: A fixed point
on the waveform (for example, a maximum or a minimum) corresponds to
a fixed value of the argument, and hence to x and t such that
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Since every point on the waveform moves with the same velocity, its
shape doesn’t change as it propagates. Thus the first term in Equation 2.94
represents a wave traveling to the right, and the second represents a wave
(of the same energy) going to the left. By the way, since they only differ
by the sign in front of k, we might as well write

and let k run negative to cover the case of waves traveling to the left:

Evidently the “stationary states” of the free particle are propagating waves;
their wavelength is , and, according to the de Broglie formula
(Equation 1.39), they carry momentum

The speed of these waves (the coefficient of t over the coefficient of 
 is

On the other hand, the classical speed of a free particle with energy E is
given by  (pure kinetic, since , so

Apparently the quantum mechanical wave function travels at half the
speed of the particle it is supposed to represent! We’ll return to this
paradox in a moment—there is an even more serious problem we need to
confront first: This wave function is not normalizable:
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In the case of the free particle, then, the separable solutions do not
represent physically realizable states. A free particle cannot exist in a
stationary state; or, to put it another way, there is no such thing as a free
particle with a definite energy.

But that doesn’t mean the separable solutions are of no use to us. For
they play a mathematical role that is entirely independent of their physical
interpretation: The general solution to the time-dependent Schrödinger
equation is still a linear combination of separable solutions (only this time
it’s an integral over the continuous variable k, instead of a sum over the
discrete index :

(The quantity  is factored out for convenience; what plays the role
of the coefficient  in Equation 2.17 is the combination .)

Now this wave function can be normalized (for appropriate . But it
necessarily carries a range of ks, and hence a range of energies and speeds.
We call it a wave packet.40

In the generic quantum problem, we are given , and we are
asked to find . For a free particle the solution takes the form of
Equation 2.101; the only question is how to determine  so as to match
the initial wave function:

This is a classic problem in Fourier analysis; the answer is provided by
Plancherel’s theorem (see Problem 2.19):
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(2.104)

(2.103)
 is called the Fourier transform of  ;  is

the inverse Fourier transform of  (the only difference is the sign in
the exponent).41 There is, of course, some restriction on the allowable
functions: The integrals have to exist.42 For our purposes this is guaranteed
by the physical requirement that  itself be normalized. So the
solution to the generic quantum problem, for the free particle, is Equation
2.101, with

Example 2.6
A free particle, which is initially localized in the range 
, is released at time :

where A and a are positive real constants. Find .
Solution: First we need to normalize :

Next we calculate , using Equation 2.104:
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Finally, we plug this back into Equation 2.101:

Unfortunately, this integral cannot be solved in terms of
elementary functions, though it can of course be evaluated
numerically (Figure 2.8). (There are, in fact, precious few cases in
which the integral for  (Equation 2.101) can be carried out
explicitly; see Problem 2.21 for a particularly beautiful example.)

Figure 2.8:  Graph of  (Equation 2.105) at  (the
rectangle) and at  (the curve).

In Figure 2.9 I have plotted  and . Note that for small a,
 is narrow (in , while  is broad (in , and vice versa

for large a. But k is related to momentum, by Equation 2.97, so this
is a manifestation of the uncertainty principle: the position can be
well defined (small , or the momentum (large , but not both.
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Figure 2.9:  (a) Graph of . (b) Graph of .

I return now to the paradox noted earlier: the fact that the separable
solution  travels at the “wrong” speed for the particle it ostensibly
represents. Strictly speaking, the problem evaporated when we discovered
that  is not a physically realizable state. Nevertheless, it is of interest to
figure out how information about the particle velocity is contained in the
wave function (Equation 2.101). The essential idea is this: A wave packet
is a superposition of sinusoidal functions whose amplitude is modulated by
ϕ (Figure 2.10); it consists of “ripples” contained within an “envelope.”
What corresponds to the particle velocity is not the speed of the individual
ripples (the so-called phase velocity), but rather the speed of the envelope
(the group velocity)—which, depending on the nature of the waves, can
be greater than, less than, or equal to, the velocity of the ripples that go to
make it up. For waves on a string, the group velocity is the same as the
phase velocity. For water waves it is one-half the phase velocity, as you
may have noticed when you toss a rock into a pond (if you concentrate on
a particular ripple, you will see it build up from the rear, move forward
through the group, and fade away at the front, while the group as a whole
propagates out at half that speed). What I need to show is that for the wave
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function of a free particle in quantum mechanics the group velocity is
twice the phase velocity—just right to match the classical particle speed.

 

Figure 2.10: A wave packet. The “envelope” travels at the group velocity; the
“ripples” travel at the phase velocity.

The problem, then, is to determine the group velocity of a wave
packet with the generic form

In our case , but what I have to say now applies to any kind
of wave packet, regardless of its dispersion relation (the formula for ω as
a function of . Let us assume that  is narrowly peaked about some
particular value . (There is nothing illegal about a broad spread in k, but
such wave packets change shape rapidly—different components travel at
different speeds, so the whole notion of a “group,” with a well-defined
velocity, loses its meaning.) Since the integrand is negligible except in the
vicinity of , we may as well Taylor-expand the function  about that
point, and keep only the leading terms:

where  is the derivative of ω with respect to k, at the point .
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(2.109)

∗

(2.110)

Changing variables from k to  (to center the integral at ,
we have

The term in front is a sinusoidal wave (the “ripples”), traveling at speed 
. It is modulated by the integral (the “envelope”), which is a function

of , and therefore propagates at the speed . Thus the phase
velocity is

while the group velocity is

(both of them evaluated at .
In our case, , so , whereas 

, which is twice as great. This confirms that the group
velocity of the wave packet matches the classical particle velocity:

Problem 2.17 Show that  and 
 are equivalent ways of

writing the same function of x, and determine
the constants C and D in terms of A and B, and
vice versa. Comment: In quantum mechanics,
when , the exponentials represent
traveling waves, and are most convenient in
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discussing the free particle, whereas sines and
cosines correspond to standing waves, which
arise naturally in the case of the infinite square
well.

Problem 2.18 Find the probability current, J
(Problem 1.14) for the free particle wave
function Equation 2.95. Which direction does
the probability flow?

Problem 2.19 This problem is designed to
guide you through a “proof” of Plancherel’s
theorem, by starting with the theory of
ordinary Fourier series on a finite interval, and
allowing that interval to expand to infinity.

(a)   Dirichlet’s theorem says that “any”
function  on the interval 
can be expanded as a Fourier series:

Show that this can be written
equivalently as

What is , in terms of  and ?
(b)   Show (by appropriate modification of
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Fourier’s trick) that

(c)   Eliminate n and  in favor of the new
variables  and 

. Show that (a) and (b)
now become

where  is the increment in k from
one n to the next.

(d)   Take the limit  to obtain
Plancherel’s theorem. Comment: In
view of their quite different origins, it
is surprising (and delightful) that the
two formulas—one for  in terms
of , the other for  in terms of 

—have such a similar structure in
the limit .

Problem 2.20 A free particle has the initial
wave function

where A and a are positive real constants.
(a)   Normalize .
(b)   Find .
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(c)   Construct , in the form of an
integral.

(d)   Discuss the limiting cases  very
large, and a very small).

Problem 2.21 The gaussian wave packet. A
free particle has the initial wave function

where A and a are (real and positive) constants.
(a)   Normalize .
(b)   Find . Hint: Integrals of the

form

can be handled by “completing the
square”: Let , and
note that .
Answer:

(c)   Find . Express
your answer in terms of the quantity

Sketch  (as a function of  at 
, and again for some very large t.

116



Qualitatively, what happens to , as
time goes on?

(d)   Find , and .
Partial answer: , but it may
take some algebra to reduce it to this
simple form.

(e)   Does the uncertainty principle hold?
At what time t does the system come
closest to the uncertainty limit?

2.5 The Delta-Function Potential

2.5.1 Bound States and Scattering States

We have encountered two very different kinds of solutions to the time-
independent Schrödinger equation: For the infinite square well and the
harmonic oscillator they are normalizable, and labeled by a discrete index
n; for the free particle they are non-normalizable, and labeled by a
continuous variable k. The former represent physically realizable states in
their own right, the latter do not; but in both cases the general solution to
the time-dependent Schrödinger equation is a linear combination of
stationary states—for the first type this combination takes the form of a
sum (over , whereas for the second it is an integral (over . What is the
physical significance of this distinction?

In classical mechanics a one-dimensional time-independent potential
can give rise to two rather different kinds of motion. If  rises higher
than the particle’s total energy  on either side (Figure 2.11(a)), then the
particle is “stuck” in the potential well—it rocks back and forth between
the turning points, but it cannot escape (unless, of course, you provide it
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with a source of extra energy, such as a motor, but we’re not talking about
that). We call this a bound state. If, on the other hand, E exceeds  on
one side (or both), then the particle comes in from “infinity,” slows down
or speeds up under the influence of the potential, and returns to infinity
(Figure 2.11(b)). (It can’t get trapped in the potential unless there is some
mechanism, such as friction, to dissipate energy, but again, we’re not
talking about that.) We call this a scattering state. Some potentials admit
only bound states (for instance, the harmonic oscillator); some allow only
scattering states (a potential hill with no dips in it, for example); some
permit both kinds, depending on the energy of the particle.
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Figure 2.11: (a) A bound state. (b) Scattering states. (c) A classical bound
state, but a quantum scattering state.

The two kinds of solutions to the Schrödinger equation correspond
precisely to bound and scattering states. The distinction is even cleaner in
the quantum domain, because the phenomenon of tunneling (which we’ll
come to shortly) allows the particle to “leak” through any finite potential
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barrier, so the only thing that matters is the potential at infinity

(Figure 2.11(c)):

In real life most potentials go to zero at infinity, in which case the criterion
simplifies even further:

Because the infinite square well and harmonic oscillator potentials go to
infinity as , they admit bound states only; because the free
particle potential is zero everywhere, it only allows scattering states.43 In
this section (and the following one) we shall explore potentials that
support both kinds of states.

2.5.2 The Delta-Function Well

The Dirac delta function is an infinitely high, infinitesimally narrow
spike at the origin, whose area is 1 (Figure 2.12):

Technically, it isn’t a function at all, since it is not finite at 
(mathematicians call it a generalized function, or distribution).44

Nevertheless, it is an extremely useful construct in theoretical physics.
(For example, in electrodynamics the charge density of a point charge is a
delta function.) Notice that  would be a spike of area 1 at the point
a. If you multiply  by an ordinary function , it’s the same as
multiplying by ,
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(2.117)

because the product is zero anyway except at the point a. In particular,

That’s the most important property of the delta function:
Under the integral sign it serves to “pick out” the value of  at the point
a. (Of course, the integral need not go from  to ; all that matters is
that the domain of integration include the point a, so  to  would
do, for any .)

Figure 2.12: The Dirac delta function (Equation 2.114).

Let’s consider a potential of the form

where α is some positive constant.45 This is an artificial potential, to be
sure (so was the infinite square well), but it’s delightfully simple to work
with, and illuminates the basic theory with a minimum of analytical
clutter. The Schrödinger equation for the delta-function well reads

it yields both bound states  and scattering states .
We’ll look first at the bound states. In the region , so
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(2.125)

(2.121)

(2.122)
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(2.124)

where

 is negative, by assumption, so κ is real and positive.) The general
solution to Equation 2.119 is

but the first term blows up as , so we must choose :

In the region  is again zero, and the general solution is of the
form ; this time it’s the second term that blows up
(as , so

It remains only to stitch these two functions together, using the
appropriate boundary conditions at . I quoted earlier the standard
boundary conditions for :

In this case the first boundary condition tells us that 
 , so
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(2.127)

 is plotted in Figure 2.13. The second boundary condition tells us
nothing; this is (like the walls of the infinite square well) the exceptional
case where V is infinite at the join, and it’s clear from the graph that this
function has a kink at . Moreover, up to this point the delta function
has not come into the story at all. It turns out that the delta function
determines the discontinuity in the derivative of , at . I’ll show you
now how this works, and as a byproduct we’ll see why  is ordinarily
continuous.

Figure 2.13: Bound state wave function for the delta-function potential
(Equation 2.125).

The idea is to integrate the Schrödinger equation, from  to , and
then take the limit as :

The first integral is nothing but , evaluated at the
two end points; the last integral is zero, in the limit , since it’s the
area of a sliver with vanishing width and finite height. Thus

Ordinarily, the limit on the right is again zero, and that’s
why  is ordinarily continuous. But when  is infinite at the
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(2.129)

(2.130)

(2.131)

(2.132)

boundary, this argument fails. In particular, if , Equation

2.116 yields

For the case at hand (Equation 2.125),

and hence . And . So Equation 2.128 says

and the allowed energy (Equation 2.120) is

Finally, we normalize :

so (choosing the positive real root):

Evidently the delta function well, regardless of its “strength” α, has exactly
one bound state:
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(2.134)

(2.135)

(2.136)

What about scattering states, with  ? For  the Schrödinger
equation reads

where

is real and positive. The general solution is

and this time we cannot rule out either term, since neither of them blows
up. Similarly, for ,

The continuity of  at  requires that

The derivatives are

and hence . Meanwhile, ,
so the second boundary condition (Equation 2.128) says

or, more compactly,
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Having imposed both boundary conditions, we are left with two
equations (Equations 2.136 and 2.138) in four unknowns , B, F, and 
—five, if you count k. Normalization won’t help—this isn’t a normalizable
state. Perhaps we’d better pause, then, and examine the physical
significance of these various constants. Recall that  gives rise
(when coupled with the wiggle factor  to a wave function
propagating to the right, and  leads to a wave propagating to the
left. It follows that A (in Equation 2.134) is the amplitude of a wave
coming in from the left, B is the amplitude of a wave returning to the left;
F (Equation 2.135) is the amplitude of a wave traveling off to the right,
and G is the amplitude of a wave coming in from the right (see
Figure 2.14). In a typical scattering experiment particles are fired in from
one direction—let’s say, from the left. In that case the amplitude of the
wave coming in from the right will be zero:

A is the amplitude of the incident wave, B is the amplitude of the
reflected wave, and F is the amplitude of the transmitted wave. Solving
Equations 2.136 and 2.138 for B and F, we find

(If you want to study scattering from the right, set ; then G is the
incident amplitude, F is the reflected amplitude, and B is the transmitted
amplitude.)
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Figure 2.14: Scattering from a delta function well.

Now, the probability of finding the particle at a specified location is
given by , so the relative46 probability that an incident particle will be
reflected back is

R is called the reflection coefficient. (If you have a beam of particles, it
tells you the fraction of the incoming number that will bounce back.)
Meanwhile, the probability that a particle will continue right on through is
the transmission coefficient47

Of course, the sum of these probabilities should be 1—and it is:

Notice that R and T are functions of β, and hence (Equations 2.133 and
2.138) of E:
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The higher the energy, the greater the probability of transmission (which
makes sense).

This is all very tidy, but there is a sticky matter of principle that we
cannot altogether ignore: These scattering wave functions are not
normalizable, so they don’t actually represent possible particle states. We
know the resolution to this problem: form normalizable linear
combinations of the stationary states, just as we did for the free particle—
true physical particles are represented by the resulting wave packets.
Though straightforward in principle, this is a messy business in practice,
and at this point it is best to turn the problem over to a computer.48

Meanwhile, since it is impossible to create a normalizable free-particle
wave function without involving a range of energies, R and T should be
interpreted as the approximate reflection and transmission probabilities for
particles with energies in the vicinity of E.

Incidentally, it might strike you as peculiar that we were able to
analyze a quintessentially time-dependent problem (particle comes in,
scatters off a potential, and flies off to infinity) using stationary states.
After all,  (in Equations 2.134 and 2.135) is simply a complex, time-
independent, sinusoidal function, extending (with constant amplitude) to
infinity in both directions. And yet, by imposing appropriate boundary
conditions on this function we were able to determine the probability that a
particle (represented by a localized wave packet) would bounce off, or
pass through, the potential. The mathematical miracle behind this is, I
suppose, the fact that by taking linear combinations of states spread over
all space, and with essentially trivial time dependence, we can construct
wave functions that are concentrated about a (moving) point, with quite
elaborate behavior in time (see Problem 2.42).

As long as we’ve got the relevant equations on the table, let’s look
briefly at the case of a delta-function barrier (Figure 2.15). Formally, all
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we have to do is change the sign of α. This kills the bound state, of course
(Problem 2.2). On the other hand, the reflection and transmission
coefficients, which depend only on , are unchanged. Strange to say, the
particle is just as likely to pass through the barrier as to cross over the
well! Classically, of course, a particle cannot make it over an infinitely
high barrier, regardless of its energy. In fact, classical scattering problems
are pretty dull: If , then  and —the particle certainly
makes it over; if  then  and —it rides up the hill until
it runs out of steam, and then returns the same way it came. Quantum
scattering problems are much richer: The particle has some nonzero
probability of passing through the potential even if . We call this
phenomenon tunneling; it is the mechanism that makes possible much of
modern electronics—not to mention spectacular advances in microscopy.
Conversely, even if  there is a possibility that the particle will
bounce back—though I wouldn’t advise driving off a cliff in the hope that
quantum mechanics will save you (see Problem 2.35).

Figure 2.15: The delta-function barrier.

Problem 2.22 Evaluate the following integrals:
(a)   .
(b)   .
(c)   .
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Problem 2.23 Delta functions live under
integral signs, and two expressions  and 

 involving delta functions are said to be
equal if

for every (ordinary) function .
(a)   Show that

where c is a real constant. (Be sure to
check the case where c is negative.)

(b)   Let  be the step function:

(In the rare case where it actually
matters, we define  to be 1/2.)
Show that .

Problem 2.24 Check the uncertainty principle
for the wave function in Equation 2.132. Hint:
Calculating  can be tricky, because the
derivative of  has a step discontinuity at 

. You may want to use the result in
Problem 2.23(b). Partial answer: 

.

130



∗

(2.147)

Problem 2.25 Check that the bound state of
the delta-function well (Equation 2.132) is
orthogonal to the scattering states (Equations
2.134 and 2.135).

Problem 2.26 What is the Fourier transform of
? Using Plancherel’s theorem, show that  

Comment: This formula gives any respectable
mathematician apoplexy. Although the integral
is clearly infinite when , it doesn’t
converge (to zero or anything else) when 
, since the integrand oscillates forever. There
are ways to patch it up (for instance, you can
integrate from  to , and interpret
Equation 2.147 to mean the average value of
the finite integral, as . The source of
the problem is that the delta function doesn’t
meet the requirement (square-integrability) for
Plancherel’s theorem (see footnote 42). In spite
of this, Equation 2.147 can be extremely
useful, if handled with care.
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Problem 2.27 Consider the double delta-
function potential

where α and a are positive constants.
(a)   Sketch this potential.
(b)   How many bound states does it

possess? Find the allowed energies,
for  and for ,
and sketch the wave functions.

(c)   What are the bound state energies in
the limiting cases (i)  and (ii) 

 (holding α fixed)? Explain
why your answers are reasonable, by
comparison with the single delta-
function well.

Problem 2.28 Find the transmission
coefficient, for the potential in Problem 2.27.

2.6 The Finite Square Well

As a last example, consider the finite square well
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where  is a (positive) constant (Figure 2.16). Like the delta-function
well, this potential admits both bound states (with  and scattering
states (with . We’ll look first at the bound states.

Figure 2.16: The finite square well (Equation 2.148).

In the region  the potential is zero, so the Schrödinger
equation reads

where

is real and positive. The general solution is 
, but the first term blows up (as 

, so the physically admissible solution is

In the region , and the Schrödinger equation
reads

133



(2.151)
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(2.152)

(2.153)

(2.155)

where

Although E is negative, for bound states, it must be greater than , by
the old theorem  (Problem 2.2); so l is also real and positive. The
general solution is49

where C and D are arbitrary constants. Finally, in the region  the
potential is again zero; the general solution is 

, but the second term blows up (as 
, so we are left with

The next step is to impose boundary conditions:  and 
continuous at  and . But we can save a little time by noting that this
potential is an even function, so we can assume with no loss of generality
that the solutions are either even or odd (Problem 2.1(c)). The advantage
of this is that we need only impose the boundary conditions on one side
(say, at ; the other side is then automatic, since . I’ll
work out the even solutions; you get to do the odd ones in Problem 2.29.
The cosine is even (and the sine is odd), so I’m looking for solutions of the
form

The continuity of , at , says
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(2.160)

(2.156)

(2.157)

and the continuity of  says

Dividing Equation 2.156 by Equation 2.155, we find that

This is a formula for the allowed energies, since κ and l are both
functions of E. To solve for E, we first adopt some nicer notation: Let

According to Equations 2.149 and 2.151, , so 
, and Equation 2.157 reads

This is a transcendental equation for z (and hence for  as a function
of  (which is a measure of the “size” of the well). It can be solved
numerically, using a computer, or graphically, by plotting  and 

 on the same grid, and looking for points of intersection (see

Figure 2.17). Two limiting cases are of special interest:
1.   Wide, deep well. If  is very large (pushing the curve 

 upward on the graph, and sliding the zero crossing, 

, to the right) the intersections occur just slightly below ,
with n odd; it follows (Equations 2.158 and 2.151) that

But  is the energy above the bottom of the well, and on the
right side we have precisely the infinite square well energies, for a
well of width  (see Equation 2.30)—or rather, half of them, since
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(2.161)

(2.163)

this n is odd. (The other ones, of course, come from the odd wave
functions, as you’ll discover in Problem 2.29.) So the finite square
well goes over to the infinite square well, as ; however, for
any finite  there are only a finite number of bound states.

2.   Shallow, narrow well. As  decreases, there are fewer and fewer
bound states, until finally, for , only one remains. It is
interesting to note, however, that there is always one bound state,
no matter how “weak” the well becomes.

Figure 2.17: Graphical solution to Equation 2.159, for  (even states).

You’re welcome to normalize  (Equation 2.154), if you’re interested
(Problem 2.30), but I’m going to move on now to the scattering states 

. To the left, where , we have

where (as usual)

Inside the well, where ,

where, as before,
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(2.167)

(2.170)

(2.171)

(2.165)

(2.166)

(2.168)

(2.169)

To the right, assuming there is no incoming wave in this region, we have

Here A is the incident amplitude, B is the reflected amplitude, and F is the
transmitted amplitude.50

There are four boundary conditions: Continuity of  at  says

continuity of  at  gives

continuity of  at  yields

and continuity of  at  requires

We can use two of these to eliminate C and D, and solve the remaining
two for B and F (see Problem 2.32):

The transmission coefficient , expressed in terms of
the original variables, is given by
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(2.173)

(2.174)

Notice that  (the well becomes “transparent”) whenever the sine is
zero, which is to say, when

where n is any integer. The energies for perfect transmission, then, are
given by

which happen to be precisely the allowed energies for the infinite square
well. T is plotted in Figure 2.18, as a function of energy.51

Figure 2.18: Transmission coefficient as a function of energy (Equation
2.172).
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always an odd bound state?

Problem 2.30 Normalize  in Equation
2.154, to determine the constants D and F.

Problem 2.31 The Dirac delta function can be
thought of as the limiting case of a rectangle of
area 1, as the height goes to infinity and the
width goes to zero. Show that the delta-
function well (Equation 2.117) is a “weak”
potential (even though it is infinitely deep), in
the sense that . Determine the bound
state energy for the delta-function potential, by
treating it as the limit of a finite square well.
Check that your answer is consistent with
Equation 2.132. Also show that Equation 2.172
reduces to Equation 2.144 in the appropriate
limit.

Problem 2.32 Derive Equations 2.170 and
2.171. Hint: Use Equations 2.168 and 2.169 to
solve for C and D in terms of F:

Plug these back into Equations 2.166 and
2.167. Obtain the transmission coefficient, and
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solve for C and D in terms of F:

Plug these back into Equations 2.166 and
2.167. Obtain the transmission coefficient, and
confirm Equation 2.172.

Problem 2.33 Determine the transmission
coefficient for a rectangular barrier (same as
Equation 2.148, only with  in
the region . Treat separately the
three cases , and  (note
that the wave function inside the barrier is
different in the three cases). Partial answer:
for ,52

Problem 2.34 Consider the “step” potential:53

(a)   Calculate the reflection coefficient, for
the case , and comment on the
answer.
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transmitted amplitude), because the
transmitted wave travels at a different
speed. Show that

for . Hint: You can figure it out
using Equation 2.99, or—more
elegantly, but less informatively—
from the probability current (Problem
2.18). What is T, for ?

(d)   For , calculate the transmission
coefficient for the step potential, and
check that .

Problem 2.35 A particle of mass m and kinetic
energy  approaches an abrupt potential
drop  (Figure 2.19).54

Figure 2.19:  Scattering from a “cliff” (Problem
2.35).
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Figure 2.19:  Scattering from a “cliff” (Problem
2.35).

(a)   What is the probability that it will
“reflect” back, if ? Hint: This
is just like Problem 2.34, except that
the step now goes down, instead of up.

(b)   I drew the figure so as to make you
think of a car approaching a cliff, but
obviously the probability of “bouncing
back” from the edge of a cliff is far
smaller than what you got in (a)—
unless you’re Bugs Bunny. Explain
why this potential does not correctly
represent a cliff. Hint: In Figure 2.20
the potential energy of the car drops
discontinuously to , as it passes 

; would this be true for a falling
car?

(c)   When a free neutron enters a nucleus,
it experiences a sudden drop in
potential energy, from  outside to
around  MeV (million electron
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probability of transmission through the
surface.

Figure 2.20:  The double square well (Problem
2.47).

Further Problems on Chapter 2

Problem 2.36 Solve the time-independent
Schrödinger equation with appropriate
boundary conditions for the “centered”
infinite square well:  (for 

 (otherwise).
Check that your allowed energies are
consistent with mine (Equation 2.30), and
confirm that your s can be obtained from
mine (Equation 2.31) by the substitution 

 (and appropriate
renormalization). Sketch your first three
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 (otherwise).
Check that your allowed energies are
consistent with mine (Equation 2.30), and

confirm that your s can be obtained from
mine (Equation 2.31) by the substitution 

 (and appropriate
renormalization). Sketch your first three
solutions, and compare Figure 2.2. Note

that the width of the well is now .

Problem 2.37 A particle in the infinite square
well (Equation 2.22) has the initial wave
function

Determine A, find , and calculate 
, as a function of time. What is the
expectation value of the energy? Hint: 

 and  can be reduced, by
repeated application of the trigonometric
sum formulas, to linear combinations of 

 and , with 
.

Problem 2.38
(a)   Show that the wave function of a

particle in the infinite square well
returns to its original form after a
quantum revival time .
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Problem 2.39 In Problem 2.7(d) you got the
expectation value of the energy by
summing the series in Equation 2.21, but I
warned you (in footnote 21) not to try it the
“old fashioned way,” 

, because the
discontinuous first derivative of 
renders the second derivative problematic.
Actually, you could have done it using
integration by parts, but the Dirac delta
function affords a much cleaner way to
handle such anomalies.
(a)   Calculate the first derivative of 

 (in Problem 2.7), and express
the answer in terms of the step
function, , defined in
Equation 2.146.

(b)   Exploit the result of Problem 2.23(b)
to write the second derivative of 

 in terms of the delta function.
(c)   Evaluate the integral 

, and check
that you get the same answer as
before.

Problem 2.40 A particle of mass m in the
harmonic oscillator potential (Equation
2.44) starts out in the state
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that you get the same answer as
before.

Problem 2.40 A particle of mass m in the
harmonic oscillator potential (Equation
2.44) starts out in the state

for some constant A.
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(a)   Determine A and the coefficients  in
the expansion of this state in terms of
the stationary states of the harmonic
oscillator.

(b)   In a measurement of the particle’s
energy, what results could you get,
and what are their probabilities? What
is the expectation value of the energy?

(c)   At a later time T the wave function is

for some constant B. What is the smallest
possible value of T?

Problem 2.41 Find the allowed energies of the
half harmonic oscillator

(This represents, for example, a spring that
can be stretched, but not compressed.)
Hint: This requires some careful thought,
but very little actual calculation.

Problem 2.42 In Problem 2.21 you analyzed
the stationary gaussian free particle wave
packet. Now solve the same problem for
the traveling gaussian wave packet, starting
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Problem 2.42 In Problem 2.21 you analyzed
the stationary gaussian free particle wave
packet. Now solve the same problem for
the traveling gaussian wave packet, starting
with the initial wave function

where l is a (real) constant. [Suggestion: In
going from  to , change
variables to  before doing the
integral.] Partial answer:

where , as before.
Notice that  has the structure of a
gaussian “envelope” modulating a traveling
sinusoidal wave. What is the speed of the
envelope? What is the speed of the
traveling wave?

Problem 2.43 Solve the time-independent
Schrödinger equation for a centered infinite
square well with a delta-function barrier in
the middle:

Treat the even and odd wave functions
separately. Don’t bother to normalize them.
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solutions are not affected by the delta
function. Comment on the limiting cases 

 and .

Problem 2.44 If two (or more) distinct56

solutions to the (time-independent)
Schrödinger equation have the same energy
E, these states are said to be degenerate.
For example, the free particle states are
doubly degenerate—one solution
representing motion to the right, and the
other motion to the left. But we have never
encountered normalizable degenerate
solutions, and this is no accident. Prove the
following theorem: In one dimension57

 there are no degenerate
bound states. [Hint: Suppose there are two
solutions,  and , with the same energy
E. Multiply the Schrödinger equation for 
by , and the Schrödinger equation for 
by , and subtract, to show that 

 is a constant. Use
the fact that for normalizable solutions 

 at  to demonstrate that this
constant is in fact zero. Conclude that  is
a multiple of , and hence that the two
solutions are not distinct.]

Problem 2.45 In this problem you will show
that the number of nodes of the stationary
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a multiple of , and hence that the two
solutions are not distinct.]

Problem 2.45 In this problem you will show
that the number of nodes of the stationary
states of a one-dimensional potential
always increases with energy.58 Consider
two (real, normalized) solutions  and 

 to the time-independent Schrödinger
equation (for a given potential , with
energies .
(a)   Show that

(b)   Let  and  be two adjacent nodes of
the function . Show that

(c)   If  has no nodes between  and 
, then it must have the same sign

everywhere in the interval. Show that
(b) then leads to a contradiction.
Therefore, between every pair of
nodes of  must have at
least one node, and in particular the
number of nodes increases with
energy.

150



∗∗

corresponding allowed energies. Note that
there are (with one exception) two
independent solutions for each energy —
corresponding to clockwise and counter-
clockwise circulation; call them  and 

. How do you account for this
degeneracy, in view of the theorem in
Problem 2.44 (why does the theorem fail,
in this case)?

Problem 2.47 Attention: This is a strictly
qualitative problem—no calculations
allowed! Consider the “double square
well” potential (Figure 2.20). Suppose the
depth  and the width a are fixed, and
large enough so that several bound states
occur.
(a)   Sketch the ground state wave function 

 and the first excited state , (i) for
the case , (ii) for , and (iii)
for .

(b)   Qualitatively, how do the
corresponding energies  and 
vary, as b goes from 0 to ? Sketch 

 and  on the same graph.
(c)   The double well is a very primitive

one-dimensional model for the
potential experienced by an electron in
a diatomic molecule (the two wells
represent the attractive force of the
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vary, as b goes from 0 to ? Sketch 
 and  on the same graph.

(c)   The double well is a very primitive
one-dimensional model for the
potential experienced by an electron in
a diatomic molecule (the two wells
represent the attractive force of the
nuclei). If the nuclei are free to move,
they will adopt the configuration of
minimum energy. In view of your
conclusions in (b), does the electron
tend to draw the nuclei together, or
push them apart? (Of course, there is
also the internuclear repulsion to
consider, but that’s a separate
problem.)

Problem 2.48 Consider a particle of mass m in
the potential

(a)   How many bound states are there?
(b)   In the highest-energy bound state,

what is the probability that the particle
would be found outside the well 

? Answer: 0.542, so even
though it is “bound” by the well, it is
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satisfies the time-dependent
Schrödinger equation for the harmonic
oscillator potential (Equation 2.44).
Here  is any real constant with the
dimensions of length.59

(b)   Find , and describe the
motion of the wave packet.

(c)   Compute  and , and check that
Ehrenfest’s theorem (Equation 1.38) is
satisfied.

Problem 2.50 Consider the moving delta-
function well:

where v is the (constant) velocity of the
well.
(a)   Show that the time-dependent

Schrödinger equation admits the exact
solution60

where  is the bound-
state energy of the stationary delta
function. Hint: Plug it in and check it!
Use the result of Problem 2.23(b).

(b)   Find the expectation value of the
Hamiltonian in this state, and
comment on the result.
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(2.176)

(2.177)

where  is the bound-
state energy of the stationary delta
function. Hint: Plug it in and check it!
Use the result of Problem 2.23(b).

(b)   Find the expectation value of the
Hamiltonian in this state, and
comment on the result.

Problem 2.51 Free fall. Show that

satisfies the time-dependent
Schrödinger equation for a particle in a
uniform gravitational field,

where  is the free gaussian wave packet
(Equation 2.111). Find  as a function of
time, and comment on the result.61

Problem 2.52 Consider the potential

where a is a positive constant, and “sech”
stands for the hyperbolic secant.
(a)   Graph this potential.
(b)   Check that this potential has the

ground state
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(where , as usual) solves the
Schrödinger equation for any (positive)
energy E. Since  as ,

This represents, then, a wave coming in
from the left with no accompanying
reflected wave (i.e. no term .
What is the asymptotic form of  at
large positive x? What are R and T, for this
potential? Comment: This is a famous
example of a reflectionless potential—
every incident particle, regardless its
energy, passes right through.62

Problem 2.53 The Scattering Matrix. The
theory of scattering generalizes in a pretty
obvious way to arbitrary localized
potentials (Figure 2.21). To the left
(Region I), , so

To the right (Region III), 
 is again zero, so

In between (Region II), of course, I can’t
tell you what  is until you specify the
potential, but because the Schrödinger
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To the right (Region III),  is again
zero, so

In between (Region II), of course, I can’t
tell you what  is until you specify the
potential, but because the Schrödinger
equation is a linear, second-order
differential equation, the general solution
has got to be of the form

where  and  are two linearly
independent particular solutions.63 There
will be four boundary conditions (two
joining Regions I and II, and two joining
Regions II and III). Two of these can be
used to eliminate C and D, and the other
two can be “solved” for B and F in terms of
A and G:

The four coefficients , which depend on
k (and hence on E), constitute a 
matrix S, called the scattering matrix (or
S-matrix, for short). The S-matrix tells you
the outgoing amplitudes (B and F) in terms
of the incoming amplitudes (A and G):
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For scattering from the right, , and

(a)   Construct the S-matrix
for scattering from a delta-function
well (Equation 2.117).

(b)   Construct the S-matrix for the finite
square well (Equation 2.148). Hint:
This requires no new work, if you
carefully exploit the symmetry of the
problem.

Figure 2.21:  Scattering from an arbitrary
localized potential  except in
Region II); Problem 2.53.

Problem 2.54 The transfer matrix.64 The S-
matrix (Problem 2.53) tells you the
outgoing amplitudes  and  in terms of
the incoming amplitudes  and —
Equation 2.180. For some purposes it is
more convenient to work with the transfer
matrix, , which gives you the amplitudes
to the right of the potential  and  in
terms of those to the left  and :
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the incoming amplitudes  and —
Equation 2.180. For some purposes it is
more convenient to work with the transfer
matrix, , which gives you the amplitudes
to the right of the potential  and  in
terms of those to the left  and :

(a)   Find the four elements of the M-
matrix, in terms of the elements of the
S-matrix, and vice versa. Express 

, and  (Equations 2.181 and
2.182) in terms of elements of the M-
matrix.

(b)   Suppose you have a potential
consisting of two isolated pieces
(Figure 2.22). Show that the M-matrix
for the combination is the product of
the two M-matrices for each section
separately:

(This obviously generalizes to any
number of pieces, and accounts for the
usefulness of the M-matrix.)

(c)   Construct the M-matrix for scattering
from a single delta-function potential
at point a:
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What is the transmission coefficient
for this potential?

 

Figure 2.22:  A potential consisting of two
isolated pieces (Problem 2.54).

Problem 2.55 Find the ground state energy of
the harmonic oscillator, to five significant
digits, by the “wag-the-dog” method. That
is, solve Equation 2.73 numerically,
varying K until you get a wave function
that goes to zero at large ξ. In
Mathematica, appropriate input code would
be

Plot[
Evaluate[

u[x] /.
NDSolve[

{u [x] -(x2 - K)*u[x] == 0,
 u[0] == 1, u [0] == 0},

u[x], {x, 0, b}
]

],
{x, a, b}, PlotRange -  {c, d}

 ]
(Here  is the horizontal range of the
graph, and  is the vertical range—start
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],
{x, a, b}, PlotRange -  {c, d}

 ]
(Here  is the horizontal range of the
graph, and  is the vertical range—start
with .) We
know that the correct solution is 

, so you might start with a
“guess” of . Notice what the “tail”
of the wave function does. Now try 
, and note that the tail flips over.
Somewhere in between those values lies
the correct solution. Zero in on it by
bracketing K tighter and tighter. As you do
so, you may want to adjust a, b, c, and d, to
zero in on the cross-over point.

Problem 2.56 Find the first three excited state
energies (to five significant digits) for the
harmonic oscillator, by wagging the dog
(Problem 2.55). For the first (and third)
excited state you will need to set 

.)

Problem 2.57 Find the first four allowed
energies (to five significant digits) for the
infinite square well, by wagging the dog.
Hint: Refer to Problem 2.55, making
appropriate changes to the differential
equation. This time the condition you are
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     Problem 2.57 Find the first four allowed
energies (to five significant digits) for the
infinite square well, by wagging the dog.
Hint: Refer to Problem 2.55, making
appropriate changes to the differential
equation. This time the condition you are
looking for is .

Problem 2.58 In a monovalent metal, one
electron per atom is free to roam
throughout the object. What holds such a
material together—why doesn’t it simply
fall apart into a pile of individual atoms?
Evidently the energy of the composite
structure must be less than the energy of
the isolated atoms. This problem offers a
crude but illuminating explanation for the
cohesiveness of metals.
(a)   Estimate the energy of N isolated

atoms, by treating each one as an
electron in the ground state of an
infinite square well of width a
(Figure 2.23(a)).

(b)   When these atoms come together to
form a metal, we get N electrons in a
much larger infinite square well of
width Na (Figure 2.23(b)). Because of
the Pauli exclusion principle (which
we will discuss in Chapter 5) there can
only be one electron (two, if you
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energy it would take to tear it apart
into isolated atoms. Find the cohesive
energy per atom, in the limit of large
N.

(d)   Atypical atomic separation in a metal
is a few Ångström (say,  Å).
What is the numerical value of the
cohesive energy per atom, in this
model? (Measured values are in the
range of 2–4 eV.)

Figure 2.23  (a) N electrons in individual
wells of width a. (b) N electrons in a single
well of width Na.

Problem 2.59 The “bouncing
ball.”65 Suppose
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(2.186)

Problem 2.59 The “bouncing
ball.”65 Suppose

(a)   Solve the (time-independent)
Schrödinger equation for this potential.
Hint: First convert it to dimensionless
form:

by letting  and 
 (the  is just so 

 is normalized with respect to z
when  is normalized with respect
to . What are the constants a and ε?
Actually, we might as well set 
—this amounts to a convenient choice
for the unit of length. Find the general
solution to this equation (in
Mathematica DSolve will do the job).
The result is (of course) a linear
combination of two (probably
unfamiliar) functions. Plot each of
them, for . One of them
clearly does not go to zero at large z
(more precisely, it’s not normalizable),
so discard it. The allowed values of ε
(and hence of  are determined by
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Plot  and , for .
Just as a check, confirm that 
and  are orthogonal.

(b)   Find (numerically) the uncertainties 
and  for these two states, and check
that the uncertainty principle is
obeyed.

(c)   The probability of finding the ball in
the neighborhood dx of height x is (of
course) . The
nearest classical analog would be the
fraction of time an elastically bouncing
ball (with the same energy,  spends
in the neighborhood dx of height x (see
Problem 1.11). Show that this is

or, in our units (with 
,

Plot  and  for the state 
, on the range ;

superimpose the graphs (Show, in
Mathematica), and comment on the
result.

Problem 2.60 The  potential. Suppose
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∗∗∗ 

superimpose the graphs (Show, in
Mathematica), and comment on the
result.

Problem 2.60 The  potential. Suppose

where α is some positive constant with the
appropriate dimensions. We’d like to find
the bound states—solutions to the time-
independent Schrödinger equation

with negative energy .
(a)   Let’s first go for the ground state

energy, . Prove, on dimensional
grounds, that there is no possible
formula for —no way to construct
(from the available constants m, , and 

 a quantity with the units of energy.
That’s weird, but it gets worse ….

(b)   For convenience, rewrite Equation
2.190 as

Show that if 
satisfies this equation with energy E,
then so too does , with energy 
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oscillator, and every other potential
well we have encountered, there are
no discrete allowed states—and no
ground state. A system with no ground
state—no lowest allowed energy—
would be wildly unstable, cascading
down to lower and lower levels,
giving off an unlimited amount of
energy as it falls. It might solve our
energy problem, but we’d all be fried
in the process.] Well, perhaps there
simply are no solutions at all ….

(c)   (Use a computer for the remainder of
this problem.) Show that

satisfies Equation 2.191 (here  is
the modified Bessel function of order
ig, and . Plot this
function, for  (you might as well
let  for the graph; this just sets
the scale of length). Notice that it goes
to 0 as  and as . And it’s
normalizable: determine A.66 How
about the old rule that the number of
nodes counts the number of lower-
energy states? This function has an
infinite number of nodes, regardless of
the energy (i.e. of . I guess that’s
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about the old rule that the number of
nodes counts the number of lower-
energy states? This function has an
infinite number of nodes, regardless of
the energy (i.e. of . I guess that’s
consistent, since for any E there are
always an infinite number of states
with even lower energy.

(d)   This potential confounds practically
everything we have come to expect.
The problem is that it blows up too
violently as . If you move the
“brick wall” over a hair,

it’s suddenly perfectly
normal. Plot the ground state wave
function, for  and  (you’ll
first need to determine the appropriate
value of , from  to .
Notice that we have introduced a new
parameter , with the dimensions of
length, so the argument in (a) is out
the window. Show that the ground
state energy takes the form
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matrix equation, by discretizing the
variable x. Slice the relevant interval at
evenly spaced points , with 

, and let 
(likewise . Then

(The approximation
presumably improves as  decreases.)
The discretized Schrödinger equation reads

or

In matrix form,

where (letting 

and

168



(2.200)

(2.201)

(2.199)and

(what goes in the upper left and lower right
corners of  depends on the boundary
conditions, as we shall see). Evidently the
allowed energies are the eigenvalues of the
matrix  (or would be, in the limit 
.67

Apply this method to the infinite square
well. Chop the interval  into 

 equal segments (so that 
, letting  and 

. The boundary conditions fix 
, leaving

(a)   Construct the  matrix , for 
, and . (Make sure

you are correctly representing
Equation 2.197 for the special cases 

 and .)
(b)   Find the eigenvalues of  for these

three cases “by hand,” and compare
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(2.202)

(c)   Using a computer (Mathematica’s
Eigenvalues package will do it) find
the five lowest eigenvalues
numerically for  and ,
and compare the exact energies.

(d)   Plot (by hand) the eigenvectors for 
, 2, and 3, and (by computer,

Eigenvectors) the first three
eigenvectors for  and .

Problem 2.62 Suppose the bottom of the
infinite square well is not flat ,
but rather

Use the method of Problem 2.61 to find the
three lowest allowed energies numerically,
and plot the associated wave functions (use

.

Problem 2.63 The Boltzmann equation68

gives the probability of
finding a system in the state n (with energy

, at temperature T  is Boltzmann’s
constant). Note: The probability here refers
to the random thermal distribution, and has
nothing to do with quantum indeterminacy.
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(2.204)

(2.205)

(2.203)

to the random thermal distribution, and has
nothing to do with quantum indeterminacy.
Quantum mechanics will only enter this
problem through quantization of the
energies .
(a)   Show that the thermal average of the

system’s energy can be written as

(b)   For a quantum simple
harmonic oscillator the index n is the
familiar quantum number, and 

. Show that in this
case the partition function Z is

You will need to sum a geometric
series. Incidentally, for a classical
simple harmonic oscillator it can be
shown that .

(c)   Use your results from parts (a) and (b)
to show that for the quantum oscillator

For a classical oscillator the same
reasoning would give 

.
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(2.206)

(2.207)

oscillators (each atom is attached by
springs to its 6 nearest neighbors,
along the x, y, and z directions, but
those springs are shared by the atoms
at the two ends). The heat capacity of
the crystal (per atom) will therefore be

Show that (in this model)

where  is
the so-called Einstein temperature.
The same reasoning using the
classical expression for  yields 

, independent of
temperature.

(e)   Sketch the graph of  versus .
Your result should look something like
the data for diamond in Figure 2.24,
and nothing like the classical
prediction.
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(2.208)

Figure 2.24:  Specific heat of diamond (for
Problem 2.63). From Semiconductors on NSM
(http://www.ioffe.rssi.ru/SVA/NSM/Semicond/).

Problem 2.64 Legendre’s differential
equation reads

where  is some (non-
negative) real number.
(a)   Assume a power series solution,

and obtain a recursion relation for the
constants .
(b)   Argue that unless the series truncates

(which can only happen if  is an
integer), the solution will diverge at 

.
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(c)   When  is an integer, the series for one
of the two linearly independent
solutions (either  or 
depending on whether  is even or
odd) will truncate, and those solutions
are called Legendre polynomials 

. Find , and 
 from the recursion relation.

Leave your answer in terms of either 
 or .69

1   It is tiresome to keep saying “potential energy function,” so most people just
call V the “potential,” even though this invites occasional confusion with
electric potential, which is actually potential energy per unit charge.

2   Note that this would not be true if V were a function of t as well as x.
3   Using Euler’s formula,

you could equivalently write

the real and imaginary parts oscillate sinusoidally. Mike Casper (of Carleton
College) dubbed  the “wiggle factor”—it’s the characteristic time dependence
in quantum mechanics.

4   For normalizable solutions, E must be real (see Problem 2.1(a)).
5   Whenever confusion might arise, I’ll put a “hat” (^) on the operator, to

distinguish it from the dynamical variable it represents.
6   A linear combination of the functions  is an expression of the

form
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where  are (possibly complex) constants.
7   In principle, any normalized function  is fair game—it need not even be

continuous. How you might actually get a particle into that state is a different
question, and one (curiously) we seldom have occasion to ask.

8   If this is your first encounter with the method of separation of variables, you
may be disappointed that the solution takes the form of an infinite series.
Occasionally it is possible to sum the series, or to solve the time-dependent
Schrödinger equation without recourse to separation of variables—see, for
instance, Problems 2.49, 2.50, and 2.51. But such cases are extremely rare.

9   This is nicely illustrated in an applet by Paul Falstad, at
www.falstad.com/qm1d/.

10   Some people will tell you that  is “the probability that the particle is in the
nth stationary state,” but this is bad language: the particle is in the state , not 

, and anyhow, in the laboratory you don’t “find the particle to be in a
particular state,” you measure some observable, and what you get is a number,
not a wave function.

11   That’s right:  is a continuous function of x, even though  need not
be.

12   Notice that the quantization of energy emerges as a rather technical
consequence of the boundary conditions on solutions to the time-independent
Schrödinger equation.

13   Actually, it’s  that must be normalized, but in view of Equation 2.7 this
entails the normalization of .

14   To make this symmetry more apparent, some authors center the well at the
origin (running it now from  to . The even functions are then cosines,
and the odd ones are sines. See Problem 2.36.

15   In this case the s are real, so the complex conjugation (*) of  is
unnecessary, but for future purposes it’s a good idea to get in the habit of
putting it there.

16   See, for example, Mary Boas, Mathematical Methods in the Physical Sciences,
3rd edn (New York: John Wiley, 2006), p. 356;  can even have a finite
number of finite discontinuities.
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17   It doesn’t matter whether you use m or n as the “dummy index” here (as long
as you are consistent on the two sides of the equation, of course); whatever
letter you use, it just stands for “any positive integer.”

18   Problem 2.45 explores this property. For further discussion, see John L. Powell
and Bernd Crasemann, Quantum Mechanics (Addison-Wesley, Reading, MA,
1961), Section 5–7.

19   Loosely speaking,  tells you the “amount of  that is contained in .”
20   You can look up the series

and

in math tables, under “Sums of Reciprocal Powers” or “Riemann Zeta
Function.”

21   Remember, there is no restriction in principle on the shape of the starting wave
function, as long as it is normalizable. In particular,  need not have a
continuous derivative. However, if you try to calculate  using 

 in such a case, you may encounter technical difficulties,
because the second derivative of  is ill defined. It works in Problem 2.9
because the discontinuities occur at the end points, where the wave function is
zero anyway. In Problem 2.39 you’ll see how to manage cases like Problem
2.7.

22   Note that , since by assumption  is a minimum. Only in the rare
case  is the oscillation not even approximately simple harmonic.

23   We’ll encounter some of the same strategies in the theory of angular
momentum (Chapter 4), and the technique generalizes to a broad class of
potentials in supersymmetric quantum mechanics (Problem 3.47; see also
Richard W. Robinett, Quantum Mechanics (Oxford University Press, New
York, 1997), Section 14.4).

24   Put a hat on x, too, if you like, but since  we usually leave it off.
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25   In a deep sense all of the mysteries of quantum mechanics can be traced to the
fact that position and momentum do not commute. Indeed, some authors take
the canonical commutation relation as an axiom of the theory, and use it to
derive .

26   I’m getting tired of writing “time-independent Schrödinger equation,” so when
it’s clear from the context which one I mean, I’ll just call it the “Schrödinger
equation.”

27   In the case of the harmonic oscillator it is customary, for some reason, to depart
from the usual practice, and number the states starting with , instead of 

. Of course, the lower limit on the sum in a formula such as Equation 2.17
should be altered accordingly.

28   Note that we obtain all the (normalizable) solutions by this procedure. For if
there were some other solution, we could generate from it a second ladder, by
repeated application of the raising and lowering operators. But the bottom rung
of this new ladder would have to satisfy Equation 2.59, and since that leads
inexorably to Equation 2.60, the bottom rungs would be the same, and hence
the two ladders would in fact be identical.

29   Of course, the integrals must exist, and this means that  and  must go to
zero at .

30   Of course, we could multiply  and  by phase factors, amounting to a
different definition of the ; but this choice keeps the wave functions real.

31   However,  does oscillate at the classical frequency—see Problem 3.40.
32   Note that although we invoked some approximations to motivate Equation

2.78, what follows is exact. The device of stripping off the asymptotic behavior
is the standard first step in the power series method for solving differential
equations—see, for example, Boas (footnote 16), Chapter 12.

33   According to Taylor’s theorem, any reasonably well-behaved function can be
expressed as a power series, so Equation 2.80 ordinarily involves no loss of
generality. For conditions on the applicability of the method, see Boas (footnote
16) or George B. Arfken and Hans-Jurgen Weber, Mathematical Methods for
Physicists, 7th edn, Academic Press, Orlando (2013), Section 7.5.

34   See, for example, Arfken and Weber (footnote 33), Section 1.2.
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35   It’s no surprise that the ill-behaved solutions are still contained in Equation
2.82; this recursion relation is equivalent to the Schrödinger equation, so it’s
got to include both the asymptotic forms we found in Equation 2.76.

36   It is possible to set this up on a computer, and discover the allowed energies
“experimentally.” You might call it the wag the dog method: When the tail
wags, you know you’ve just passed over an allowed value. Computer scientists
call it the shooting method (Nicholas Giordano, Computational Physics,
Prentice Hall, Upper Saddle River, NJ (1997), Section 10.2). See Problems
2.55–2.57.

37   Note that there is a completely different set of coefficients  for each value of
n.

38   The Hermite polynomials have been studied extensively in the mathematical
literature, and there are many tools and tricks for working with them. A few of
these are explored in Problem 2.16.

39   I shall not work out the normalization constant here; if you are interested in
knowing how it is done, see for example Leonard Schiff, Quantum Mechanics,
3rd edn, McGraw-Hill, New York (1968), Section 13.

40   Sinusoidal waves extend out to infinity, and they are not normalizable. But
superpositions of such waves lead to interference, which allows for localization
and normalizability.

41   Some people define the Fourier transform without the factor of . Then the
inverse transform becomes , spoiling the symmetry
of the two formulas.

42   The necessary and sufficient condition on  is that  be finite.
(In that case  is also finite, and in fact the two integrals are equal.
Some people call this Plancherel’s theorem, leaving Equation 2.102 without a
name.) See Arfken and Weber (footnote 33), Section 20.4.

43   If you are irritatingly observant, you may have noticed that the general theorem
requiring  (Problem 2.2) does not really apply to scattering states, since
they are not normalizable. If this bothers you, try solving the Schrödinger
equation with , for the free particle, and note that even linear
combinations of these solutions cannot be normalized. The positive energy
solutions by themselves constitute a complete set.
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44   The delta function can be thought of as the limit of a sequence of functions,
such as rectangles (or triangles) of ever-increasing height and ever-decreasing
width.

45   The delta function itself carries units of 1 length (see Equation 2.114), so α

has the dimensions energy length.
46   This is not a normalizable wave function, so the absolute probability of finding

the particle at a particular location is not well defined; nevertheless, the ratio of
probabilities for the incident and reflected waves is meaningful. More on this in
the next paragraph.

47   Note that the particle’s velocity is the same on both sides of the well.
Problem 2.34 treats the general case.

48   There exist some powerful programs for analyzing the scattering of a wave
packet from a one-dimensional potential; see, for instance, “Quantum
Tunneling and Wave Packets,” at PhET Interactive Simulations, University of
Colorado Boulder, https://phet.colorado.edu.

49   You can, if you like, write the general solution in exponential form 
. This leads to the same final result, but since the potential is

symmetric, we know the solutions will be either even or odd, and the
sine/cosine notation allows us to exploit this right from the start.

50   We could look for even and odd functions, as we did in the case of bound
states, but the scattering problem is inherently asymmetric, since the waves
come in from one side only, and the exponential notation (representing
traveling waves) is more natural in this context.

51   This remarkable phenomenon was observed in the laboratory before the advent
of quantum mechanics, in the form of the Ramsauer–Townsend effect. For an
illuminating discussion see Richard W. Robinett, Quantum Mechanics, Oxford
University Press, 1997, Section 12.4.1.

52   This is a good example of tunneling—classically the particle would bounce
back.

53   For interesting commentary see C. O. Dib and O. Orellana, Eur. J. Phys. 38,
045403 (2017).

54   For further discussion see P. L. Garrido, et al., Am. J. Phys. 79, 1218 (2011).
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55   The fact that the classical and quantum revival times bear no obvious relation
to one another (and the quantum one doesn’t even depend on the energy) is a
curious paradox; see D. F. Styer, Am. J. Phys. 69, 56 (2001).

56   If two solutions differ only by a multiplicative constant (so that, once
normalized, they differ only by a phase factor , they represent the same
physical state, and in this sense they are not distinct solutions. Technically, by
“distinct” I mean “linearly independent.”

57   In higher dimensions such degeneracy is very common, as we shall see in
Chapters 4 and 6. Assume that the potential does not consist of isolated pieces
separated by regions where —two isolated infinite square wells, for
instance, would give rise to degenerate bound states, for which the particle is
either in one well or in the other.

58   M. Moriconi, Am. J. Phys. 75, 284 (2007).
59   This rare example of an exact closed-form solution to the time-dependent

Schrödinger equation was discovered by Schrödinger himself, in 1926. One
way to obtain it is explored in Problem 6.30. For a discussion of this and related
problems see W. van Dijk, et al., Am. J. Phys. 82, 955 (2014).

60   See Problem 6.35 for a derivation.
61   For illuminating discussion see M. Nauenberg, Am. J. Phys. 84, 879 (2016).
62   R. E. Crandall and B. R. Litt, Annals of Physics, 146, 458 (1983).
63   See any book on differential equations—for example, John L. Van Iwaarden,

Ordinary Differential Equations with Numerical Techniques, Harcourt Brace
Jovanovich, San Diego, 1985, Chapter 3.

64   For applications of this method see, for instance, D. J. Griffiths and
C. A. Steinke, Am. J. Phys. 69, 137 (2001) or S. Das, Am. J. Phys. 83, 590
(2015).

65   This problem was suggested by Nicholas Wheeler.
66    is normalizable as long as g is real—which is to say, provided .

For more on this strange problem see A. M. Essin and D. J. Griffiths,
Am. J. Phys. 74, 109 (2006), and references therein.

67   For further discussion see Joel Franklin, Computational Methods for Physics
(Cambridge University Press, Cambridge, UK, 2013), Section 10.4.2.
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68   See, for instance, Daniel V. Schroeder, An Introduction to Thermal Physics,
Pearson, Boston (2000), Section 6.1.

69   By convention Legendre polynomials are normalized such that . Note
that the nonvanishing coefficients will take different values for different .
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3
Formalism

◈

3.1 Hilbert Space

In the previous two chapters we have stumbled on a number of interesting
properties of simple quantum systems. Some of these are “accidental”
features of specific potentials (the even spacing of energy levels for the
harmonic oscillator, for example), but others seem to be more general, and
it would be nice to prove them once and for all (the uncertainty principle,
for instance, and the orthogonality of stationary states). The purpose of this
chapter is to recast the theory in more powerful form, with that in mind.
There is not much here that is genuinely new; the idea, rather, is to make
coherent sense of what we have already discovered in particular cases.

Quantum theory is based on two constructs: wave functions and
operators. The state of a system is represented by its wave function,
observables are represented by operators. Mathematically, wave functions
satisfy the defining conditions for abstract vectors, and operators act on
them as linear transformations. So the natural language of quantum
mechanics is linear algebra.1

But it is not, I suspect, a form of linear algebra with which you may
be familiar. In an N-dimensional space it is simplest to represent a vector, 

, by the N-tuple of its components, , with respect to a specified
orthonormal basis:
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(3.1)

(3.2)

(3.3)

the inner product, , of two vectors (generalizing the dot product in
three dimensions) is a complex number,

linear transformations, T, are represented by matrices (with respect to the
specified basis), which act on vectors (to produce new vectors) by the
ordinary rules of matrix multiplication:

But the “vectors” we encounter in quantum
mechanics are (for the most part) functions, and they live in infinite-
dimensional spaces. For them the N-tuple/matrix notation is awkward, at
best, and manipulations that are well behaved in the finite-dimensional
case can be problematic. (The underlying reason is that whereas the finite
sum in Equation 3.2 always exists, an infinite sum—or an integral—may
not converge, in which case the inner product does not exist, and any
argument involving inner products is immediately suspect.) So even
though most of the terminology and notation should be familiar, it pays to
approach this subject with caution.

The collection of all functions of x constitutes a vector space, but for
our purposes it is much too large. To represent a possible physical state,
the wave function  must be normalized:
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(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

The set of all square-integrable functions, on a specified interval,2

constitutes a (much smaller) vector space (see Problem 3.1(a)).
Mathematicians call it ; physicists call it Hilbert space.3 In
quantum mechanics, then:

We define the inner product of two functions,  and , as
follows:

If f and g are both square-integrable (that is, if they are both in Hilbert
space), their inner product is guaranteed to exist (the integral in Equation
3.6 converges to a finite number).4 This follows from the integral Schwarz
inequality:5

You can check for yourself that definition (Equation 3.6) satisfies all the
conditions for an inner product (Problem 3.1(b)). Notice in particular that

Moreover, the inner product of  with itself ,
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(3.9)

(3.11)

(3.10)

(3.12)

is real and non-negative; it’s zero only when .6

A function is said to be normalized if its inner product with itself is
1; two functions are orthogonal if their inner product is 0; and a set of
functions, , is orthonormal if they are normalized and mutually
orthogonal:

Finally, a set of functions is complete if any other function (in Hilbert
space) can be expressed as a linear combination of them:

If the functions  are orthonormal, the coefficients are given by
Fourier’s trick:

as you can check for yourself. I anticipated this terminology, of course,
back in Chapter 2. (The stationary states of the infinite square well
(Equation 2.31) constitute a complete orthonormal set on the interval 
; the stationary states for the harmonic oscillator (Equation 2.68 or 2.86)
are a complete orthonormal set on the interval .)

Problem 3.1
(a)   Show that the set of all square-

integrable functions is a vector space
(refer to Section A.1 for the
definition). Hint: The main point is to
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(3.13)

show that the sum of two square-
integrable functions is itself square-
integrable. Use Equation 3.7. Is the set
of all normalized functions a vector
space?

(b)   Show that the integral in Equation 3.6
satisfies the conditions for an inner
product (Section A.2).

Problem 3.2    
(a)   For what range of ν is the function 

 in Hilbert space, on the
interval ? Assume ν is real, but
not necessarily positive.

(b)   For the specific case , is 
in this Hilbert space? What about 

? How about ?

3.2 Observables

3.2.1 Hermitian Operators

The expectation value of an observable  can be expressed very
neatly in inner-product notation:7

Now, the outcome of a measurement has got to be real, and so, a fortiori,
is the average of many measurements:
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(3.15)

(3.16)

(3.17)

(3.18)

(3.14)

(3.19)

But the complex conjugate of an inner product reverses the order
(Equation 3.8), so

and this must hold true for any wave function . Thus operators
representing observables have the very special property that

We call such operators hermitian.8

Actually, most books require an ostensibly stronger condition:

But it turns out, in spite of appearances, that this is perfectly equivalent to
my definition (Equation 3.16), as you will prove in Problem 3.3. So use
whichever you like. The essential point is that a hermitian operator can be
applied either to the first member of an inner product or to the second,
with the same result, and hermitian operators naturally arise in quantum
mechanics because their expectation values are real:

Well, let’s check this. Is the momentum operator, for example,
hermitian?

I used integration by parts, of course, and threw away the
boundary term for the usual reason: If  and  are square integrable,
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(3.20)

∗

they must go to zero at .9 Notice how the complex conjugation of i
compensates for the minus sign picked up from integration by parts—the
operator  (without the i) is not hermitian, and it does not represent a
possible observable.

The hermitian conjugate (or adjoint) of an operator  is the
operator  such that

A hermitian operator, then, is equal to its hermitian conjugate: .

Problem 3.3 Show that if  for
all h (in Hilbert space), then 
for all f and g (i.e. the two definitions of
“hermitian” —Equations 3.16 and 3.17—are
equivalent). Hint: First let , and then
let .

Problem 3.4
(a)   Show that the sum of two hermitian

operators is hermitian.
(b)   Suppose  is hermitian, and α is a

complex number. Under what
condition (on α) is  hermitian?

(c)   When is the product of two hermitian
operators hermitian?

(d)   Show that the position operator 
and the Hamiltonian operator 
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 are
hermitian.

Problem 3.5
(a)   Find the hermitian conjugates of x, i,

and .
(b)   Show that  (note the

reversed order), 
and  for a complex
number c.

(c)   Construct the hermitian conjugate of 
 (Equation 2.48).

3.2.2 Determinate States

Ordinarily, when you measure an observable Q on an ensemble of
identically prepared systems, all in the same state , you do not get the
same result each time—this is the indeterminacy of quantum mechanics.
Question: Would it be possible to prepare a state such that every
measurement of Q is certain to return the same value (call it q)? This
would be, if you like, a determinate state, for the observable Q.
(Actually, we already know one example: Stationary states are determinate
states of the Hamiltonian; a measurement of the energy, on a particle in the
stationary state , is certain to yield the corresponding “allowed” energy 

.)
Well, the standard deviation of Q, in a determinate state, would be

zero, which is to say,
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(3.23)

(3.21)

(3.22)

(3.24)

(Of course, if every measurement gives q, their average
is also q: . I used the fact that  (and hence also ) is a
hermitian operator, to move one factor over to the first term in the inner
product.) But the only vector whose inner product with itself vanishes is 0,
so

This is the eigenvalue equation for the operator ;  is an eigenfunction
of , and q is the corresponding eigenvalue:

Measurement of Q on such a state is certain to yield the eigenvalue, q.10

Note that the eigenvalue is a number (not an operator or a function).
You can multiply any eigenfunction by a constant, and it is still an
eigenfunction, with the same eigenvalue. Zero does not count as an
eigenfunction (we exclude it by definition—otherwise every number
would be an eigenvalue, since  for any linear operator  and
all q). But there’s nothing wrong with zero as an eigenvalue. The
collection of all the eigenvalues of an operator is called its spectrum.
Sometimes two (or more) linearly independent eigenfunctions share the
same eigenvalue; in that case the spectrum is said to be degenerate. (You
encountered this term already, for the case of energy eigenstates, if you
worked Problems 2.44 or 2.46.)

For example, determinate states of the total energy are eigenfunctions
of the Hamiltonian:

which is precisely the time-independent Schrödinger equation. In this
context we use the letter E for the eigenvalue, and the lower case  for the
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(3.25)

(3.27)

(3.26)

(3.28)

eigenfunction (tack on the wiggle factor  to make it , if you
like; it’s still an eigenfunction of .

Example 3.1
Consider the operator

where ϕ is the usual polar coordinate in two dimensions. (This
operator might arise in a physical context if we were studying the
bead-on-a-ring; see Problem 2.46.) Is  hermitian? Find its
eigenfunctions and eigenvalues.

Solution: Here we are working with functions  on the finite
interval , with the property that

since ϕ and  describe the same physical point. Using
integration by parts,

so  is hermitian (this time the boundary term disappears by virtue
of Equation 3.26).

The eigenvalue equation,

has the general solution
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(3.29)

Equation 3.26 restricts the possible values of the q:

The spectrum of this operator is the set of all integers, and it is
nondegenerate.

Problem 3.6 Consider the operator 
, where (as in Example 3.1) ϕ is the

azimuthal angle in polar coordinates, and the
functions are subject to Equation 3.26. Is 
hermitian? Find its eigenfunctions and
eigenvalues. What is the spectrum of ? Is the
spectrum degenerate?

3.3 Eigenfunctions of a Hermitian Operator

Our attention is thus directed to the eigenfunctions of hermitian operators
(physically: determinate states of observables). These fall into two
categories: If the spectrum is discrete (i.e. the eigenvalues are separated
from one another) then the eigenfunctions lie in Hilbert space and they
constitute physically realizable states. If the spectrum is continuous
(i.e. the eigenvalues fill out an entire range) then the eigenfunctions are not
normalizable, and they do not represent possible wave functions (though
linear combinations of them—involving necessarily a spread in
eigenvalues—may be normalizable). Some operators have a discrete
spectrum only (for example, the Hamiltonian for the harmonic oscillator),
some have only a continuous spectrum (for example, the free particle
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Hamiltonian), and some have both a discrete part and a continuous part
(for example, the Hamiltonian for a finite square well). The discrete case is
easier to handle, because the relevant inner products are guaranteed to
exist—in fact, it is very similar to the finite-dimensional theory (the
eigenvectors of a hermitian matrix). I’ll treat the discrete case first, and
then the continuous one.

3.3.1 Discrete Spectra

Mathematically, the normalizable eigenfunctions of a hermitian operator
have two important properties:

Theorem 1  Their eigenvalues are real.
Proof:   Suppose

(i.e.  is an eigenfunction of , with eigenvalue q), and11

. Then

(q is a number, so it comes outside the integral, and because the first
function in the inner product is complex conjugated (Equation 3.6),
so too is the q on the right). But  cannot be zero (  is not
a legal eigenfunction), so , and hence q is real. QED

This is comforting: If you measure an observable on a particle in a
determinate state, you will at least get a real number.
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Theorem 2  Eigenfunctions belonging to distinct eigenvalues are
orthogonal.
Proof:   Suppose

and  is hermitian. Then , so

(again, the inner products exist because the eigenfunctions are in
Hilbert space). But q is real (from Theorem 1), so if  it must be
that . QED

That’s why the stationary states of the infinite square well, for example, or
the harmonic oscillator, are orthogonal—they are eigenfunctions of the
Hamiltonian with distinct eigenvalues. But this property is not peculiar to
them, or even to the Hamiltonian—the same holds for determinate states of
any observable.

Unfortunately, Theorem 2 tells us nothing about degenerate states 
. However, if two (or more) eigenfunctions share the same

eigenvalue, any linear combination of them is itself an eigenfunction, with
the same eigenvalue (Problem 3.7), and we can use the Gram–Schmidt
orthogonalization procedure (Problem A.4) to construct orthogonal
eigenfunctions within each degenerate subspace. It is almost never
necessary to do this explicitly (thank God!), but it can always be done in
principle. So even in the presence of degeneracy the eigenfunctions can be
chosen to be orthonormal, and we shall always assume that this has been
done. That licenses the use of Fourier’s trick, which depends on the
orthonormality of the basis functions.

In a finite-dimensional vector space the eigenvectors of a hermitian
matrix have a third fundamental property: They span the space (every
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vector can be expressed as a linear combination of them). Unfortunately,
the proof does not generalize to infinite-dimensional spaces. But the
property itself is essential to the internal consistency of quantum
mechanics, so (following Dirac12 ) we will take it as an axiom (or, more
precisely, as a restriction on the class of hermitian operators that can
represent observables):

Axiom:  The eigenfunctions of an observable operator are
complete: Any function (in Hilbert space) can be expressed as a
linear combination of them.13

Problem 3.7
(a)   Suppose that  and  are two

eigenfunctions of an operator , with
the same eigenvalue q. Show that any
linear combination of f and g is itself
an eigenfunction of , with eigenvalue
q.

(b)   Check that  and 
 are eigenfunctions of

the operator , with the same
eigenvalue. Construct two linear
combinations of f and g that are
orthogonal eigenfunctions on the
interval .

Problem 3.8
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(3.30)

(a)   Check that the eigenvalues of the
hermitian operator in Example 3.1 are
real. Show that the eigenfunctions (for
distinct eigenvalues) are orthogonal.

(b)   Do the same for the operator in
Problem 3.6.

3.3.2 Continuous Spectra

If the spectrum of a hermitian operator is continuous, the eigenfunctions
are not normalizable, and the proofs of Theorems 1 and 2 fail, because the
inner products may not exist. Nevertheless, there is a sense in which the
three essential properties (reality, orthogonality, and completeness) still
hold. I think it’s best to approach this case through specific examples.

Example 3.2
Find the eigenfunctions and eigenvalues of the momentum
operator (on the interval ).

Solution: Let  be the eigenfunction and p the eigenvalue:

The general solution is

This is not square-integrable for any (complex) value of p—the
momentum operator has no eigenfunctions in Hilbert space.

And yet, if we restrict ourselves to real eigenvalues, we do
recover a kind of ersatz “orthonormality.” Referring to Problems
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(3.32)

(3.33)

(3.31)

(3.34)

(3.35)

2.23(a) and 2.26,

If we pick , so that

then

which is reminiscent of true orthonormality (Equation 3.10)—the
indices are now continuous variables, and the Kronecker delta has
become a Dirac delta, but otherwise it looks just the same. I’ll call
Equation 3.33 Dirac orthonormality.

Most important, the eigenfunctions (with real eigenvalues) are
complete, with the sum (in Equation 3.11) replaced by an integral:
Any (square-integrable) function  can be written in the form

The “coefficients” (now a function, ) are
obtained, as always, by Fourier’s trick:

Alternatively, you can get them from Plancherel’s
theorem (Equation 2.103); indeed, the expansion (Equation 3.34) is
nothing but a Fourier transform.
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(3.36)

(3.37)

The eigenfunctions of momentum (Equation 3.32) are sinusoidal,
with wavelength

This is the old de Broglie formula (Equation 1.39), which I promised to
justify at the appropriate time. It turns out to be a little more subtle than de
Broglie imagined, because we now know that there is actually no such
thing as a particle with determinate momentum. But we could make a
normalizable wave packet with a narrow range of momenta, and it is to
such an object that the de Broglie relation applies.

What are we to make of Example 3.2? Although none of the
eigenfunctions of  lives in Hilbert space, a certain family of them (those
with real eigenvalues) resides in the nearby “suburbs,” with a kind of
quasi-normalizability. They do not represent possible physical states, but
they are still very useful (as we have already seen, in our study of one-
dimensional scattering).14

Example 3.3
Find the eigenfunctions and eigenvalues of the position operator.

Solution: Let  be the eigenfunction and y the eigenvalue:

Here y is a fixed number (for any given eigenfunction), but x is a
continuous variable. What function of x has the property that
multiplying it by x is the same as multiplying it by the constant y?
Obviously it’s got to be zero, except at the one point ; in fact,
it is nothing but the Dirac delta function:
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(3.40)

(3.41)

(3.38)

(3.39)

(3.42)

This time the eigenvalue has to be real; the eigenfunctions are not
square integrable, but again they admit Dirac orthonormality:

If we pick , so

then

These eigenfunctions are also complete:

with

(trivial, in this case, but you can get it from Fourier’s trick if you
insist).

If the spectrum of a hermitian operator is continuous (so the
eigenvalues are labeled by a continuous variable—p or y, in the examples;
z, generically, in what follows), the eigenfunctions are not normalizable,
they are not in Hilbert space and they do not represent possible physical
states; nevertheless, the eigenfunctions with real eigenvalues are Dirac
orthonormalizable and complete (with the sum now an integral). Luckily,
this is all we really require.

Problem 3.9
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(a)   Cite a Hamiltonian from Chapter 2
(other than the harmonic oscillator)
that has only a discrete spectrum.

(b)   Cite a Hamiltonian from Chapter 2
(other than the free particle) that has
only a continuous spectrum.

(c)   Cite a Hamiltonian from Chapter 2
(other than the finite square well) that
has both a discrete and a continuous
part to its spectrum.

Problem 3.10 Is the ground state of the infinite
square well an eigenfunction of momentum? If
so, what is its momentum? If not, why not?
[For further discussion, see Problem 3.34.]

3.4 Generalized Statistical Interpretation

In Chapter 1 I showed you how to calculate the probability that a particle
would be found in a particular location, and how to determine the
expectation value of any observable quantity. In Chapter 2 you learned
how to find the possible outcomes of an energy measurement, and their
probabilities. I am now in a position to state the generalized statistical
interpretation, which subsumes all of this, and enables you to figure out
the possible results of any measurement, and their probabilities. Together
with the Schrödinger equation (which tells you how the wave function
evolves in time) it is the foundation of quantum mechanics.
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(3.43)

(3.44)

(3.45)

(3.46)

Generalized statistical interpretation: If you measure an observable  on
a particle in the state , you are certain to get one of the eigenvalues of the
hermitian operator .15 If the spectrum of  is discrete, the
probability of getting the particular eigenvalue  associated with the
(orthonormalized) eigenfunction  is

If the spectrum is continuous, with real eigenvalues  and associated (Dirac-
orthonormalized) eigenfunctions , the probability of getting a result in the
range dz is

Upon measurement, the wave function “collapses” to the corresponding
eigenstate.16

The statistical interpretation is radically different from anything we
encounter in classical physics. A somewhat different perspective helps to
make it plausible: The eigenfunctions of an observable operator are
complete, so the wave function can be written as a linear combination of
them:

(For simplicity, I’ll assume that the spectrum is discrete; it’s easy to
generalize this discussion to the continuous case.) Because the
eigenfunctions are orthonormal, the coefficients are given by Fourier’s
trick:17

Qualitatively,  tells you “how much  is contained in ,” and given that
a measurement has to return one of the eigenvalues of , it seems
reasonable that the probability of getting the particular eigenvalue 
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(3.47)

(3.49)

(3.50)

(3.48)

(3.51)

would be determined by the “amount of ” in . But because probabilities
are determined by the absolute square of the wave function, the precise

measure is actually . That’s the essential message of the generalized
statistical interpretation.18

Of course, the total probability (summed over all possible outcomes)
has got to be one:

and sure enough, this follows from the normalization of the wave function:

Similarly, the expectation value of Q should be the sum
over all possible outcomes of the eigenvalue times the probability of
getting that eigenvalue:

Indeed,

but , so

So far, at least, everything looks consistent.
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(3.52)

(3.53)

(3.54)

(3.55)

(3.56)

Can we reproduce, in this language, the original statistical
interpretation for position measurements? Sure—it’s overkill, but worth
checking. A measurement of x on a particle in state  must return one of
the eigenvalues of the position operator. Well, in Example 3.3 we found
that every (real) number y is an eigenvalue of x, and the corresponding
(Dirac-orthonormalized) eigenfunction is . Evidently

so the probability of getting a result in the range dy is , which
is precisely the original statistical interpretation.

What about momentum? In Example 3.2 we found the (Dirac-
orthonormalized) eigenfunctions of the momentum operator, 

, so

This is such an important quantity that we give it a special name and
symbol: the momentum space wave function, . It is essentially the
Fourier transform of the (position space) wave function —which,
by Plancherel’s theorem, is its inverse Fourier transform:

According to the generalized statistical interpretation, the probability that a
measurement of momentum would yield a result in the range dp is
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Example 3.4
A particle of mass m is bound in the delta function well 

. What is the probability that a measurement of its
momentum would yield a value greater than ?

Solution: The (position space) wave function is (Equation 2.132)

(where ). The momentum space wave function is
therefore

(I looked up the integral). The probability, then, is

(again, I looked up the integral).

Problem 3.11 Find the momentum-space wave
function, , for a particle in the ground
state of the harmonic oscillator. What is the
probability (to two significant digits) that a
measurement of p on a particle in this state
would yield a value outside the classical range
(for the same energy)? Hint: Look in a math
table under “Normal Distribution” or “Error
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(3.57)

(3.58)

Function” for the numerical part—or use
Mathematica.

Problem 3.12 Find  for the free particle
in terms of the function  introduced in
Equation 2.101. Show that for the free particle 

 is independent of time. Comment: the
time independence of  for the free
particle is a manifestation of momentum
conservation in this system.

Problem 3.13 Show that

Hint: Notice that 
, and

use Equation 2.147. In momentum space, then,
the position operator is . More
generally,

In principle you can do all
calculations in momentum space just as well
(though not always as easily) as in position
space.
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(3.60)

(3.61)

(3.59)

3.5 The Uncertainty Principle

I stated the uncertainty principle (in the form ), back in
Section 1.6, and you have checked it several times, in the problems. But
we have never actually proved it. In this section I will prove a more
general version of the uncertainty principle, and explore some of its
ramifications. The argument is beautiful, but rather abstract, so watch
closely.

3.5.1 Proof of the Generalized Uncertainty Principle

For any observable A, we have (Equation 3.21):

where . Likewise, for any other observable, B,

Therefore (invoking the Schwarz inequality, Equation 3.7),

Now, for any complex number z,

Therefore, letting ,

But (exploiting the hermiticity of  in the first line)
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(3.62)

(Remember,  and  are numbers, not operators, so you can write them
in either order.) Similarly,

so

where

is the commutator of the two operators (Equation 2.49). Conclusion:

This is the (generalized) uncertainty principle. (You might think the i
makes it trivial—isn’t the right side negative? No, for the commutator of
two hermitian operators carries its own factor of i, and the two cancel
out;19 the quantity in parentheses is real, and its square is positive.)

As an example, suppose the first observable is position , and

the second is momentum . We worked out their

commutator back in Chapter 2 (Equation 2.52):

207



(3.63)

So

or, since standard deviations are by their nature positive,

That’s the original Heisenberg uncertainty principle, but we now see that it
is just one application of a much more general theorem.

There is, in fact, an “uncertainty principle” for every pair of
observables whose operators do not commute—we call them
incompatible observables. Incompatible observables do not have shared
eigenfunctions—at least, they cannot have a complete set of common
eigenfunctions (see Problem 3.16). By contrast, compatible (commuting)
observables do admit complete sets of simultaneous eigenfunctions (that
is: states that are determinate for both observables).20 For example, in the
hydrogen atom (as we shall see in Chapter 4) the Hamiltonian, the
magnitude of the angular momentum, and the z component of angular
momentum are mutually compatible observables, and we will construct
simultaneous eigenfunctions of all three, labeled by their respective
eigenvalues. But there is no eigenfunction of position that is also an
eigenfunction of momentum; these operators are incompatible.

Note that the uncertainty principle is not an extra assumption in
quantum theory, but rather a consequence of the statistical
interpretation. You might wonder how it is enforced in the laboratory
—why can’t you determine (say) both the position and the momentum of a
particle? You can certainly measure the position of the particle, but the act
of measurement collapses the wave function to a narrow spike, which
necessarily carries a broad range of wavelengths (hence momenta) in its
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(3.66)

(3.64)

(3.65)

Fourier decomposition. If you now measure the momentum, the state will
collapse to a long sinusoidal wave, with (now) a well-defined wavelength
—but the particle no longer has the position you got in the first
measurement.21 The problem, then, is that the second measurement
renders the outcome of the first measurement obsolete. Only if the wave
function were simultaneously an eigenstate of both observables would it be
possible to make the second measurement without disturbing the state of
the particle (the second collapse wouldn’t change anything, in that case).
But this is only possible, in general, if the two observables are compatible.

Problem 3.14
(a)   Prove the following commutator

identities:

(b)   Show that

(c)   Show more generally that

for any function  that admits a
Taylor series expansion.

(d)   Show that for the simple harmonic
oscillator
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∗

Hint: Use Equation 2.54.

Problem 3.15 Prove the famous “(your name)
uncertainty principle,” relating the uncertainty
in position  to the uncertainty in energy

:

For stationary states this doesn’t tell you much
—why not?

Problem 3.16 Show that two noncommuting
operators cannot have a complete set of
common eigenfunctions. Hint: Show that if 
and  have a complete set of common
eigenfunctions, then  for any

function in Hilbert space.

3.5.2 The Minimum-Uncertainty Wave Packet

We have twice encountered wave functions that hit the position-
momentum uncertainty limit : the ground state of the
harmonic oscillator (Problem 2.11) and the Gaussian wave packet for the
free particle (Problem 2.21). This raises an interesting question: What is
the most general minimum-uncertainty wave packet? Looking back at the
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(3.69)

(3.70)

(3.68)

proof of the uncertainty principle, we note that there were two points at
which inequalities came into the argument: Equation 3.59 and Equation
3.60. Suppose we require that each of these be an equality, and see what
this tells us about .

The Schwarz inequality becomes an equality when one function is a
multiple of the other: , for some complex number c (see
Problem A.5). Meanwhile, in Equation 3.60 I threw away the real part of z;
equality results if Re , which is to say, if Re 
. Now,  is certainly real, so this means the constant c must be pure
imaginary—let’s call it ia. The necessary and sufficient condition for
minimum uncertainty, then, is

For the position-momentum uncertainty principle this criterion
becomes:

which is a differential equation for  as a function of x. Its general
solution (see Problem 3.17) is

Evidently the minimum-uncertainty wave packet is a gaussian—and, sure
enough, the two examples we encountered earlier were gaussians.22

Problem 3.17 Solve Equation 3.69 for .
Note that  and  are constants (independent
of x).
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(3.72)

3.5.3 The Energy-Time Uncertainty Principle

The position-momentum uncertainty principle is often written in the form

 (the “uncertainty” in x) is loose notation (and sloppy language) for the
standard deviation of the results of repeated measurements on identically
prepared systems.23 Equation 3.71 is often paired with the energy-time
uncertainty principle,

Indeed, in the context of special relativity the energy-time form might be
thought of as a consequence of the position-momentum version, because x
and t (or rather, ct) go together in the position-time four-vector, while p
and E (or rather, ) go together in the energy-momentum four-vector.
So in a relativistic theory Equation 3.72 would be a necessary concomitant
to Equation 3.71. But we’re not doing relativistic quantum mechanics. The
Schrödinger equation is explicitly nonrelativistic: It treats t and x on a very
unequal footing (as a differential equation it is first-order in t, but second-
order in x), and Equation 3.72 is emphatically not implied by Equation
3.71. My purpose now is to derive the energy-time uncertainty principle,
and in the course of that derivation to persuade you that it is really an
altogether different beast, whose superficial resemblance to the position-
momentum uncertainty principle is actually quite misleading.

After all, position, momentum, and energy are all dynamical variables
—measurable characteristics of the system, at any given time. But time
itself is not a dynamical variable (not, at any rate, in a nonrelativistic
theory): You don’t go out and measure the “time” of a particle, as you
might its position or its energy. Time is the independent variable, of which
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(3.73)

the dynamical quantities are functions. In particular, the  in the energy-
time uncertainty principle is not the standard deviation of a collection of
time measurements; roughly speaking (I’ll make this more precise in a
moment) it is the time it takes the system to change substantially.

As a measure of how fast the system is changing, let us compute the
time derivative of the expectation value of some observable, :

Now, the Schrödinger equation says

(where  is the Hamiltonian). So

But  is hermitian, so , and hence

This is an interesting and useful result in its own right (see Problems 3.18
and 3.37). It has no name, though it surely deserves one; I’ll call it the
generalized Ehrenfest theorem. In the typical case where the operator
does not depend explicitly on time,24 it tells us that the rate of change of
the expectation value is determined by the commutator of the operator
with the Hamiltonian. In particular, if  commutes with , then  is
constant, and in this sense Q is a conserved quantity.

213



(3.74)

(3.75)

(3.76)

Now, suppose we pick  and , in the generalized
uncertainty principle (Equation 3.62), and assume that Q does not depend
explicitly on t:

Or, more simply,

Let’s define , and

Then

and that’s the energy-time uncertainty principle. But notice what is meant
by , here: Since

 represents the amount of time it takes the expectation value of Q to
change by one standard deviation.25 In particular,  depends entirely on
what observable  you care to look at—the change might be rapid for
one observable and slow for another. But if  is small, then the rate of
change of all observables must be very gradual; or, to put it the other way
around, if any observable changes rapidly, the “uncertainty” in the energy
must be large.
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Example 3.5
In the extreme case of a stationary state, for which the energy is
uniquely determined, all expectation values are constant in time 

—as in fact we noticed some time ago (see
Equation 2.9). To make something happen you must take a linear
combination of at least two stationary states—say:

If a, b, , and  are real,

The period of oscillation is . Roughly speaking,
 and  (for the exact calculation see Problem

3.20), so

which is indeed .

Example 3.6
Let  be the time it takes a free-particle wave packet to pass a
particular point (Figure 3.1). Qualitatively (an exact version is
explored in Problem 3.21), . But ,
so , and therefore,

which is  by the position-momentum uncertainty principle.
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Figure 3.1:  A free particle wave packet approaches the point A
(Example 3.6).

Example 3.7
The Δ particle lasts about  s, before spontaneously
disintegrating. If you make a histogram of all measurements of its
mass, you get a kind of bell-shaped curve centered at 1232 MeV/
, with a width of about 120 MeV/  (Figure 3.2). Why does the rest
energy  sometimes come out higher than 1232, and
sometimes lower? Is this experimental error? No, for if we take 
to be the lifetime of the particle (certainly one measure of “how
long it takes the system to change appreciably”),

whereas  MeV s. So the spread in m is about as
small as the uncertainty principle allows—a particle with so short a
lifetime just doesn’t have a very well-defined mass.26
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Figure 3.2:  Measurements of the Δ mass (Example 3.7).

Notice the variety of specific meanings attaching to the term  in
these examples: In Example 3.5 it’s a period of oscillation; in Example 3.6
it’s the time it takes a particle to pass a point; in Example 3.7 it’s the
lifetime of an unstable particle. In every case, however,  is the time it
takes for the system to undergo “substantial” change.

It is often said that the uncertainty principle means energy is not
strictly conserved in quantum mechanics—that you’re allowed to
“borrow” energy , as long as you “pay it back” in a time 
; the greater the violation, the briefer the period over which it can occur.
Now, there are many legitimate readings of the energy-time uncertainty
principle, but this is not one of them. Nowhere does quantum mechanics
license violation of energy conservation, and certainly no such
authorization entered into the derivation of Equation 3.76. But the
uncertainty principle is extraordinarily robust: It can be misused without
leading to seriously incorrect results, and as a consequence physicists are
in the habit of applying it rather carelessly.

Problem 3.18 Apply Equation 3.73 to the
following special cases: (a) ; (b) ;
(c) ; (d) . In each case, comment
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on the result, with particular reference to
Equations 1.27, 1.33, 1.38, and conservation of
energy (see remarks following Equation 2.21).

Problem 3.19 Use Equation 3.73 (or Problem
3.18 (c) and (d)) to show that:

(a)   For any (normalized) wave packet
representing a free particle , 

 moves at constant velocity (this is
the quantum analog to Newton’s first
law). Note: You showed this for a
gaussian wave packet in Problem 2.42,
but it is completely general.

(b)   For any (normalized) wave packet
representing a particle in the harmonic
oscillator potential , 

 oscillates at the classical
frequency. Note: You showed this for
a particular gaussian wave packet in
Problem 2.49, but it is completely
general.

Problem 3.20 Test the energy-time uncertainty
principle for the wave function in Problem 2.5
and the observable x, by calculating , , and

 exactly.
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Problem 3.21 Test the energy-time uncertainty
principle for the free particle wave packet in
Problem 2.42 and the observable x, by
calculating , , and  exactly.

Problem 3.22 Show that the energy-time
uncertainty principle reduces to the “your
name” uncertainty principle (Problem 3.15),
when the observable in question is x.

3.6 Vectors and Operators

3.6.1 Bases in Hilbert Space

Imagine an ordinary vector A in two dimensions (Fig. 3.3(a)). How would
you describe this vector to someone? You might tell them “It’s about an
inch long, and it points 20  clockwise from straight up, with respect to the
page.” But that’s pretty awkward. A better way would be to introduce
cartesian axes, x and y, and specify the components of A: 

 (Fig. 3.3(b)). Of course, your sister might draw a
different set of axes,  and , and she would report different components: 

 (Fig. 3.3(c)) …but it’s all the same vector—we’re
simply expressing it with respect to two different bases  and .
The vector itself lives “out there in space,” independent of anybody’s
(arbitrary) choice of coordinates.
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(3.77)

(3.78)

(3.79)

Figure 3.3: (a) Vector A. (b) Components of A with respect to xy axes. (c)
Components of A with respect to  axes.

The same is true for the state of a system in quantum mechanics. It is
represented by a vector, , that lives “out there in Hilbert space,” but
we can express it with respect to any number of different bases. The wave
function  is actually the x “component” in the expansion of  in
the basis of position eigenfunctions:

(the analog to ) with  standing for the eigenfunction of  with
eigenvalue x.27 The momentum space wave function  is the p
component in the expansion of  in the basis of momentum
eigenfunctions:

(with  standing for the eigenfunction of  with eigenvalue p).28 Or we
could expand  in the basis of energy eigenfunctions (supposing for
simplicity that the spectrum is discrete):

(with  standing for the nth eigenfunction of —Equation 3.46). But it’s
all the same state; the functions  and Φ, and the collection of coefficients 
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(3.81)

(3.83)

(3.84)

(3.85)

(3.86)

(3.80)

(3.82)

, contain exactly the same information—they are simply three different

ways of identifying the same vector:

Operators (representing observables) are linear
transformations on Hilbert space—they “transform” one vector into
another:

Just as vectors are represented, with respect to an orthonormal basis 
,29 by their components,

operators are represented (with respect to a particular
basis) by their matrix elements30

In this notation Equation 3.81 says

or, taking the inner product with ,

and hence (since )
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(3.87)

Thus the matrix elements of  tell you how the components transform.31

Later on we will encounter systems that admit only a finite number N
of linearly independent states. In that case  lives in an N-dimensional
vector space; it can be represented as a column of  components (with
respect to a given basis), and operators take the form of ordinary 
matrices. These are the simplest quantum systems—none of the subtleties
associated with infinite-dimensional vector spaces arise. Easiest of all is
the two-state system, which we explore in the following example.

Example 3.8
Imagine a system in which there are just two linearly independent
states:32

The most general state is a normalized linear combination:

The Hamiltonian can be expressed as a (hermitian) matrix
(Equation 3.83); suppose it has the specific form

where g and h are real constants. If the system starts out (at )
in state , what is its state at time t?

Solution: The (time-dependent) Schrödinger equation33 says
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(3.88)

As always, we begin by solving the time-independent Schrödinger
equation:

that is, we look for the eigenvectors and eigenvalues of . The
characteristic equation determines the eigenvalues:

Evidently the allowed energies are  and . To
determine the eigenvectors, we write

so the normalized eigenvectors are

Next we expand the initial state as a linear combination of
eigenvectors of the Hamiltonian:

Finally, we tack on the standard time-dependence (the wiggle
factor) :
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If you doubt this result, by all means check it: Does it satisfy the
time-dependent Schrödinger equation (Equation 3.87)? Does it
match the initial state when ?34

Just as vectors look different when expressed in different bases, so
too do operators (or, in the discrete case, the matrices that represent them).
We have already encountered a particularly nice example:

(“Position space” is nothing but the position basis; “momentum space” is
the momentum basis.) If someone asked you, “What is the operator, ,
representing position, in quantum mechanics?” you would probably
answer “Just x itself.” But an equally correct reply would be “ ,” and
the best response would be “With respect to what basis?”

I have often said “the state of a system is represented by its wave
function, ,” and this is true, in the same sense that an ordinary
vector in three dimensions is “represented by” the triplet of its
components; but really, I should always add “in the position basis.” After
all, the state of the system is a vector in Hilbert space, ; it makes no
reference to any particular basis. Its connection to  is given by
Equation 3.77: . Having said that, for the most part we do
in fact work in position space, and no serious harm comes from referring
to the wave function as “the state of the system.”

3.6.2 Dirac Notation
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(3.91)

Dirac proposed to chop the bracket notation for the inner product, ,
into two pieces, which he called bra, , and ket,  (I don’t know what
happened to the c). The latter is a vector, but what exactly is the former?
It’s a linear function of vectors, in the sense that when it hits a vector (to
its right) it yields a (complex) number—the inner product. (When an
operator hits a vector, it delivers another vector; when a bra hits a vector,
it delivers a number.) In a function space, the bra can be thought of as an
instruction to integrate:

with the ellipsis  waiting to be filled by whatever function the bra
encounters in the ket to its right. In a finite-dimensional vector space, with
the kets expressed as columns (of components with respect to some basis),

the bras are rows:

and  is the matrix product. The collection
of all bras constitutes another vector space—the so-called dual space.

The license to treat bras as separate entities in their own right allows
for some powerful and pretty notation. For example, if  is a normalized
vector, the operator

picks out the portion of any other vector that “lies along” :
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(3.94)

(3.96)

(3.92)

(3.95)

we call it the projection operator onto the one-dimensional subspace
spanned by . If  is a discrete orthonormal basis,

then

(the identity operator). For if we let this operator act on any vector , we
recover the expansion of  in the  basis:

Similarly, if  is a Dirac orthonormalized continuous basis,

then

Equations 3.93 and 3.96 are the tidiest ways to express completeness.
Technically, the guts of a ket or a bra (the ellipsis in  or ) is a

name—the name of the vector in question: “α,” or “n,” or for that matter
“Alice,” or “Bob.” It is endowed with no intrinsic mathematical attributes.
Of course, it may be helpful to choose an evocative name—for instance, if
you’re working in the space  of square-integrable functions, it is natural
to name each vector after the function it represents: . Then, for example,
we can write the definition of a hermitian operator as we did in Equation
3.17:
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(3.99)

(3.97)

Strictly speaking, in Dirac notation this is a nonsense expression: f here is
a name, and operators act on vectors, not on names. The left side should
properly be written as

but what are we to make of the right side?  really means “the bra dual
to ,” but what is its name? I suppose we could say

but that’s a mouthful. However, since we have chosen to name each vector
after the function it represents, and since we do know how  acts on the
function (as opposed to the name) f , this in fact becomes35

and we are OK after all.36

An operator takes one vector in Hilbert space and delivers another:

The sum of two operators is defined in the obvious way,

and the product of two operators is

(first apply  to , and then apply  to what you got—being careful, of
course, to respect their ordering). Occasionally we shall encounter
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(3.101)

(3.102)

functions of operators. They are typically defined by the power series
expansion:

and so on. On the right-hand side we have only sums and products, and we
know how to handle them.

Problem 3.23 Show that projection operators
are idempotent: . Determine the
eigenvalues of , and characterize its
eigenvectors.

Problem 3.24 Show that if an operator  is
hermitian, then its matrix elements in any
orthonormal basis satisfy . That is,
the corresponding matrix is equal to its
transpose conjugate.

Problem 3.25 The Hamiltonian for a certain
two-level system is
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where  is an orthonormal basis and ϵ is a
number with the dimensions of energy. Find its
eigenvalues and eigenvectors (as linear
combinations of  and ). What is the matrix 

 representing  with respect to this basis?

Problem 3.26 Consider a three-dimensional
vector space spanned by an orthonormal basis 

, , . Kets  and  are given by

(a)   Construct  and  (in terms of the
dual basis , , ).

(b)   Find  and , and confirm that 
.

(c)   Find all nine matrix elements of the
operator , in this basis, and
construct the matrix . Is it hermitian?

Problem 3.27 Let  be an operator with a
complete set of orthonormal eigenvectors:

(a)   Show that  can be written in terms of
its spectral decomposition:
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∗∗

Hint: An operator is characterized by
its action on all possible vectors, so
what you must show is that

for any vector .
(b)   Another way to define a function of 

is via the spectral decomposition:

Show that this is equivalent to
Equation 3.100 in the case of .

Problem 3.28 Let  (the derivative
operator). Find

(a)   .

(b)   .

Problem 3.29 Consider operators  and  that
do not commute with each other 

but do commute with their commutator: 
 (for instance,  and ).

(a)   Show that
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Hint: You can prove this by induction
on n, using Equation 3.65.

(b)   Show that

where  is any complex number. Hint:
Express  as a power series.

(c)   Derive the Baker–Campbell–
Hausdorff formula:37

Hint: Define the functions

Note that these functions are equal at 
, and show that they satisfy the

same differential equation: 
 and 

. Therefore, the

functions are themselves equal for all 
.38

3.6.3 Changing Bases in Dirac Notation

The advantage of Dirac notation is that it frees us from working in any
particular basis, and makes transforming between bases seamless. Recall
that the identity operator can be written as a projection onto a complete set
of states (Equations 3.93 and 3.96); of particular interest are the position
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(3.107)

eigenstates , the momentum eigenstates , and the energy eigenstates
(we will assume those are discrete) :

Acting on the state vector  with each of these resolutions of the
identity gives

Here we recognize the position-space, momentum-space, and “energy-
space” wave functions (Equations 3.77–3.79) as the components of the
vector  in the respective bases.

Example 3.9
Derive the transformation from the position-space wave function to
the momentum-space wave function. (We already know the
answer, of course, but I want to show you how this works out in
Dirac notation.)

Solution: We want to find  given 
. We can relate the two by inserting a resolution

of the identity:
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(3.108)

Now,  is the momentum eigenstate (with eigenvalue p) in the
position basis—what we called , in Equation 3.32. So

Plugging this into Equation 3.108 gives

which is precisely Equation 3.54.

Just as the wave function takes different forms in different bases, so
do operators. The position operator is given by

in the position basis, or

in the momentum basis. However, Dirac notation allows us to do away
with the arrows and stick to equalities. Operators act on kets (for instance, 

); the outcome of this operation can be expressed in any basis by
taking the inner product with an appropriate basis vector. That is,
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(3.110)

or

In this notation it is straightforward to transform
operators between bases, as the following example illustrates.

Example 3.10
Obtain the position operator in the momentum basis (Equation
3.110) by inserting a resolution of the identity on the left-hand
side.

Solution:

where I’ve used the fact that  is an eigenstate of ;
x can then be pulled out of the inner product (it’s just a number)
and

Finally we recognize the integral as  (Equation 3.54).

Problem 3.30 Derive the transformation from
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the position-space wave function to the
“energy-space” wave function  using the
technique of Example 3.9. Assume that the
energy spectrum is discrete, and the potential is
time-independent.

Further Problems on Chapter 3

Problem 3.31 Legendre polynomials. Use the
Gram–Schmidt procedure (Problem A.4) to
orthonormalize the functions , and 

, on the interval . You may
recognize the results—they are (apart from
normalization)39 Legendre polynomials
(Problem 2.64 and Table 4.1).

Problem 3.32 An anti-hermitian (or skew-
hermitian) operator is equal to minus its
hermitian conjugate:

(a)   Show that the expectation value of an
anti-hermitian operator is imaginary.

(b)   Show that the eigenvalues of an anti-
hermitian operator are imaginary.

(c)   Show that the eigenvectors of an anti-
hermitian operator belonging to
distinct eigenvalues are orthogonal.
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(d)   Show that the commutator of two
hermitian operators is anti-hermitian.
How about the commutator of two
anti-hermitian operators?

(e)   Show that any operator  can be
written as a sum of a hermitian
operator  and an anti-hermitian
operator , and give expressions for 
and  in terms of  and its adjoint .

Problem 3.33 Sequential measurements. An
operator , representing observable A, has
two (normalized) eigenstates  and ,
with eigenvalues  and , respectively.
Operator , representing observable B, has
two (normalized) eigenstates  and ,
with eigenvalues  and . The eigenstates
are related by

(a)   Observable A is measured, and the
value  is obtained. What is the state
of the system (immediately) after this
measurement?

(b)   If B is now measured, what are the
possible results, and what are their
probabilities?

(c)   Right after the measurement of B, A is
measured again. What is the
probability of getting ? (Note that the
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answer would be quite different if I
had told you the outcome of the B
measurement.)

Problem 3.34
(a)   Find the momentum-space wave

function  for the nth stationary
state of the infinite square well.

(b)   Find the probability density 
. Graph this function, for , , 

, and . What are the most
probable values of p, for large n? Is
this what you would have expected?
40 Compare your answer to Problem
3.10.

(c)   Use  to calculate the
expectation value of , in the nth
state. Compare your answer to
Problem 2.4.

Problem 3.35 Consider the wave function

where n is some positive integer. This
function is purely sinusoidal (with
wavelength ) on the interval 

, but it still carries a range
of momenta, because the oscillations do
not continue out to infinity. Find the
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momentum space wave function .
Sketch the graphs of  and 

, and determine their widths, 
and  (the distance between zeros on
either side of the main peak). Note what
happens to each width as . Using 
and  as estimates of  and , check
that the uncertainty principle is satisfied.
Warning: If you try calculating , you’re
in for a rude surprise. Can you diagnose the
problem?

Problem 3.36 Suppose

for constants A and a.
(a)   Determine A, by normalizing .
(b)   Find , , and  (at time ).
(c)   Find the momentum space wave

function , and check that it is
normalized.

(d)   Use  to calculate , , and 
 (at time ).

(e)   Check the Heisenberg uncertainty
principle for this state.

Problem 3.37 Virial theorem. Use Equation
3.73 to show that

238



(3.112)

(3.113)

∗∗

where T is the kinetic energy .
In a stationary state the left side is zero
(why?) so

This is called the virial theorem. Use it to
prove that  for stationary states of
the harmonic oscillator, and check that this
is consistent with the results you got in
Problems 2.11 and 2.12.

Problem 3.38 In an interesting version of the
energy-time uncertainty principle41 

, where τ is the time it takes 
 to evolve into a state orthogonal to 
. Test this out, using a wave

function that is a linear combination of two
(orthonormal) stationary states of some
(arbitrary) potential: 

.

Problem 3.39 Find the matrix elements 
and  in the (orthonormal) basis of
stationary states for the harmonic oscillator
(Equation 2.68). You already calculated the
“diagonal” elements  in Problem
2.12; use the same technique for the
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general case. Construct the corresponding
(infinite) matrices, X and P. Show that 

 is diagonal, in
this basis. Are its diagonal elements what
you would expect? Partial answer:

Problem 3.40 The most general
wave function of a particle in the simple
harmonic oscillator potential is

Show that the expectation value of position
is

where the real constants C and ϕ are given
by

Thus the expectation value of position for a
particle in the harmonic oscillator oscillates
at the classical frequency ω (as you would
expect from Ehrenfest’s theorem; see
problem 3.19(b)). Hint: Use Equation
3.114. As an example, find C and ϕ for the
wave function in Problem 2.40.
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Problem 3.41 A harmonic oscillator is in a
state such that a measurement of the energy
would yield either  or ,
with equal probability. What is the largest
possible value of  in such a state? If it
assumes this maximal value at time ,
what is ?

Problem 3.42 Coherent states of the
harmonic oscillator. Among the stationary
states of the harmonic oscillator (Equation
2.68) only  hits the uncertainty limit 

; in general, 
, as you found in

Problem 2.12. But certain linear
combinations (known as coherent states)
also minimize the uncertainty product.
They are (as it turns out) eigenfunctions of
the lowering operator:42

(the eigenvalue α can be any complex
number).
(a)   Calculate , , ,  in the state 

. Hint: Use the technique in
Example 2.5, and remember that  is
the hermitian conjugate of . Do not
assume α is real.

(b)   Find  and ; show that .
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(c)   Like any other wave function, a
coherent state can be expanded in
terms of energy eigenstates:

Show that the expansion coefficients
are

(d)   Determine  by normalizing .
Answer: .

(e)   Now put in the time dependence:

and show that  remains an
eigenstate of , but the eigenvalue
evolves in time:

So a coherent state stays coherent, and
continues to minimize the uncertainty
product.

(f)   Based on your answers to (a), (b), and
(e), find  and  as functions of time.
It helps if you write the complex
number α as
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for real numbers C and ϕ. Comment:
In a sense, coherent states behave
quasi-classically.

(g)   Is the ground state  itself a
coherent state? If so, what is the
eigenvalue?

Problem 3.43 Extended uncertainty
principle.43 The generalized uncertainty
principle (Equation 3.62) states that

where .

(a)   Show that it can be strengthened to
read

where .
Hint: Keep the Re  term in Equation
3.60.

(b)   Check Equation 3.115 for the case 
 (the standard uncertainty

principle is trivial, in this case, since 
; unfortunately, the extended

uncertainty principle doesn’t help
much either).

Problem 3.44 The Hamiltonian for a certain
three-level system is represented by the
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where a, b, and c are real numbers.
(a)   If the system starts out in the state

what is ?
(b)   If the system starts out in the state

what is ?

Problem 3.45 Find the position operator in the
basis of simple harmonic oscillator energy
states. That is, express

in terms of . Hint: Use
Equation 3.114.

Problem 3.46 The Hamiltonian for a certain
three-level system is represented by the
matrix
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Two other observables, A and B, are
represented by the matrices

where ω, , and μ are positive real
numbers.
(a)   Find the eigenvalues and (normalized)

eigenvectors of , , and .
(b)   Suppose the system starts out in the

generic state

with . Find the
expectation values (at ) of H, A,
and B.

(c)   What is ? If you measured the
energy of this state (at time t), what
values might you get, and what is the
probability of each? Answer the same
questions for observables A and for B.

Problem 3.47 Supersymmetry. Consider the
two operators
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(3.118)

(3.117)

for some function .
These may be multiplied in either order to
construct two Hamiltonians:

 and  are called
supersymmetric partner potentials. The
energies and eigenstates of  and  are
related in interesting ways.44

(a)   Find the potentials  and , in
terms of the superpotential, .

(b)   Show that if  is an eigenstate of 
with eigenvalue , then  is an
eigenstate of  with the same
eigenvalue. Similarly, show that if 

 is an eigenstate of  with
eigenvalue , then  is an
eigenstate of  with the same
eigenvalue. The two Hamiltonians
therefore have essentially identical
spectra.

(c)   One ordinarily chooses  such that
the ground state of  satisfies

and hence . Use this to find
the superpotential , in terms of
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(3.120)

the ground state wave function, 
. (The fact that  annihilates 

 means that  actually has one
less eigenstate than , and is missing
the eigenvalue .)

(d)   Consider the Dirac delta function
well,

(the constant term, , is
included so that ). It has a
single bound state (Equation 2.132)

Use the results of parts
(a) and (c), and Problem 2.23(b), to
determine the superpotential  and
the partner potential . This
partner potential is one that you will
likely recognize, and while it has no
bound states, the supersymmetry
between these two systems explains
the fact that their reflection and
transmission coefficients are identical
(see the last paragraph of
Section 2.5.2).
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∗∗ Problem 3.48 An operator is defined not just
by its action (what it does to the vector it is
applied to) but its domain (the set of
vectors on which it acts). In a finite-
dimensional vector space the domain is the
entire space, and we don’t need to worry
about it. But for most operators in Hilbert
space the domain is restricted. In particular,
only functions such that  remains in
Hilbert space are allowed in the domain of 

. (As you found in Problem 3.2, the
derivative operator can knock a function
out of .)
A hermitian operator is one whose action is
the same as that of its adjoint45 (Problem
3.5). But what is required to represent
observables is actually something more:
the domains of  and  must also be
identical. Such operators are called self-
adjoint.46

(a)   Consider the momentum operator, 
, on the finite interval 

. With the infinite square
well in mind, we might define its
domain as the set of functions 
such that  (it goes
without saying that  and  are
in ). Show that  is hermitian: 

, with . But is
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it self-adjoint? Hint: as long as 
, there is no restriction

on  or —the domain of  is
much larger than the domain of .47

(b)   Suppose we extend the domain of  to
include all functions of the form 

, for some fixed complex
number . What condition must we
then impose on the domain of  in
order that  be hermitian? What
value(s) of  will render  self-
adjoint? Comment: Technically, then,
there is no momentum operator on the
finite interval—or rather, there are
infinitely many, and no way to decide
which of them is “correct.” (In
Problem 3.34 we avoided the issue by
working on the infinite interval.)

(c)   What about the semi-infinite interval, 
? Is there a self-adjoint

momentum operator in this case?48

Problem 3.49
(a)   Write down the time-dependent

“Schrödinger equation” in momentum
space, for a free particle, and solve it.
Answer: .

(b)   Find  for the traveling gaussian
wave packet (Problem 2.42), and
construct  for this case. Also
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construct , and note that it is
independent of time.

(c)   Calculate  and  by evaluating
the appropriate integrals involving Φ,
and compare your answers to Problem
2.42.

(d)   Show that 
(where the subscript 0 denotes the
stationary gaussian), and comment on
this result.

1   If you have never studied linear algebra, you should read the Appendix before
continuing.

2   For us, the limits (a and b) will almost always be , but we might as well
keep things more general for the moment.

3   Technically, a Hilbert space is a complete inner product space, and the
collection of square-integrable functions is only one example of a Hilbert space
—indeed, every finite-dimensional vector space is trivially a Hilbert space. But
since  is the arena of quantum mechanics, it’s what physicists generally mean
when they say “Hilbert space.” By the way, the word complete here means that
any Cauchy sequence of functions in Hilbert space converges to a function that
is also in the space: it has no “holes” in it, just as the set of all real numbers has
no holes (by contrast, the space of all polynomials, for example, like the set of
all rational numbers, certainly does have holes in it). The completeness of a
space has nothing to do with the completeness (same word, unfortunately) of a
set of functions, which is the property that any other function can be expressed
as a linear combination of them. For an accessible introduction to Hilbert space
see Daniel T. Gillespie, A Quantum Mechanics Primer (International Textbook
Company, London, 1970), Sections 2.3 and 2.4.

4   In Chapter 2 we were obliged on occasion to work with functions that were not
normalizable. Such functions lie outside Hilbert space, and we are going to
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have to handle them with special care. For the moment, I shall assume that all
the functions we encounter are in Hilbert space.

5   For a proof, see Frigyes Riesz and Bela Sz.-Nagy, Functional Analysis (Dover,
Mineola, NY, 1990), Section 21. In a finite-dimensional vector space the
Schwarz inequality, , is easy to prove (see Problem A.5). But
that proof assumes the existence of the inner products, which is precisely what
we are trying to establish here.

6   What about a function that is zero everywhere except at a few isolated points?
The integral (Equation 3.9) would still vanish, even though the function itself
does not. If this bothers you, you should have been a math major. In physics
such pathological functions do not occur, but in any case, in Hilbert space two
functions are considered equivalent if the integral of the absolute square of their
difference vanishes. Technically, vectors in Hilbert space represent
equivalence classes of functions.

7   Remember that  is the operator constructed from Q by the replacement 
. These operators are linear, in the sense that

for any functions f and g and any complex numbers a and b. They constitute
linear transformations (Section A.3) on the space of all functions. However,
they sometimes carry a function inside Hilbert space into a function outside it
(see Problem 3.2(b)), and in that case the domain of the operator (the set of
functions on which it acts) may have to be restricted (see Problem 3.48).

8   In a finite-dimensional vector space hermitian operators are represented by
hermitian matrices; a hermitian matrix is equal to its transpose conjugate: 

. If this is unfamiiar to you please see the Appendix.
9   As I mentioned in Chapter 1, there exist pathological functions that are square-

integrable but do not go to zero at infinity. However, such functions do not
arise in physics, and if you are worried about it we will simply restrict the
domain of our operators to exclude them. On finite intervals, though, you really
do have to be more careful with the boundary terms, and an operator that is
hermitian on  may not be hermitian on  or . (If you’re
wondering about the infinite square well, it’s safest to think of those wave
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functions as residing on the infinite line—they just happen to be zero outside 
.) See Problem 3.48.

10   I’m talking about a competent measurement, of course—it’s always possible to
make a mistake, and simply get the wrong answer, but that’s not the fault of
quantum mechanics.

11   It is here that we assume the eigenfunctions are in Hilbert space—otherwise the
inner product might not exist at all.

12   P. A. M. Dirac, The Principles of Quantum Mechanics, Oxford University
Press, New York (1958).

13   In some specific cases completeness is provable (we know that the stationary
states of the infinite square well, for example, are complete, because of
Dirichlet’s theorem). It is a little awkward to call something an “axiom” that is
provable in some cases, but I don’t know a better way to do it.

14   What about the eigenfunctions with nonreal eigenvalues? These are not merely
non-normalizable—they actually blow up at . Functions in what I called the
“suburbs” of Hilbert space (the entire metropolitan area is sometimes called a
“rigged Hilbert space”; see, for example, Leslie Ballentine’s Quantum
Mechanics: A Modern Development, World Scientific, 1998) have the property
that although they have no (finite) inner product with themselves, they do admit
inner products with all members of Hilbert space. This is not true for
eigenfunctions of  with nonreal eigenvalues. In particular, I showed that the
momentum operator is hermitian for functions in Hilbert space, but the
argument depended on dropping the boundary term (in Equation 3.19). That
term is still zero if g is an eigenfunction of  with a real eigenvalue (as long as f
is in Hilbert space), but not if the eigenvalue has an imaginary part. In this
sense any complex number is an eigenvalue of the operator , but only real
numbers are eigenvalues of the hermitian operator —the others lie outside the
space over which  is hermitian.

15   You may have noticed that there is an ambiguity in this prescription, if 
involves the product xp. Because  and  do not commute (Equation 2.52)—
whereas the classical variables x and p, of course, do—it is not clear whether
we should write  or  (or perhaps some linear combination of the two).
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Luckily, such observables are very rare, but when they do occur some other
consideration must be invoked to resolve the ambiguity.

16   In the case of continuous spectra the collapse is to a narrow range about the
measured value, depending on the precision of the measuring device.

17   Notice that the time dependence—which is not at issue here—is carried by the
coefficients; to make this explicit I write . In the special case of the
Hamiltonian , when the potential energy is time independent, the
coefficients are in fact constant, as we saw in Section 2.1.

18   Again, I am scrupulously avoiding the all-too-common claim “  is the
probability that the particle is in the state .” This is nonsense: The particle is
in the state , period. Rather,  is the probability that a measurement of Q
would yield the value . It is true that such a measurement will collapse the
state to the eigenfunction , so one might correctly say “  is the probability
that a particle which is now in the state  will be in the state  subsequent to a
measurement of Q” …but that’s a quite different assertion.

19   More precisely, the commutator of two hermitian operators is itself anti-
hermitian , and its expectation value is imaginary (Problem 3.32).

20   This corresponds to the fact that noncommuting matrices cannot be
simultaneously diagonalized (that is, they cannot both be brought to diagonal
form by the same similarity transformation), whereas commuting hermitian
matrices can be simultaneously diagonalized. See Section A.5.

21   Bohr and Heisenberg were at pains to track down the mechanism by which the
measurement of x (for instance) destroys the previously existing value of p. The
crux of the matter is that in order to determine the position of a particle you
have to poke it with something—shine light on it, say. But these photons impart
to the particle a momentum you cannot control. You now know the position,
but you no longer know the momentum. Bohr’s famous debates with Einstein
include many delightful examples, showing in detail how experimental
constraints enforce the uncertainty principle. For an inspired account see Bohr’s
article in Albert Einstein: Philosopher-Scientist, edited by Paul A. Schilpp,
Open Court Publishing Co., Peru, IL (1970). In recent years the
Bohr/Heisenberg explanation has been called into question; for a nice
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discussion see G. Brumfiel, Nature News
https://doi.org/10.1038/nature.2012.11394.

22   Note that it is only the dependence of  on x that is at issue here—the
“constants” A, a, , and  may all be functions of time, and for that matter 
may evolve away from the minimal form. All I’m asserting is that if, at some
instant, the wave function is gaussian in x, then (at that instant) the uncertainty
product is minimal.

23   Many casual applications of the uncertainty principle are actually based (often
inadvertently) on a completely different—and sometimes quite unjustified—
measure of “uncertainty.” See J. Hilgevoord, Am. J. Phys. 70, 983 (2002).

24   Operators that depend explicitly on t are quite rare, so almost always .
As an example of explicit time dependence, consider the potential energy of a
harmonic oscillator whose spring constant is changing (perhaps the temperature
is rising, so the spring becomes more flexible): .

25   This is sometimes called the “Mandelstam–Tamm” formulation of the energy-
time uncertainty principle. For a review of alternative approaches see P. Busch,
Found. Phys. 20, 1 (1990).

26   In truth, Example 3.7 is a bit of a fraud. You can’t measure  s on a stop-
watch, and in practice the lifetime of such a short-lived particle is inferred from
the width of the mass plot, using the uncertainty principle as input. However,
the point is valid, even if the logic is backwards. Moreover, if you assume the Δ
is about the same size as a proton , then  sec is roughly the time

it takes light to cross the particle, and it’s hard to imagine that the lifetime could
be much less than that.

27   I hesitate to call it  (Equation 3.39), because that is its form in the position
basis, and the whole point here is to free ourselves from any particular basis.
Indeed, when I first defined Hilbert space as the set of square-integrable
functions—over x—that was already too restrictive, committing us to a specific
representation (the position basis). I want now to think of it as an abstract
vector space, whose members can be expressed with respect to any basis you
like.

28   In position space it would be  (Equation 3.32).
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29   I’ll assume the basis is discrete; otherwise n becomes a continuous index and
the sums are replaced by integrals.

30   This terminology is inspired, obviously, by the finite-dimensional case, but the
“matrix” will now typically have an infinite (maybe even uncountable) number
of elements.

31   In matrix notation Equation 3.86 becomes  (with the vectors expressed
as columns), by the ordinary rules of matrix multiplication—see Equation A.42.

32   Technically, the “equals” signs here mean “is represented by,” but I don’t think
any confusion will arise if we adopt the customary informal notation.

33   We began, back in Chapter 1, with the Schrödinger equation for the wave
function in position space; here we generalize it to the state vector in Hilbert
space.

34   This is a crude model for (among other things) neutrino oscillations. In that
context  represents (say) the electron neutrino, and  the muon neutrino; if
the Hamiltonian has a nonvanishing off-diagonal term  then in the course of
time the electron neutrino will turn into a muon neutrino (and back again).

35   Note that , by virtue of Equation 3.20.
36   Like his delta function, Dirac’s notation is beautiful, powerful, and obedient.

You can abuse it (everyone does), and it won’t bite. But once in a while you
should pause to ask yourself what the symbols really mean.

37   This is a special case of a more general formula that applies when  and  do
not commute with . See, for example, Eugen Merzbacher, Quantum
Mechanics, 3rd edn, Wiley, New York (1998), page 40.

38   The product rule holds for differentiating operators as long as you respect their
order:

39   Legendre didn’t know what the best convention would be; he picked the
overall factor so that all his functions would go to 1 at , and we’re stuck
with his unfortunate choice.

40   See F. L. Markley, Am. J. Phys. 40, 1545 (1972).
41   See L. Vaidman, Am. J. Phys. 60, 182 (1992) for a proof.
42   There are no normalizable eigenfunctions of the raising operator.
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43   For interesting commentary and references, see R. R. Puri, Phys. Rev. A 49,
2178 (1994).

44   Fred Cooper, Avinash Khare, and Uday Sukhatme, Supersymmetry in Quantum
Mechanics, World Scientific, Singapore, 2001.

45   Mathematicians call them “symmetric” operators.
46   Because the distinction rarely intrudes, physicists tend to use the word

“hermitian” indiscriminately; technically, we should always say “self-adjoint,”
meaning  both in action and in domain.

47   The domain of  is something we stipulate; that determines the domain of .
48   J. von Neumann introduced machinery for generating self-adjoint extensions

of hermitian operators—or in some cases proving that they cannot exist. For an
accessible introduction see G. Bonneau, J. Faraut, and B. Valent, Am. J. Phys.
69, 322 (2001); for an interesting application see M. T. Ahari, G. Ortiz, and
B. Seradjeh, Am. J. Phys. 84, 858 (2016).
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(4.1)

(4.2)

(4.3)

(4.4)

4
Quantum Mechanics in Three Dimensions

◈

4.1 The Schrödinger Equation

The generalization to three dimensions is straightforward. Schrödinger’s
equation says

the Hamiltonian operator  is obtained from the classical energy

by the standard prescription (applied now to y and z, as well as x):

or

for short. Thus
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(4.5)

(4.6)

(4.8)

(4.9)

∗

(4.7)

where

is the Laplacian, in cartesian coordinates.
The potential energy V and the wave function  are now functions of 

 and t. The probability of finding the particle in the
infinitesimal volume  is , and the
normalization condition reads

with the integral taken over all space. If V is independent of time, there
will be a complete set of stationary states,

where the spatial wave function  satisfies the time-independent
Schrödinger equation:

The general solution to the (time-dependent) Schrödinger equation is

with the constants  determined by the initial wave function, , in
the usual way. (If the potential admits continuum states, then the sum in
Equation 4.9 becomes an integral.)

Problem 4.1
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(4.10)

(4.11)

(4.12)

(a)   Work out all of the canonical
commutation relations for
components of the operators r and p: 

, , , , and so
on. Answer:

where the indices stand
for x, y, or z, and , , and 

.
(b)   Confirm the three-dimensional version

of Ehrenfest’s theorem,

(Each of these, of
course, stands for three equations—
one for each component.) Hint: First
check that the “generalized” Ehrenfest
theorem, Equation 3.73, is valid in
three dimensions.

(c)   Formulate Heisenberg’s uncertainty
principle in three dimensions.
Answer:

but there is no
restriction on, say, .
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∗ Problem 4.2 Use separation of variables in
cartesian coordinates to solve the infinite
cubical well (or “particle in a box”):

(a)   Find the stationary states, and the
corresponding energies.

(b)   Call the distinct energies 
, in order of increasing

energy. Find , and 
. Determine their degeneracies (that

is, the number of different states that
share the same energy). Comment: In
one dimension degenerate bound
states do not occur (see Problem 2.44),
but in three dimensions they are very
common.

(c)   What is the degeneracy of , and
why is this case interesting?

4.1.1 Spherical Coordinates

Most of the applications we will encounter involve central potentials, for
which V is a function only of the distance from the origin, . In
that case it is natural to adopt spherical coordinates,  (Figure 4.1).
In spherical coordinates the Laplacian takes the form1
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(4.13)

(4.14)

(4.15)

In spherical coordinates, then, the time-independent
Schrödinger equation reads

 

Figure 4.1: Spherical coordinates: radius r, polar angle θ, and azimuthal angle
ϕ.

We begin by looking for solutions that are separable into products (a
function of r times a function of θ and ϕ):

Putting this into Equation 4.14, we have

Dividing by YR and multiplying by :
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(4.16)

(4.17)

(4.18)

(4.19)

The term in the first curly bracket depends only on r, whereas the
remainder depends only on θ and ϕ; accordingly, each must be a constant.
For reasons that will appear in due course,2 I will write this “separation
constant” in the form :

Problem 4.3
(a)   Suppose , for some

constants A and a. Find E and ,
assuming  as .

(b)   Do the same for ,
assuming 

4.1.2 The Angular Equation

Equation 4.17 determines the dependence of  on θ and ϕ; multiplying by 
, it becomes:

You might recognize this equation—it occurs in the solution to Laplace’s
equation in classical electrodynamics. As always, we solve it by separation
of variables:

Plugging this in, and dividing by ,
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(4.20)

(4.21)

(4.22)

(4.23)

(4.24)

The first term is a function only of θ, and the second is a function only of
ϕ, so each must be a constant. This time3 I’ll call the separation constant 

:

The ϕ equation is easy:

Actually, there are two solutions:  and , but we’ll
cover the latter by allowing m to run negative. There could also be a
constant factor in front, but we might as well absorb that into Θ.
Incidentally, in electrodynamics we would write the azimuthal function 

 in terms of sines and cosines, instead of exponentials, because electric
fields are real. But there is no such constraint on the wave function, and
exponentials are a lot easier to work with. Now, when ϕ advances by ,
we return to the same point in space (see Figure 4.1), so it is natural to
require that4

In other words, , or . From
this it follows that m must be an integer:

The θ equation,
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(4.25)

(4.27)

(4.28)

(4.26)

may not be so familiar. The solution is

where  is the associated Legendre function, defined by5

and  is the th Legendre polynomial, defined by the Rodrigues
formula:

For example,

and so on. The first few Legendre polynomials are listed in Table 4.1. As
the name suggests,  is a polynomial (of degree ) in x, and is even or
odd according to the parity of . But  is not, in general, a
polynomial6 —if m is odd it carries a factor of :

etc. (On the other hand, what we need is , and 
, so  is always a polynomial in , multiplied—if m is odd—by
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(4.29)

. Some associated Legendre functions of  are listed in Table 4.2.)

Table 4.1: The first few Legendre polynomials, : (a) functional form, (b)
graph.

Table 4.2: Some associated Legendre functions, : (a) functional
form, (b) graphs of  (in these plots r tells you the magnitude of
the function in the direction θ; each figure should be rotated about the z axis).

Notice that  must be a non-negative integer, for the Rodrigues
formula to make any sense; moreover, if , then Equation 4.27 says 

. For any given , then, there are  possible values of m:

265



(4.31)

(4.32)

(4.33)

(4.30)

But wait! Equation 4.25 is a second-order differential equation: It should
have two linearly independent solutions, for any old values of  and m.
Where are all the other solutions? Answer: They exist, of course, as
mathematical solutions to the equation, but they are physically
unacceptable, because they blow up at  and/or  (see Problem
4.5).

Now, the volume element in spherical coordinates7 is

so the normalization condition (Equation 4.6) becomes

It is convenient to normalize R and Y separately:

The normalized angular wave functions8 are called spherical harmonics:

As we shall prove later on, they are automatically orthogonal:

In Table 4.3 I have listed the first few spherical harmonics.

Table 4.3: The first few spherical harmonics, .
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∗

Problem 4.4 Use Equations 4.27, 4.28, and
4.32, to construct  and . Check that they
are normalized and orthogonal.

Problem 4.5 Show that

satisfies the θ equation (Equation 4.25), for 
. This is the unacceptable “second

solution”—what’s wrong with it?

Problem 4.6 Using Equation 4.32 and footnote
5, show that

Problem 4.7 Using Equation 4.32, find 
 and . (You can take  from

Table 4.2, but you’ll have to work out  from

267



∗∗

(4.34)

(4.35)

(4.37)

(4.36)

Equations 4.27 and 4.28.) Check that they
satisfy the angular equation (Equation 4.18),
for the appropriate values of  and m.

Problem 4.8 Starting from the Rodrigues
formula, derive the orthonormality condition
for Legendre polynomials:

Hint: Use integration by parts.

4.1.3 The Radial Equation

Notice that the angular part of the wave function, , is the same for
all spherically symmetric potentials; the actual shape of the potential, ,
affects only the radial part of the wave function, , which is determined
by Equation 4.16:

This simplifies if we change variables: Let

so that , , 
, and hence
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(4.38)

(4.39)

(4.40)

(4.41)

(4.42)

This is called the radial equation;9 it is identical in form to the one-
dimensional Schrödinger equation (Equation 2.5), except that the effective
potential,

contains an extra piece, the so-called centrifugal term, 
. It tends to throw the particle outward (away from

the origin), just like the centrifugal (pseudo-)force in classical mechanics.
Meanwhile, the normalization condition (Equation 4.31) becomes

That’s as far as we can go until a specific potential  is provided.

Example 4.1
Consider the infinite spherical well,

Find the wave functions and the allowed energies.

Solution: Outside the well the wave function is zero; inside the
well, the radial equation says

where
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(4.43)

(4.44)

(4.45)

(4.46)

Our problem is to solve Equation 4.41, subject to the boundary
condition . The case  is easy:

But remember, the actual radial wave function is ,
and  blows up as . So10 . The boundary
condition then requires , and hence , for some
integer N. The allowed energies are

(same as for the one-dimensional infinite square well, Equation
2.30). Normalizing  yields :

Notice that the radial wave function has  nodes (or, if you
prefer, N “lobes”).

The general solution to Equation 4.41 (for an arbitrary integer
) is not so familiar:

where  is the spherical Bessel function of order , and 
is the spherical Neumann function of order . They are defined as
follows:

For example,
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(4.49)

(4.47)

(4.48)

and so on. The first few spherical Bessel and Neumann functions
are listed in Table 4.4. For small x (where 

 and ),

etc. Notice that Bessel functions are finite at the origin, but
Neumann functions blow up at the origin. Accordingly, , and
hence

There remains the boundary condition, . Evidently k must
be chosen such that

that is,  is a zero of the th-order spherical Bessel function.
Now, the Bessel functions are oscillatory (see Figure 4.2); each
one has an infinite number of zeros. But (unfortunately for us) they
are not located at nice sensible points (such as multiples of π); they
have to be computed numerically.11 At any rate, the boundary
condition requires that
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(4.50)

(4.51)

where  is the Nth zero of the th spherical Bessel function. The
allowed energies, then, are given by

It is customary to introduce the principal quantum number, n,
which simply orders the allowed energies, starting with 1 for the
ground state (see Figure 4.3). The wave functions are

with the constant  to be determined by normalization. As
before, the wave function has  radial nodes.12

Table 4.4  The first few spherical Bessel and Neumann functions, 
 and ; asymptotic forms for small x.
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Figure 4.2:  Graphs of the first four spherical Bessel functions.

 

Figure 4.3:  Energy levels of the infinite spherical well (Equation
4.50). States with the same value of N are connected by dashed lines.
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Notice that the energy levels are -fold degenerate, since
there are  different values of m for each value of  (see
Equation 4.29). This is the degeneracy to be expected for a
spherically symmetric potential, since m does not appear in the
radial equation (which determines the energy). But in some cases
(most famously the hydrogen atom) there is extra degeneracy, due
to coincidences in the energy levels not attributable to spherical
symmetry alone. The deeper reason for such “accidental”
degeneracy is intriguing, as we shall see in Chapter 6.

Problem 4.9
(a)   From the definition (Equation 4.46),

construct  and .
(b)   Expand the sines and cosines to obtain

approximate formulas for  and 
, valid when . Confirm that

they blow up at the origin.

Problem 4.10
(a)   Check that  satisfies the radial

equation with  and .
(b)   Determine graphically the allowed

energies for the infinite spherical well,
when . Show that for large N, 

. Hint:
First show that .
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(4.52)

(4.53)

Plot x and  on the same graph, and
locate the points of intersection.

Problem 4.11 A particle of mass m is placed in
a finite spherical well:

Find the ground state, by solving the radial
equation with . Show that there is no
bound state if .

4.2 The Hydrogen Atom

The hydrogen atom consists of a heavy, essentially motionless proton (we
may as well put it at the origin), of charge e, together with a much lighter
electron (mass , charge ) that orbits around it, bound by the mutual
attraction of opposite charges (see Figure 4.4). From Coulomb’s law, the
potential energy of the electron13 (in SI units) is

and the radial equation (Equation 4.37) says

(The effective potential—the term in square brackets—is shown in Figure
4.5.) Our problem is to solve this equation for , and determine the
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allowed energies. The hydrogen atom is such an important case that I’m
not going to hand you the solutions this time—we’ll work them out in
detail, by the method we used in the analytical solution to the harmonic
oscillator. (If any step in this process is unclear, you may want to refer
back to Section 2.3.2 for a more complete explanation.) Incidentally, the

Coulomb potential (Equation 4.52) admits continuum states (with ),
describing electron-proton scattering, as well as discrete bound states,
representing the hydrogen atom, but we shall confine our attention to the

latter.14

 

Figure 4.4: The hydrogen atom.

 

Figure 4.5: The effective potential for hydrogen (Equation 4.53), if .

4.2.1 The Radial Wave Function

Our first task is to tidy up the notation. Let
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(4.54)

(4.55)

(4.56)

(4.57)

(4.58)

(For bound states, E is negative, so κ is real.) Dividing Equation 4.53 by
E, we have

This suggests that we introduce

so that

Next we examine the asymptotic form of the solutions. As ,
the constant term in the brackets dominates, so (approximately)

The general solution is

but  blows up (as ), so . Evidently,

for large ρ. On the other hand, as  the centrifugal term dominates;15

approximately, then:
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(4.61)

(4.62)

(4.59)

(4.60)

The general solution (check it!) is

but  blows up (as ), so . Thus

for small ρ.
The next step is to peel off the asymptotic behavior, introducing the

new function :

in the hope that  will turn out to be simpler than . The first
indications are not auspicious:

and

In terms of , then, the radial equation (Equation 4.56) reads

Finally, we assume the solution, , can be expressed as a power
series in ρ:
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(4.63)

Our problem is to determine the coefficients . Differentiating
term by term:

(In the second summation I have renamed the “dummy index”: .
If this troubles you, write out the first few terms explicitly, and check it.
You may object that the sum should now begin at , but the factor 

 kills that term anyway, so we might as well start at zero.)
Differentiating again,

Inserting these into Equation 4.61,

Equating the coefficients of like powers yields

or:

This recursion formula determines the coefficients, and hence the function 
: We start with  (this becomes an overall constant, to be fixed
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(4.64)

(4.65)

(4.66)

eventually by normalization), and Equation 4.63 gives us ; putting this
back in, we obtain , and so on.16

Now let’s see what the coefficients look like for large j (this
corresponds to large ρ, where the higher powers dominate). In this regime
the recursion formula says17

so

Suppose for a moment that this were the exact result. Then

and hence

which blows up at large ρ. The positive exponential is precisely the
asymptotic behavior we didn’t want, in Equation 4.57. (It’s no accident
that it reappears here; after all, it does represent the asymptotic form of
some solutions to the radial equation—they just don’t happen to be the
ones we’re interested in, because they aren’t normalizable.)

There is only one escape from this dilemma: The series must
terminate. There must occur some integer N such that

(beyond this all coefficients vanish automatically).18 In that case Equation
4.63 says
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(4.69)

(4.70)

(4.71)

(4.72)

(4.67)

(4.68)

Defining

we have

But  determines E (Equations 4.54 and 4.55):

so the allowed energies are

This is the famous Bohr formula—by any measure the most important
result in all of quantum mechanics. Bohr obtained it in 1913 by a
serendipitous mixture of inapplicable classical physics and premature
quantum theory (the Schrödinger equation did not come until 1926).

Combining Equations 4.55 and 4.68, we find that

where

is the so-called Bohr radius.19 It follows (again, from Equation 4.55) that
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(4.73)

(4.75)

(4.76)

(4.77)

(4.74)

(4.78)

The spatial wave functions are labeled by three quantum numbers (n, ,
and m):20

where (referring back to Equations 4.36 and 4.60)

and  is a polynomial of degree  in ρ, whose coefficients are
determined (up to an overall normalization factor) by the recursion
formula

The ground state (that is, the state of lowest energy) is the case 
; putting in the accepted values for the physical constants, we get:21

In other words, the binding energy of hydrogen (the amount of energy
you would have to impart to the electron in its ground state in order to
ionize the atom) is 13.6 eV. Equation 4.67 forces , whence also 

 (see Equation 4.29), so

The recursion formula truncates after the first term (Equation 4.76 with 
 yields ), so  is a constant , and
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(4.79)

(4.80)

(4.81)

(4.82)

(4.83)

Normalizing it, in accordance with Equation 4.31:

so . Meanwhile, , and hence the ground state of
hydrogen is

If  the energy is

this is the first excited state—or rather, states, since we can have either 
 (in which case ) or  (with , 0, or +1); evidently

four different states share this same energy. If , the recursion relation
(Equation 4.76) gives

so , and therefore

(Notice that the expansion coefficients  are completely different for
different quantum numbers n and .) If  the recursion formula
terminates the series after a single term;  is a constant, and we find
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(4.85)

(4.84)

(In each case the constant  is to be determined by normalization—see
Problem 4.13.)

For arbitrary n, the possible values of  (consistent with Equation
4.67) are

and for each  there are  possible values of m (Equation 4.29), so
the total degeneracy of the energy level  is

In Figure 4.6 I plot the energy levels for hydrogen. Notice that different
values of  carry the same energy (for a given n)—contrast the infinite
spherical well, Figure 4.3. (With Equation 4.67,  dropped out of sight, in
the derivation of the allowed energies, though it does still affect the wave
functions.) This is what gives rise to the “extra” degeneracy of the
Coulomb potential, as compared to what you would expect from spherical
symmetry alone ( , as opposed to 
).
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(4.86)

(4.87)

Figure 4.6: Energy levels for hydrogen (Equation 4.70);  is the ground
state, with  eV; an infinite number of states are squeezed in
between  and ;  separates the bound states from the
scattering states. Compare Figure 4.3, and note the extra (“accidental”)
degeneracy of the hydrogen energies.

The polynomial  (defined by the recursion formula, Equation
4.76) is a function well known to applied mathematicians; apart from
normalization, it can be written as

where

is an associated Laguerre polynomial, and
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(4.88)

(4.90)

(4.89)

is the qth Laguerre polynomial.22 The first few Laguerre polynomials are
listed in Table 4.5; some associated Laguerre polynomials are given in
Table 4.6. The first few radial wave functions are listed in Table 4.7, and
plotted in Figure 4.7.) The normalized hydrogen wave functions are23

They are not pretty, but don’t complain—this is one of
the very few realistic systems that can be solved at all, in exact closed
form. The wave functions are mutually orthogonal:

This follows from the orthogonality of the spherical harmonics (Equation
4.33) and (for ) from the fact that they are eigenfunctions of  with
distinct eigenvalues.

Table 4.5: The first few Laguerre polynomials.
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Table 4.6: Some associated Laguerre polynomials.

Table 4.7: The first few radial wave functions for hydrogen, .
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Figure 4.7: Graphs of the first few hydrogen radial wave functions, .

Visualizing the hydrogen wave functions is not easy. Chemists like to
draw density plots, in which the brightness of the cloud is proportional to 

 (Figure 4.8). More quantitative (but perhaps harder to decipher) are
surfaces of constant probability density (Figure 4.9). The quantum
numbers n, , and m can be identified from the nodes of the wave function.
The number of radial nodes is, as always, given by  (for hydrogen
this is ). For each radial node the wave function vanishes on a
sphere, as can be seen in Figure 4.8. The quantum number m counts the
number of nodes of the real (or imaginary) part of the wave function in the
ϕ direction. These nodes are planes containing the z axis on which the real
or imaginary part of  vanishes.24 Finally,  gives the number of
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nodes in the θ direction. These are cones about the z axis on which 
vanishes (note that a cone with opening angle  is the  plane itself).

 

Figure 4.8: Density plots for the first few hydrogen wave functions, labeled
by . Printed by permission using “Atom in a Box” by Dauger
Research. You can make your own plots by going to: http://dauger.com.
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Figure 4.9: Shaded regions indicate significant electron density (
) for the first few hydrogen wave functions. The region 

 has been cut away;  has azimuthal symmetry in all cases.

Problem 4.12 Work out the radial wave
functions , , and , using the recursion
formula (Equation 4.76). Don’t bother to
normalize them.
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Problem 4.13
(a)   Normalize  (Equation 4.82), and

construct the function .
(b)   Normalize  (Equation 4.83), and

construct , , and .

Problem 4.14
(a)   Using Equation 4.88, work out the

first four Laguerre polynomials.
(b)   Using Equations 4.86, 4.87, and 4.88,

find , for the case , .
(c)   Find  again (for the case , 

), but this time get it from the
recursion formula (Equation 4.76).

Problem 4.15
(a)   Find  and  for an electron in the

ground state of hydrogen. Express
your answers in terms of the Bohr
radius.

(b)   Find  and  for an electron in the
ground state of hydrogen. Hint: This
requires no new integration—note that

, and exploit the
symmetry of the ground state.

(c)   Find  in the state , , 
. Hint: this state is not
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symmetrical in x, y, z. Use 
.

Problem 4.16 What is the most probable value
of r, in the ground state of hydrogen? (The
answer is not zero!) Hint: First you must figure
out the probability that the electron would be
found between r and .

Problem 4.17 Calculate , in the ground

state of hydrogen. Hint: This takes two pages
and six integrals, or four lines and no integrals,
depending on how you set it up. To do it the
quick way, start by noting that 

.25

Problem 4.18 A hydrogen atom starts out in
the following linear combination of the
stationary states , ,  and , 

, :

(a)   Construct . Simplify it as much
as you can.

(b)   Find the expectation value of the
potential energy, . (Does it depend
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(4.91)

(4.93)

(4.92)

on t?) Give both the formula and the
actual number, in electron volts.

4.2.2 The Spectrum of Hydrogen

In principle, if you put a hydrogen atom into some stationary state , it
should stay there forever. However, if you tickle it slightly (by collision
with another atom, say, or by shining light on it), the atom may undergo a
transition to some other stationary state—either by absorbing energy, and
moving up to a higher-energy state, or by giving off energy (typically in
the form of electromagnetic radiation), and moving down.26 In practice
such perturbations are always present; transitions (or, as they are
sometimes called, quantum jumps) are constantly occurring, and the
result is that a container of hydrogen gives off light (photons), whose
energy corresponds to the difference in energy between the initial and final
states:

Now, according to the Planck formula,27 the energy of a photon is
proportional to its frequency:

Meanwhile, the wavelength is given by , so

where
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(4.94)

is known as the Rydberg constant. Equation 4.93 is the Rydberg
formula for the spectrum of hydrogen; it was discovered empirically in
the nineteenth century, and the greatest triumph of Bohr’s theory was its
ability to account for this result—and to calculate  in terms of the
fundamental constants of nature. Transitions to the ground state 
lie in the ultraviolet; they are known to spectroscopists as the Lyman
series. Transitions to the first excited state  fall in the visible
region; they constitute the Balmer series. Transitions to  (the
Paschen series) are in the infrared; and so on (see Figure 4.10). (At room
temperature, most hydrogen atoms are in the ground state; to obtain the
emission spectrum you must first populate the various excited states;
typically this is done by passing an electric spark through the gas.)
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Figure 4.10: Energy levels and transitions in the spectrum of hydrogen.

Problem 4.19 A hydrogenic atom consists of
a single electron orbiting a nucleus with Z
protons. (  would be hydrogen itself, 

 is ionized helium,  is doubly
ionized lithium, and so on.) Determine the
Bohr energies , the binding energy 
, the Bohr radius , and the Rydberg
constant  for a hydrogenic atom. (Express
your answers as appropriate multiples of the
hydrogen values.) Where in the
electromagnetic spectrum would the Lyman
series fall, for  and ? Hint: There’s
nothing much to calculate here—in the
potential (Equation 4.52) , so all you
have to do is make the same substitution in all
the final results.

Problem 4.20 Consider the earth–sun system
as a gravitational analog to the hydrogen atom.

(a)   What is the potential energy function
(replacing Equation 4.52)? (Let  be
the mass of the earth, and M the mass
of the sun.)

(b)   What is the “Bohr radius,” , for this
system? Work out the actual number.
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(4.95)

(c)   Write down the gravitational “Bohr
formula,” and, by equating  to the
classical energy of a planet in a
circular orbit of radius , show that 

. From this, estimate the
quantum number n of the earth.

(d)   Suppose the earth made a transition to
the next lower level . How
much energy (in Joules) would be
released? What would the wavelength
of the emitted photon (or, more likely,
graviton) be? (Express your answer in
light years—is the remarkable
answer28 a coincidence?)

4.3 Angular Momentum

As we have seen, the stationary states of the hydrogen atom are labeled by
three quantum numbers: n, , and m. The principal quantum number 
determines the energy of the state (Equation 4.70);  and m are related to
the orbital angular momentum. In the classical theory of central forces,
energy and angular momentum are the fundamental conserved quantities,
and it is not surprising that angular momentum plays an important) role in
the quantum theory.

Classically, the angular momentum of a particle (with respect to the
origin) is given by the formula

which is to say,29
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(4.97)

(4.98)

(4.99)

(4.96)

The corresponding quantum operators30 are obtained by the standard
prescription , , . In this section
we’ll obtain the eigenvalues of the the angular momentum operators by a
purely algebraic technique reminiscent of the one we used in Chapter 2 to
get the allowed energies of the harmonic oscillator; it is all based on the
clever exploitation of commutation relations. After that we will turn to the
more difficult problem of determining the eigenfunctions.

4.3.1 Eigenvalues

The operators  and  do not commute; in fact

From the canonical commutation relations (Equation
4.10) we know that the only operators here that fail to commute are x with 

, y with , and z with . So the two middle terms drop out, leaving

Of course, we could have started out with  or 
, but there is no need to calculate these separately—we can get

them immediately by cyclic permutation of the indices , , 
:

These are the fundamental commutation relations for
angular momentum; everything follows from them.

297



(4.100)

(4.101)

(4.102)

(4.103)

(4.104)

Notice that , , and  are incompatible observables. According to
the generalized uncertainty principle (Equation 3.62),

or

It would therefore be futile to look for states that are simultaneously
eigenfunctions of  and . On the other hand, the square of the total
angular momentum,

does commute with :

(I used Equation 3.65 to reduce the commutators; of course, any operator
commutes with itself .) It follows that  also commutes with  and :

or, more compactly,

So  is compatible with each component of L, and we can hope to find
simultaneous eigenstates of  and (say) :
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(4.108)

(4.105)

(4.106)

(4.109)

We’ll use a ladder operator technique, very similar to the one we
applied to the harmonic oscillator back in Section 2.3.1. Let

Its commutator with  is

so

Also (from Equation 4.102)

I claim that if f is an eigenfunction of  and , so also is : Equation
4.107 says

so  is an eigenfunction of , with the same eigenvalue , and
Equation 4.106 says

so  is an eigenfunction of  with the new eigenvalue
. We call  the raising operator, because it increases the

eigenvalue of  by , and  the lowering operator, because it lowers
the eigenvalue by .

For a given value of , then, we obtain a “ladder” of states, with each
“rung” separated from its neighbors by one unit of  in the eigenvalue of 

 (see Figure 4.11). To ascend the ladder we apply the raising operator,
and to descend, the lowering operator. But this process cannot go on
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(4.112)

(4.110)

(4.111)

(4.113)

forever: Eventually we’re going to reach a state for which the z-component
exceeds the total, and that cannot be.31 There must exist a “top rung”, ,
such that32

Let  be the eigenvalue of  at the top rung (the appropriateness of the
letter “ ” will appear in a moment):

Now,

or, putting it the other way around,

It follows that

and hence

This tells us the eigenvalue of  in terms of the maximum eigenvalue of 
.
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(4.114)

(4.115)

Figure 4.11: The “ladder” of angular momentum states.

Meanwhile, there is also (for the same reason) a bottom rung, , such
that

Let  be the eigenvalue of  at this bottom rung:

Using Equation 4.112, we have
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(4.116)

(4.118)

(4.117)

(4.119)

and therefore

Comparing Equations 4.113 and 4.116, we see that , so
either  (which is absurd—the bottom rung would be higher than
the top rung!) or else

So the eigenvalues of  are , where m (the appropriateness of this
letter will also be clear in a moment) goes from  to , in N integer
steps. In particular, it follows that , and hence , so 
must be an integer or a half-integer. The eigenfunctions are characterized
by the numbers  and m:

where

For a given value of , there are  different values of
m (i.e.  “rungs” on the “ladder”).

Some people like to illustrate this with the diagram in Figure 4.12
(drawn for the case ). The arrows are supposed to represent possible
angular momenta (in units of )—they all have the same length 
(in this case ), and their z components are the allowed values of
m ( ). Notice that the magnitude of the vectors (the radius of
the sphere) is greater than the maximum z component! (In general, 

, except for the “trivial” case .) Evidently you can’t get
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the angular momentum to point perfectly along the z direction. At first, this
sounds absurd. “Why can’t I just pick my axes so that z points along the
direction of the angular momentum vector?” Well, to do that you would
have to know all three components simultaneously, and the uncertainty
principle (Equation 4.100) says that’s impossible. “Well, all right, but
surely once in a while, by good fortune, I will just happen to aim my z axis
along the direction of L.” No, no! You have missed the point. It’s not
merely that you don’t know all three components of L; there just aren’t
three components—a particle simply cannot have a determinate angular
momentum vector, any more than it can simultaneously have a determinate
position and momentum. If  has a well-defined value, then  and  do
not. It is misleading even to draw the vectors in Figure 4.12—at best they
should be smeared out around the latitude lines, to indicate that  and 
are indeterminate.

 

Figure 4.12: Angular momentum states (for ).

I hope you’re impressed: By purely algebraic means, starting with the
fundamental commutation relations for angular momentum (Equation
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(4.121)

4.99), we have determined the eigenvalues of  and —without ever

seeing the eigenfunctions themselves! We turn now to the problem of
constructing the eigenfunctions, but I should warn you that this is a much
messier business. Just so you know where we’re headed, I’ll let you in on
the punch line: —the eigenfunctions of  and  are nothing but

the old spherical harmonics, which we came upon by a quite different
route in Section 4.1.2 (that’s why I chose the same letters  and m, of

course). And I can now explain why the spherical harmonics are
orthogonal: They are eigenfunctions of hermitian operators  and 

belonging to distinct eigenvalues (Theorem 2, Section 3.3.1).

Problem 4.21 The raising and lowering
operators change the value of m by one unit:

where  and  are constants.
Question: What are they, if the eigenfunctions
are to be normalized? Hint: First show that 
is the hermitian conjugate of  (since  and 

 are observables, you may assume they are
hermitian…but prove it if you like); then use
Equation 4.112. Answer:

Note what happens at the top
and bottom of the ladder (i.e. when you apply 

 to  or  to ).

304



∗

(4.122)

∗∗

Problem 4.22
(a)   Starting with the canonical

commutation relations for position and
momentum (Equation 4.10), work out
the following commutators:

(b)   Use these results to
obtain  directly from
Equation 4.96.

(c)   Find the commutators  and 
 (where, of course, 

 and 
).

(d)   Show that the Hamiltonian 
 commutes with all

three components of L, provided that
V depends only on r. (Thus H, , and 

 are mutually compatible
observables.)

Problem 4.23
(a)   Prove that for a particle in a potential 

 the rate of change of the
expectation value of the orbital angular
momentum L is equal to the
expectation value of the torque:
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(4.123)

(4.124)

where

(Thisis the rotational analog to
Ehrenfest’s theorem.)

(b)   Show that  for any
spherically symmetric potential. (This
is one form of the quantum statement
of conservation of angular
momentum.)

4.3.2 Eigenfunctions

First of all we need to rewrite , , and  in spherical coordinates.
Now, , and the gradient, in spherical coordinates, is:33

meanwhile, , so

But , , and  (see Figure 4.1), and

hence

The unit vectors  and  can be resolved into their cartesian components:
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(4.125)

(4.127)

(4.128)

(4.129)

(4.130)

(4.131)

(4.126)

Thus

So

and

We shall also need the raising and lowering operators:

But , so

In particular (Problem 4.24(a)):
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(4.132)

(4.133)

and hence (Problem 4.24(b)):

We are now in a position to determine . It’s an eigenfunction
of , with eigenvalue :

But this is precisely the “angular equation” (Equation 4.18). And it’s also
an eigenfunction of , with the eigenvalue :

but this is equivalent to the azimuthal equation (Equation 4.21). We have
already solved this system of equations! The result (appropriately
normalized) is the spherical harmonic, . Conclusion: Spherical
harmonics are the eigenfunctions of  and . When we solved the
Schrödinger equation by separation of variables, in Section 4.1, we were
inadvertently constructing simultaneous eigenfunctions of the three
commuting operators H, , and :

Incidentally, we can use Equation 4.132 to rewrite the Schrödinger
equation (Equation 4.14) more compactly:

There is a curious final twist to this story: the algebraic theory of
angular momentum permits  (and hence also m) to take on half -integer

308



∗

∗

values (Equation 4.119), whereas separation of variables yielded
eigenfunctions only for integer values (Equation 4.29).34 You might
suppose that the half-integer solutions are spurious, but it turns out that
they are of profound importance, as we shall see in the following sections.

Problem 4.24
(a)   Derive Equation 4.131 from Equation

4.130. Hint: Use a test function;
otherwise you’re likely to drop some
terms.

(b)   Derive Equation 4.132 from Equations
4.129 and 4.131. Hint: Use Equation
4.112.

Problem 4.25
(a)   What is ? (No calculation

allowed!)
(b)   Use the result of (a), together with

Equation 4.130 and the fact that 
, to determine ,

up to a normalization constant.
(c)   Determine the normalization constant

by direct integration. Compare your
final answer to what you got in
Problem 4.7.

Problem 4.26 In Problem 4.4 you showed that
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Apply the raising operator to find . Use
Equation 4.121 to get the normalization.

Problem 4.27 Two particles (masses  and 
) are attached to the ends of a massless rigid

rod of length a. The system is free to rotate in
three dimensions about the (fixed) center of
mass.

(a)   Show that the allowed energies of this
rigid rotor are

is the moment of inertia of the system.
Hint: First express the (classical)
energy in terms of the angular
momentum.

(b)   What are the normalized
eigenfunctions for this system? (Let θ
and ϕ define the orientation of the
rotor axis.) What is the degeneracy of
the nth energy level?

(c)   What spectrum would you expect for
this system? (Give a formula for the
frequencies of the spectral lines.)
Answer: .

(d)   Figure 4.13 shows a portion of the
rotational spectrum of carbon
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monoxide (CO). What is the
frequency separation  between
adjacent lines? Look up the masses of
12C and 16O, and from , , and 
determine the distance between the
atoms.

Figure 4.13:  Rotation spectrum of CO. Note that
the frequencies are in spectroscopist’s units:
inverse centimeters. To convert to Hertz, multiply
by  cm/s. Reproduced by
permission from John M. Brown and Allan
Carrington, Rotational Spectroscopy of Diatomic
Molecules, Cambridge University Press, 2003,
which in turn was adapted from E. V.
Loewenstein, Journal of the Optical Society of
America, 50, 1163 (1960).

4.4 Spin

311



(4.134)

In classical mechanics, a rigid object admits two kinds of angular
momentum: orbital ( ), associated with motion of the center of
mass, and spin ( ), associated with motion about the center of mass.
For example, the earth has orbital angular momentum attributable to its
annual revolution around the sun, and spin angular momentum coming
from its daily rotation about the north–south axis. In the classical context
this distinction is largely a matter of convenience, for when you come right
down to it, S is nothing but the sum total of the “orbital” angular momenta
of all the rocks and dirt clods that go to make up the earth, as they circle
around the axis. But a similar thing happens in quantum mechanics, and
here the distinction is absolutely fundamental. In addition to orbital
angular momentum, associated (in the case of hydrogen) with the motion
of the electron around the nucleus (and described by the spherical
harmonics), the electron also carries another form of angular momentum,
which has nothing to do with motion in space (and which is not, therefore,
described by any function of the position variables ) but which is
somewhat analogous to classical spin (and for which, therefore, we use the
same word). It doesn’t pay to press this analogy too far: The electron (as
far as we know) is a structureless point, and its spin angular momentum
cannot be decomposed into orbital angular momenta of constituent parts
(see Problem 4.28).35 Suffice it to say that elementary particles carry
intrinsic angular momentum (S) in addition to their “extrinsic” angular
momentum .

The algebraic theory of spin is a carbon copy of the theory of orbital
angular momentum, beginning with the fundamental commutation
relations:36

It follows (as before) that the eigenvectors of  and  satisfy37
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(4.135)

(4.137)

(4.138)

(4.136)

and

where . But this time the eigenvectors are not spherical
harmonics (they’re not functions of θ and ϕ at all), and there is no reason
to exclude the half-integer values of s and m:

It so happens that every elementary particle has a specific and
immutable value of s, which we call the spin of that particular species: π
mesons have spin 0; electrons have spin 1/2; photons have spin 1; Δ
baryons have spin 3/2; gravitons have spin 2; and so on. By contrast, the
orbital angular momentum quantum number l (for an electron in a
hydrogen atom, say) can take on any (integer) value you please, and will
change from one to another when the system is perturbed. But s is fixed,
for any given particle, and this makes the theory of spin comparatively
simple.38

Problem 4.28 If the electron were a classical
solid sphere, with radius

(the so-called classical electron radius,
obtained by assuming the electron’s mass is
attributable to energy stored in its electric field,
via the Einstein formula ), and its
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(4.139)

(4.140)

(4.141)

angular momentum is , then how fast (in
m/s) would a point on the “equator” be
moving? Does this model make sense?
(Actually, the radius of the electron is known
experimentally to be much less than , but this
only makes matters worse.)39

4.4.1 Spin 1/2

By far the most important case is , for this is the spin of the
particles that make up ordinary matter (protons, neutrons, and electrons),
as well as all quarks and all leptons. Moreover, once you understand spin
1/2, it is a simple matter to work out the formalism for any higher spin.
There are just two eigenstates: , which we call spin up (informally, ),

and , spin down . Using these as basis vectors, the general

state40 of a spin-1/2 particle can be represented by a two-element column
matrix (or spinor):

with

representing spin up, and

for spin down.
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(4.142)

(4.143)

(4.144)

(4.145)

With respect to this basis the spin operators become  matrices,41

which we can work out by noting their effect on  and . Equation
4.135 says

If we write  as a matrix with (as yet) undetermined elements,

then the first equation says

so  and . The second equation says

so  and . Conclusion:

Similarly,

from which it follows that

Meanwhile, Equation 4.136 says
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(4.146)

(4.147)

(4.148)

(4.149)

(4.150)

so

Now , so  and ,
and hence

Since , , and  all carry a factor of , it is tidier to write S ,
where

These are the famous Pauli spin matrices. Notice that , , , and 
are all hermitian matrices (as they should be, since they represent
observables). On the other hand,  and  are not hermitian—evidently
they are not observable.

The eigenspinors of  are (or course):

If you measure  on a particle in the general state χ
(Equation 4.139), you could get , with probability , or , with
probability . Since these are the only possibilities,

(i.e. the spinor must be normalized: ).42

But what if, instead, you chose to measure ? What are the possible
results, and what are their respective probabilities? According to the
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(4.151)

generalized statistical interpretation, we need to know the eigenvalues and
eigenspinors of . The characteristic equation is

Not surprisingly (but it gratifying to see how it works out), the possible
values for  are the same as those for . The eigenspinors are obtained in
the usual way:

so . Evidently the (normalized) eigenspinors of  are

As the eigenvectors of a hermitian matrix, they span the
space; the generic spinor χ (Equation 4.139) can be expressed as a linear
combination of them:

If you measure , the probability of getting  is , and the
probability of getting  is . (Check for yourself that these
probabilities add up to 1.)

Example 4.2
Suppose a spin-1/2 particle is in the state
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What are the probabilities of getting  and , if you
measure  and ?

Solution: Here  and , so for  the
probability of getting  is , and the
probability of getting  is . For  the probability
of getting  is , and the probability
of getting  is . Incidentally, the
expectation value of  is

which we could also have obtained more directly:

I’d like now to walk you through an imaginary measurement scenario
involving spin 1/2, because it serves to illustrate in very concrete terms
some of the abstract ideas we discussed back in Chapter 1. Let’s say we
start out with a particle in the state . If someone asks, “What is the z-
component of that particle’s spin angular momentum?”, we can answer
unambiguously: . For a measurement of  is certain to return that
value. But if our interrogator asks instead, “What is the x-component of
that particle’s spin angular momentum?” we are obliged to equivocate: If
you measure , the chances are fifty-fifty of getting either  or . If
the questioner is a classical physicist, or a “realist” (in the sense of
Section 1.2), he will regard this as an inadequate—not to say impertinent
—response: “Are you telling me that you don’t know the true state of that
particle?” On the contrary; I know precisely what the state of the particle
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is: . “Well, then, how come you can’t tell me what the x-component of
its spin is?” Because it simply does not have a particular x-component of
spin. Indeed, it cannot, for if both  and  were well-defined, the
uncertainty principle would be violated.

At this point our challenger grabs the test-tube and measures the x-
component of the particle’s spin; let’s say he gets the value . “Aha!”
(he shouts in triumph), “You lied! This particle has a perfectly well-
defined value of : .” Well, sure—it does now, but that doesn’t prove
it had that value, prior to your measurement. “You have obviously been
reduced to splitting hairs. And anyway, what happened to your uncertainty
principle? I now know both  and .” I’m sorry, but you do not: In the
course of your measurement, you altered the particle’s state; it is now in
the state , and whereas you know the value of , you no longer know
the value of . “But I was extremely careful not to disturb the particle
when I measured .” Very well, if you don’t believe me, check it out:
Measure , and see what you get. (Of course, he may get , which
will be embarrassing to my case—but if we repeat this whole scenario over
and over, half the time he will get .)

To the layman, the philosopher, or the classical physicist, a statement
of the form “this particle doesn’t have a well-defined position” (or
momentum, or x-component of spin angular momentum, or whatever)
sounds vague, incompetent, or (worst of all) profound. It is none of these.
But its precise meaning is, I think, almost impossible to convey to anyone
who has not studied quantum mechanics in some depth. If you find your
own comprehension slipping, from time to time (if you don’t, you
probably haven’t understood the problem), come back to the spin-1/2
system: It is the simplest and cleanest context for thinking through the
conceptual paradoxes of quantum mechanics.
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Problem 4.29
(a)   Check that the spin matrices

(Equations 4.145 and 4.147) obey the
fundamental commutation relations for
angular momentum, Equation 4.134.

(b)   Show that the Pauli spin matrices
(Equation 4.148) satisfy the product
rule

where the indices stand for x, y, or z,
and  is the Levi-Civita symbol: +1
if , 231, or 312;  if 

, 213, or 321; 0 otherwise.

Problem 4.30 An electron is in the spin state

(a)   Determine the normalization constant
A.

(b)   Find the expectation values of , ,
and .

(c)   Find the “uncertainties” , , and 
. Note: These sigmas are standard

deviations, not Pauli matrices!
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(d)   Confirm that your results are
consistent with all three uncertainty
principles (Equation 4.100 and its
cyclic permutations—only with S in
place of L, of course).

Problem 4.31 For the most general normalized
spinor χ (Equation 4.139), compute , , 

, , , and . Check that 
.

Problem 4.32
(a)   Find the eigenvalues and eigenspinors

of .
(b)   If you measured  on a particle in the

general state χ (Equation 4.139), what
values might you get, and what is the
probability of each? Check that the
probabilities add up to 1. Note: a and
b need not be real!

(c)   If you measured , what values might
you get, and with what probabilities?

Problem 4.33 Construct the matrix 
representing the component of spin angular
momentum along an arbitrary direction . Use
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(4.154)

(4.155)

(4.156)

Problem 4.33 Construct the matrix 
representing the component of spin angular
momentum along an arbitrary direction . Use
spherical coordinates, for which

Find the eigenvalues and
(normalized) eigenspinors of . Answer:

Note: You’re always free to
multiply by an arbitrary phase factor—say, 
—so your answer may not look exactly the
same as mine.

Problem 4.34 Construct the spin matrices , 
, and  for a particle of spin 1. Hint: How

many eigenstates of  are there? Determine
the action of , , and  on each of these
states. Follow the procedure used in the text
for spin 1/2.

4.4.2 Electron in a Magnetic Field

A spinning charged particle constitutes a magnetic dipole. Its magnetic
dipole moment, , is proportional to its spin angular momentum, S:
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(4.161)

(4.162)

(4.159)

(4.157)

(4.158)

, which tends to line it up parallel to the field (just like a compass
needle). The energy associated with this torque is44

so the Hamiltonian matrix for a spinning charged particle, at rest45 in a
magnetic field B, is

where  is the appropriate spin matrix (Equations 4.145 and 4.147, in the
case of spin 1/2).

Example 4.3
Larmor precession: Imagine a particle of spin 1/2 at rest in a
uniform magnetic field, which points in the z-direction:

The Hamiltonian (Equation 4.158) is

The eigenstates of  are the same as those of :

The energy is lowest when the dipole moment is parallel to the
field—just as it would be classically.

Since the Hamiltonian is time independent, the general
solution to the time-dependent Schrödinger equation,
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(4.162)

(4.163)

(4.164)

(4.165)

can be expressed in terms of the stationary states:

The constants a and b are determined by the initial conditions:

(of course, ). With no essential loss of
generality46 I’ll write  and , where α is a
fixed angle whose physical significance will appear in a moment.
Thus

To get a feel for what is happening here, let’s calculate the
expectation value of S, as a function of time:

Similarly,

and
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(4.168)

Thus  is tilted at a constant angle α to the z axis, and precesses
about the field at the Larmor frequency

just as it would classically47 (see Figure 4.14). No surprise here—
Ehrenfest’s theorem (in the form derived in Problem 4.23)
guarantees that  evolves according to the classical laws. But it’s
nice to see how this works out in a specific context.

 

Figure 4.14:  Precession of  in a uniform magnetic field.

Example 4.4
The Stern–Gerlach experiment: In an inhomogeneous magnetic
field, there is not only a torque, but also a force, on a magnetic
dipole:48
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(4.169)

(4.170)

This force can be used to separate out particles with a particular
spin orientation. Imagine a beam of heavy neutral
atoms,49 traveling in the y direction, which passes through a region
of static but inhomogeneous magnetic field (Figure 4.15)—say

where  is a strong uniform field and the constant α describes a
small deviation from homogeneity. (Actually, what we’d prefer is
just the z component of this field, but unfortunately that’s
impossible—it would violate the electromagnetic law ;
like it or not, the x component comes along for the ride.) The force
on these atoms is50

 

Figure 4.15:  The Stern–Gerlach apparatus.

But because of the Larmor precession about ,  oscillates
rapidly, and averages to zero; the net force is in the z direction:

and the beam is deflected up or down, in proportion to the z
component of the spin angular momentum. Classically we’d
expect a smear (because  would not be quantized), but in fact the
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the quantization of angular momentum. (If you use silver atoms, all
the inner electrons are paired, in such a way that their angular
momenta cancel. The net spin is simply that of the outermost—

unpaired—electron, so in this case , and the beam splits in
two.)

The Stern–Gerlach experiment has played an important role in
the philosophy of quantum mechanics, where it serves both as the
prototype for the preparation of a quantum state and as an
illuminating model for a certain kind of quantum measurement.
We tend casually to assume that the initial state of a system is
known (the Schrödinger equation tells us how it subsequently
evolves)—but it is natural to wonder how you get a system into a
particular state in the first place. Well, if you want to prepare a
beam of atoms in a given spin configuration, you pass an
unpolarized beam through a Stern–Gerlach magnet, and select the
outgoing stream you are interested in (closing off the others with
suitable baffles and shutters). Conversely, if you want to measure
the z component of an atom’s spin, you send it through a Stern–
Gerlach apparatus, and record which bin it lands in. I do not claim
that this is always the most practical way to do the job, but it is
conceptually very clean, and hence a useful context in which to
explore the problems of state preparation and measurement.

Problem 4.35 In Example 4.3:
(a)   If you measured the component of

spin angular momentum along the x
direction, at time t, what is the
probability that you would get ?
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direction, at time t, what is the
probability that you would get ?

(b)   Same question, but for the y
component.

(c)   Same, for the z component.

Problem 4.36 An electron is at rest in an
oscillating magnetic field

where  and ω are constants.
(a)   Construct the Hamiltonian matrix for

this system.
(b)   The electron starts out (at  in the

spin-up state with respect to the x axis
(that is: ). Determine 
at any subsequent time. Beware: This
is a time-dependent Hamiltonian, so
you cannot get  in the usual way
from stationary states. Fortunately, in
this case you can solve the time-
dependent Schrödinger equation
(Equation 4.162) directly.

(c)   Find the probability of getting ,
if you measure . Answer:
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(4.172)

(4.173)

(4.174)

4.4.3 Addition of Angular Momenta

Suppose now that we have two particles, with spins  and . Say, the first
is in the state  and the second in the state . We denote the
composite state by :

Question: What is the total angular momentum,

of this system? That is to say: what is the net spin, s, of the combination,
and what is the z component, m? The z component is easy:

so

it’s just the sum. But s is much more subtle, so let’s begin with the
simplest nontrivial example.

Example 4.5
Consider the case of two spin-  particles—say, the electron and
the proton in the ground state of hydrogen. Each can have spin up
or spin down, so there are four possibilities in all:51
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(4.176)

the proton in the ground state of hydrogen. Each can have spin up
or spin down, so there are four possibilities in all:51

This doesn’t look right: m is supposed to advance in integer steps,
from  to , so it appears that —but there is an “extra”
state with .

One way to untangle this problem is to apply the lowering
operator,  to the state , using Equation 4.146:

Evidently the three states with  are (in the notation ):

(As a check, try applying the lowering operator to ; what should
you get? See Problem 4.37(a).) This is called the triplet
combination, for the obvious reason. Meanwhile, the orthogonal
state with  carries :
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(4.177)
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I claim, then, that the combination of two spin-1/2 particles can
carry a total spin of 1 or 0, depending on whether they occupy the
triplet or the singlet configuration. To confirm this, I need to prove
that the triplet states are eigenvectors of  with eigenvalue ,
and the singlet is an eigenvector of  with eigenvalue 0. Now,

Using Equations 4.145 and 4.147, we have

Similarly,

It follows that

and

Returning to Equation 4.177 (and using Equation
4.142), we conclude that
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so  is indeed an eigenstate of  with eigenvalue ; and

so  is an eigenstate of  with eigenvalue 0. (I will leave it for
you to confirm that  and  are eigenstates of , with the
appropriate eigenvalue—see Problem 4.37(c).)

What we have just done (combining spin 1/2 with spin 1/2 to get spin
1 and spin 0) is the simplest example of a larger problem: If you combine
spin  with spin , what total spins s can you get?52 The answer53 is that
you get every spin from  down to —or , if 
—in integer steps:

(Roughly speaking, the highest total spin occurs when
the individual spins are aligned parallel to one another, and the lowest
occurs when they are antiparallel.) For example, if you package together a
particle of spin 3/2 with a particle of spin 2, you could get a total spin of
7/2, 5/2, 3/2, or 1/2, depending on the configuration. Another example: If a
hydrogen atom is in the state , the net angular momentum of the
electron (spin plus orbital) is  or ; if you now throw in spin
of the proton, the atom’s total angular momentum quantum number is 

, , or  (and  can be achieved in two distinct ways, depending on
whether the electron alone is in the  configuration or the 
configuration).
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(because the z-components add, the only composite states that contribute
are those for which ). Equations 4.175 and 4.176 are special
cases of this general form, with . The constants  are
called Clebsch–Gordan coefficients. A few of the simplest cases are
listed in Table 4.8.54 For example, the shaded column of the  table
tells us that

If two particles (of spin 2 and spin 1) are at rest in a box, and the total spin
is 3, and its z component is 0, then a measurement of  could return the
value  (with probability 1/5), or 0 (with probability 3/5), or  (with
probability 1/5). Notice that the probabilities add up to 1 (the sum of the
squares of any column on the Clebsch–Gordan table is 1).

These tables also work the other way around:

For example, the shaded row in the  table tells us that

If you put particles of spin 3/2 and spin 1 in the box, and you know that the
first has  and the second has  (so m is necessarily 1/2), and
you measured the total spin, s, you could get 5/2 (with probability 3/5), or
3/2 (with probability 1/15), or 1/2 (with probability 1/3). Again, the sum of
the probabilities is 1 (the sum of the squares of each row on the Clebsch–
Gordan table is 1).
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the probabilities is 1 (the sum of the squares of each row on the Clebsch–
Gordan table is 1).

Table 4.8: Clebsch–Gordan coefficients. (A square root sign is understood for
every entry; the minus sign, if present, goes outside the radical.)

If you think this is starting to sound like mystical numerology, I don’t
blame you. We will not be using the Clebsch–Gordan tables much in the
rest of the book, but I wanted you to know where they fit into the scheme
of things, in case you encounter them later on. In a mathematical sense this
is all applied group theory—what we are talking about is the
decomposition of the direct product of two irreducible representations of
the rotation group into a direct sum of irreducible representations (you can
quote that, to impress your friends).

Problem 4.37
(a)   Apply  to  (Equation 4.175), and

confirm that you get .
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(c)   Show that  and  (Equation
4.175) are eigenstates of , with the
appropriate eigenvalue.

Problem 4.38 Quarks carry spin 1/2. Three
quarks bind together to make a baryon (such
as the proton or neutron); two quarks (or more
precisely a quark and an antiquark) bind
together to make a meson (such as the pion or
the kaon). Assume the quarks are in the ground
state (so the orbital angular momentum is
zero).

(a)   What spins are possible for baryons?
(b)   What spins are possible for mesons?

Problem 4.39 Verify Equations 4.175 and
4.176 using the Clebsch–Gordan table.

Problem 4.40
(a)   Aparticle of spin 1 and a particle of

spin 2 are at rest in a configuration
such that the total spin is 3, and its z
component is . If you measured the z-
component of the angular momentum
of the spin-2 particle, what values
might you get, and what is the
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of the spin-2 particle, what values
might you get, and what is the
probability of each one? Comment:
Using Clebsch–Gordan tables is like
driving a stick-shift—scary and
frustrating when you start out, but easy
once you get the hang of it.

(b)   An electron with spin down is in the
state  of the hydrogen atom. If you
could measure the total angular
momentum squared of the electron
alone (not including the proton spin),
what values might you get, and what
is the probability of each?

Problem 4.41 Determine the commutator of 
with  (where ). Generalize
your result to show that

Comment: Because  does not commute with
, we cannot hope to find states that are

simultaneous eigenvectors of both. In order to
form eigenstates of  we need linear
combinations of eigenstates of . This is
precisely what the Clebsch–Gordan
coefficients (in Equation 4.183) do for us. On
the other hand, it follows by obvious inference
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does commute with , which only confirms
what we already knew (see Equation 4.103).]

4.5 Electromagnetic Interactions

4.5.1 Minimal Coupling

In classical electrodynamics55 the force on a particle of charge q moving
with velocity v through electric and magnetic fields E and B is given by
the Lorentz force law:

This force cannot be expressed as the gradient of a scalar potential energy
function, and therefore the Schrödinger equation in its original form
(Equation 1.1) cannot accommodate it. But in the more sophisticated form

there is no problem. The classical Hamiltonian for a particle of charge q
and momentum p, in the presence of electromagnetic fields is56

where A is the vector potential and  is the scalar potential:

Making the standard substitution , we obtain the Hamiltonian
operator57
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and the Schrödinger equation becomes

This is the quantum implementation of the Lorentz force law; it is
sometimes called the minimal coupling rule.58

Problem 4.42
(a)   Using Equation 4.190 and the

generalized Ehrenfest theorem (3.73),
show that

Hint: This stands for three equations
—one for each component. Work it
out for, say, the x component, and then
generalize your result.

(b)   As always (see Equation 1.32) we
identify  with . Show that59

(c)   In particular, if the
fields E and B are uniform over the
volume of the wave packet, show that
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so the expectation value of v moves
according to the Lorentz force law, as
we would expect from Ehrenfest’s
theorem.

Problem 4.43 Suppose

where  and K are constants.
(a)   Find the fields E and B.
(b)   Find the allowed energies, for a

particle of mass m and charge q, in
these fields. Answer:

where  and
. Comment: In two

dimensions  and y, with  this
is the quantum analog to cyclotron
motion;  is the classical cyclotron
frequency, and  is zero. The allowed
energies, , are called

Landau Levels.60

4.5.2 The Aharonov–Bohm Effect

In classical electrodynamics the potentials A and  are not uniquely
determined; the physical quantities are the fields, E and B.61 Specifically,
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the potentials

(where Λ is an arbitrary real function of position and time) yield the same
fields as  and A. (Check that for yourself, using Equation 4.189.)
Equation 4.196 is called a gauge transformation, and the theory is said to
be gauge invariant.

In quantum mechanics the potentials play a more direct role (it is
they, not the fields, that appear in the Equation 4.191), and it is of interest
to ask whether the theory remains gauge invariant. It is easy to show
(Problem 4.44) that

satisfies Equation 4.191 with the gauge-transformed potentials  and 
(Equation 4.196). Since  differs from  only by a phase factor, it
represents the same physical state,62 and in this sense the theory is gauge
invariant. For a long time it was taken for granted that there could be no
electromagnetic influences in regions where E and B are zero—any more
than there can be in the classical theory. But in 1959 Aharonov and
Bohm63 showed that the vector potential can affect the quantum behavior
of a charged particle, even when the particle is confined to a region where
the field itself is zero.

Example 4.6
Imagine a particle constrained to move in a circle of radius b (a
bead on a wire ring, if you like). Along the axis runs a solenoid of
radius , carrying a steady electric current I (see Figure 4.16).
If the solenoid is extremely long, the magnetic field inside it is
uniform, and the field outside is zero. But the vector potential
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outside the solenoid is not zero; in fact (adopting the convenient
gauge condition ),64

where  is the magnetic flux through the solenoid.
Meanwhile, the solenoid itself is uncharged, so the scalar potential 

 is zero. In this case the Hamiltonian (Equation 4.190) becomes

(Problem 4.45(a)). But the wave function depends only on the
azimuthal angle ϕ  and , so , and

the Schrödinger equation reads

 

Figure 4.16:  Charged bead on a circular ring through which a long
solenoid passes.
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This is a linear differential equation with constant coefficients:

where

Solutions are of the form

with

Continuity of , at , requires that  be an integer:

and it follows that

The solenoid lifts the two-fold degeneracy of the bead-on-a-
ring (Problem 2.46): positive n, representing a particle traveling in
the same direction as the current in the solenoid, has a somewhat
lower energy (assuming q is positive) than negative n, describing a
particle traveling in the opposite direction. More important, the
allowed energies clearly depend on the field inside the solenoid,
even though the field at the location of the particle is zero!65
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More generally, suppose a particle is moving through a region where
B is zero (so ), but A itself is not. (I’ll assume that A is static,
although the method can be generalized to time-dependent potentials.) The
Schrödinger equation,
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can be simplified by writing

where

and  is some (arbitrarily chosen) reference point. (Note that this
definition makes sense only when  throughout the region in
question66 —otherwise the line integral would depend on the path taken
from  to r, and hence would not define a function of r.) In terms of ,
the gradient of  is

but , so

and it follows that

(Problem 4.45(b)). Putting this into Equation 4.207, and cancelling the
common factor of , we are left with

Evidently  satisfies the Schrödinger equation without A. If we can solve
Equation 4.212, correcting for the presence of a (curl-free) vector potential
will be trivial: just tack on the phase factor .
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Aharonov and Bohm proposed an experiment in which a beam of
electrons is split in two, and they pass either side of a long solenoid before
recombining (Figure 4.17). The beams are kept well away from the
solenoid itself, so they encounter only regions where . But A, which
is given by Equation 4.198, is not zero, and the two beams arrive with
different phases:67

The plus sign applies to the electrons traveling in the same direction as A
—which is to say, in the same direction as the current in the solenoid. The
beams arrive out of phase by an amount proportional to the magnetic flux
their paths encircle:

This phase shift leads to measurable interference, which has been
confirmed experimentally by Chambers and others.68
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Figure 4.17: The Aharonov–Bohm effect: The electron beam splits, with half
passing either side of a long solenoid.

What are we to make of the Aharonov–Bohm effect? It seems our
classical preconceptions are simply mistaken: There can be
electromagnetic effects in regions where the fields are zero. Note,
however, that this does not make A itself measurable—only the enclosed
flux comes into the final answer, and the theory remains gauge invariant.69

Problem 4.44 Show that  (Equation 4.197)
satisfies the Schrödinger equation (Equation
4.191 with the potentials  and  (Equation
4.196).

Problem 4.45
(a)   Derive Equation 4.199 from Equation

4.190.
(b)   Derive Equation 4.211, starting with

Equation 4.210.

Further Problems on Chapter 4

Problem 4.46 Consider the three-dimensional
harmonic oscillator, for which the
potential is
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(a)   Show that separation of variables in
cartesian coordinates turns this into
three one-dimensional oscillators, and
exploit your knowledge of the latter to
determine the allowed energies.
Answer:

(b)   Determine the degeneracy  of .

Problem 4.47 Because the three-dimensional
harmonic oscillator potential (see Equation
4.215) is spherically symmetrical, the
Schrödinger equation can also be handled
by separation of variables in spherical
coordinates. Use the power series method
(as in Sections 2.3.2 and 4.2.1) to solve the
radial equation. Find the recursion formula
for the coefficients, and determine the
allowed energies. (Check that your answer
is consistent with Equation 4.216.) How is
N related to n in this case? Draw the
diagram analogous to Figures 4.3 and 4.6,
and determine the degeneracy of nth
energy level.70

Problem 4.48
(a)   Prove the three-dimensional virial

theorem:
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(for stationary states).
Hint: refer to Problem 3.37.

(b)   Apply the virial theorem to the case of
hydrogen, and show that

(c)   Apply the virial theorem to the three-
dimensional harmonic oscillator
(Problem 4.46), and show that in this
case

Problem 4.49 Warning: Attempt this problem
only if you are familiar with vector
calculus. Define the (three-dimensional)
probability current by generalization of
Problem 1.14:

(a)   Show that J satisfies the continuity
equation

which expresses local conservation of
probability. It follows (from the
divergence theorem) that
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where  is a (fixed) volume and  is
its boundary surface. In words: The
flow of probability out through the
surface is equal to the decrease in
probability of finding the particle in
the volume.

(b)   Find J for hydrogen in the state ,
, . Answer:

(c)   If we interpret  as the flow of mass,
the angular momentum is

Use this to calculate  for the state 
, and comment on the result.71

Problem 4.50 The (time-independent)
momentum space wave function in three
dimensions is defined by the natural
generalization of Equation 3.54:

(a)   Find the momentum
space wave function for the ground
state of hydrogen (Equation 4.80).
Hint: Use spherical coordinates,
setting the polar axis along the
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direction of p. Do the θ integral first.
Answer:

(b)   Check that  is
normalized.

(c)   Use  to calculate , in the
ground state of hydrogen.

(d)   What is the expectation value of the
kinetic energy in this state? Express
your answer as a multiple of , and
check that it is consistent with the
virial theorem (Equation 4.218).

Problem 4.51 In Section 2.6 we noted that the
finite square well (in one dimension) has at
least one bound state, no matter how
shallow or narrow it may be. In Problem
4.11 you showed that the finite spherical
well (three dimensions) has no bound state,
if the potential is sufficiently weak.
Question: What about the finite circular
well (two dimensions)? Show that (like the
one-dimensional case) there is always at
least one bound state. Hint: Look up any
information you need about Bessel
functions, and use a computer to draw the
graphs.
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Problem 4.52
(a)   Construct the spatial wave function 

 for hydrogen in the state , 
, . Express your answer as a

function of r, θ, ϕ, and a (the Bohr
radius) only—no other variables (ρ, z,
etc.) or functions (Y, v, etc.), or
constants (A, , etc.), or derivatives,
allowed (π is okay, and e, and 2, etc.).

(b)   Check that this wave function is
properly normalized, by carrying out
the appropriate integrals over r, θ, and
ϕ.

(c)   Find the expectation value of  in this
state. For what range of s (positive and
negative) is the result finite?

Problem 4.53
(a)   Construct the wave function for

hydrogen in the state , , 
. Express your answer as a

function of the spherical coordinates r,
θ, and ϕ.

(b)   Find the expectation value of r in this
state. (As always, look up any
nontrivial integrals.)

(c)   If you could somehow measure the
observable  on an atom in this
state, what value (or values) could you
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get, and what is the probability of
each?

Problem 4.54 What is the probability that an
electron in the ground state of hydrogen
will be found inside the nucleus?
(a)   First calculate the exact answer,

assuming the wave function (Equation
4.80) is correct all the way down to 

. Let b be the radius of the
nucleus.

(b)   Expand your result as a power series
in the small number , and
show that the lowest-order term is the
cubic: . This should
be a suitable approximation, provided
that  (which it is).

(c)   Alternatively, we might assume that 
 is essentially constant over the

(tiny) volume of the nucleus, so that 
. Check that you

get the same answer this way.
(d)   Use  and 

 to get a numerical
estimate for P. Roughly speaking, this
represents the “fraction of its time that
the electron spends inside the
nucleus.”

Problem 4.55
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(a)   Use the recursion formula (Equation
4.76) to confirm that when 
the radial wave function takes the form

and determine the normalization
constant  by direct integration.

(b)   Calculate  and  for states of the
form .

(c)   Show that the “uncertainty” in r  is
 for such states. Note that

the fractional spread in r decreases,
with increasing n (in this sense the
system “begins to look classical,” with
identifiable circular “orbits,” for large
n). Sketch the radial wave functions
for several values of n, to illustrate this
point.

Problem 4.56 Coincident spectral
lines.72 According to the Rydberg formula
(Equation 4.93) the wavelength of a line in
the hydrogen spectrum is determined by
the principal quantum numbers of the
initial and final states. Find two distinct
pairs  that yield the same . For
example,  and 
will do it, but you’re not allowed to use
those!
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Problem 4.57 Consider the observables 
and .
(a)   Construct the uncertainty principle for 

.
(b)   Evaluate  in the hydrogen state 

.
(c)   What can you conclude about  in

this state?

Problem 4.58 An electron is in the spin state

(a)   Determine the constant A by
normalizing χ.

(b)   If you measured  on this electron,
what values could you get, and what is
the probability of each? What is the
expectation value of ?

(c)   If you measured  on this electron,
what values could you get, and what is
the probability of each? What is the
expectation value of ?

(d)   If you measured  on this electron,
what values could you get, and what is
the probability of each? What is the
expectation value of ?

Problem 4.59 Suppose two spin-1/2 particles
are known to be in the singlet configuration
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(Equation 4.176). Let  be the
component of the spin angular momentum
of particle number 1 in the direction
defined by the vector a. Similarly, let 
be the component of 2’s angular
momentum in the direction b. Show that

where θ is the angle between a and b.

Problem 4.60
(a)   Work out the Clebsch–Gordan

coefficients for the case , 
anything. Hint: You’re looking for the
coefficients A and B in

such that  is an eigenstate of .
Use the method of Equations 4.177
through 4.180. If you can’t figure out
what  (for instance) does to ,
refer back to Equation 4.136 and the
line before Equation 4.147. Answer:

where the signs are determined by 
.
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(b)   Check this general result against three
or four entries in Table 4.8.

Problem 4.61 Find the matrix representing 
for a particle of spin 3/2 (using as your
basis the eigenstates of ). Solve the
characteristic equation to determine the
eigenvalues of .

Problem 4.62 Work out the spin matrices for
arbitrary spin s, generalizing spin 1/2
(Equations 4.145 and 4.147), spin 1
(Problem 4.34), and spin 3/2
(Problem 4.61). Answer:

where
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Problem 4.63 Work out the normalization
factor for the spherical harmonics, as
follows. From Section 4.1.2 we know that

the problem is to determine the factor 
(which I quoted, but did not derive, in
Equation 4.32). Use Equations 4.120,
4.121, and 4.130 to obtain a recursion
relation giving  in terms of . Solve
it by induction on m to get  up to an
overall constant, . Finally, use
the result of Problem 4.25 to fix the
constant. You may find the following
formula for the derivative of an associated
Legendre function useful:

Problem 4.64 The electron in a
hydrogen atom occupies the combined spin
and position state

(a)   If you measured the orbital angular
momentum squared , what values
might you get, and what is the
probability of each?
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(b)   Same for the z component of orbital
angular momentum .

(c)   Same for the spin angular momentum
squared .

(d)   Same for the z component of spin
angular momentum .

 Let  be the total angular
momentum.
(e)   If you measured , what values might

you get, and what is the probability of
each?

(f)   Same for .
(g)   If you measured the position of the

particle, what is the probability density
for finding it at ?

(h)   If you measured both the z component
of the spin and the distance from the
origin (note that these are compatible
observables), what is the probability
per unit r for finding the particle with
spin up and at radius r?

Problem 4.65 If you combine three spin-
particles, you can get a total spin of 3/2 or
1/2 (and the latter can be achieved in two
distinct ways). Construct the quadruplet
and the two doublets, using the notation of
Equations 4.175 and 4.176:
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Hint: The first one is easy: ;
apply the lowering operator to get theother
states in the quadruplet. For the doublets
you might start with the first two in
thesinglet state, and tack on the third:

Take it from there make sure  is
orthogonal to  and to . Note: the
two doublets are not uniquely determined
—any linear combination of them would
still carry spin 1/2. The point is to construct
two independent doublets.

Problem 4.66 Deduce the condition for
minimum uncertainty in  and  (that is,
equality in the expression 

), for a particle of spin
1/2 in the generic state (Equation 4.139).
Answer: With no loss of generality we can
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pick a to be real; then the condition for
minimum uncertainty is that b is either
pure real or else pure imaginary.

Problem 4.67 Magnetic frustration. Consider
three spin-1/2 particles arranged on the
corners of a triangle and interacting via the
Hamiltonian

where J is a positive
constant. This interaction favors opposite
alignment of neighboring spins
(antiferromagnetism, if they are magnetic
dipoles), but the triangular arrangement
means that this condition cannot be
satisfied simultaneously for all three pairs
(Figure 4.18). This is known as geometrical
“frustration.”
(a)   Show that the Hamiltonian can be

written in terms of the square of the
total spin, , where .

(b)   Determine the ground state energy,
and its degeneracy.

(c)   Now consider four spin-1/2 particles
arranged on the corners of a square,
and interacting with their nearest
neighbors:
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In this case there is a unique ground
state. Show that the Hamiltonian in
this case can be written

What is the ground
state energy?

Figure 4.18:  The figure shows three spins
arranged around a triangle, where there is no
way for each spin to be anti-aligned with all
of its neighbors. In contrast, there is no such
frustration with four spins arranged around a
square.

Problem 4.68 Imagine a hydrogen atom at the
center of an infinite spherical well of radius
b. We will take b to be much greater than
the Bohr radius  , so the low-n states are
not much affected by the distant “wall” at 

. But since  we can use the
method of Problem 2.61 to solve the radial
equation (4.53) numerically.
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(a)   Show that  (in Problem 2.61) takes
the form

(b)   We want  (so as to sample a
reasonable number of points within
the potential) and  (so the wall
doesn’t distort the atom too much).
Thus

Let’s use  and . Find
the three lowest eigenvalues of , for 

, , and , and plot the
corresponding eigenfunctions.
Compare the known (Bohr) energies
(Equation 4.70). Note: Unless the
wave function drops to zero well
before , the energies of this
system cannot be expected to match
those of free hydrogen, but they are of
interest in their own right as allowed
energies of “compressed” hydrogen.73

Problem 4.69 Find a few of the Bohr energies
for hydrogen by “wagging the dog”
(Problem 2.55), starting with Equation 4.53
—or, better yet, Equation 4.56; in fact, why
not use Equation 4.68 to set , and
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tweak n? We know that the correct
solutions occur when n is a positive
integer, so you might start with ,
1.9, 2.9, etc., and increase it in small
increments—the tail should wag when you
pass 1, 2, 3, …. Find the lowest three ns, to
four significant digits, first for , and
then for  and . Warning:
Mathematica doesn’t like to divide by zero,
so you might change ρ to  in
the denominator. Note:  in all
cases, but  only for 
(Equation 4.59). So for  you can use 

, . For  you might
be tempted to use  and ,
but Mathematica is lazy, and will go for the
trivial solution ; better, therefore,
to use (say)  and .

Problem 4.70 Sequential Spin
Measurements.
(a)   At time  a large ensemble of

spin-1/2 particles is prepared, all of
them in the spin-up state (with respect
to the z axis).74 They are not subject to
any forces or torques. At time 
each spin is measured—some along
the z direction and others along the x
direction (but we aren’t told the
results). At time  their spin is
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measured again, this time along the x
direction, and those with spin up
(along x) are saved as a subensemble
(those with spin down are discarded).
Question: Of those remaining (the
subensemble), what fraction had spin
up (along z or x, depending on which
was measured) in the first
measurement?

(b)   Part (a) was easy—trivial, really, once
you see it. Here’s a more pithy
generalization: At time  an
ensemble of spin-1/2 particles is
prepared, all in the spin-up state along
direction a. At time  their spins
are measured along direction b (but
we are not told the results), and at
time  their spins are measured
along direction c. Those with spin up
(along c) are saved as a subensemble.
Of the particles in this subensemble,
what fraction had spin up (along b) in
the first measurement? Hint: Use
Equation 4.155 to show that the
probability of getting spin up (along
b) in the first measurement is 

, and (by extension)
the probability of getting spin up in
both measurements is 
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. Find
the other three probabilities , ,
and . Beware: If the outcome of
the first measurement was spin down,
the relevant angle is now the
supplement of . Answer: 

.

Problem 4.71 In molecular and solid-state
applications, one often uses a basis of
orbitals aligned with the cartesian axes
rather than the basis  used throughout
this chapter. For example, the orbitals

are a basis for the hydrogen states with 
 and .

(a)   Show that each of these orbitals can be
written as a linear combination of the
orbitals  with , , and 

.
(b)   Show that the states  are

eigenstates of the corresponding
component of angular momentum: .
What is the eigenvalue in each case.
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(c)   Make contour plots (as in Figure 4.9)
for the three orbitals. In Mathematica
use ContourPlot3D.

Problem 4.72 Consider a particle with charge
q, mass m, and spin s, in a uniform
magnetic field . The vector potential can
be chosen as

(a)   Verify that this vector potential
produces a uniform magnetic field .

(b)   Show that the Hamiltonian can be
written

where  is the
gyromagnetic ratio for orbital motion.
Note: The term linear in  makes it
energetically favorable for the magnetic
moments (orbital and spin) to align with
the magnetic field; this is the origin of
paramagnetism in materials. The term
quadratic in  leads to the opposite
effect: diamagnetism.75

Problem 4.73 Example 4.4, couched in terms
of forces, was a quasi-classical explanation
for the Stern–Gerlach effect. Starting from
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the Hamiltonian for a neutral, spin-
particle traveling through the magnetic
field given by Equation 4.169,

use the generalized Ehrenfest theorem
(Equation 3.73) to show that

Comment: Equation 4.170 is therefore a
correct quantum-mechanical statement,
with the understanding that the quantities
refer to expectation values.

Problem 4.74 Neither Example 4.4 nor
Problem 4.73 actually solved the
Schrödinger equation for the Stern–Gerlach
experiment. In this problem we will see
how to set up that calculation. The
Hamiltonian for a neutral, spin-  particle
traveling through a Stern–Gerlach device is

where B is given by Equation 4.169. The
most general wave function for a spin-
particle—including both spatial and spin
degrees of freedom—is76
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(a)   Put  into the Schrödinger
equation

to obtain a pair of coupled equations
for . Partial answer:

(b)   We know from Example 4.3 that the
spin will precess in a uniform field 

. We can factor this behavior out
of our solution—with no loss of
generality—by writing

Find the coupled equations for .
Partial answer:

(c)   If one ignores the oscillatory term in
the solution to (b)—on the grounds
that it averages to zero (see discussion
in Example 4.4)—one obtains
uncoupled equations of the form
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Based upon the motion you would
expect for a particle in the “potential” 

, explain the Stern–Gerlach
experiment.

Problem 4.75 Consider the system of
Example 4.6, now with a time-dependent
flux  through the solenoid. Show that

with

is a solution to the time-dependent
Schrödinger equation.

Problem 4.76 The shift in the energy levels in
Example 4.6 can be understood from
classical electrodynamics. Consider the
case where initially no current flows in the
solenoid. Now imagine slowly increasing
the current.
(a)   Calculate (from classical

electrodynamics) the emf produced by
the changing flux and show that the
rate at which work is done on the
charge confined to the ring can be
written
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where ω is the angular velocity of the
particle.

(b)   Calculate the z component of the
mechanical angular momentum,77

for a particle in the
state  in Example 4.6. Note that the
mechanical angular momentum is not
quantized in integer multiples of !78

(c)   Show that your result from part (a) is
precisely equal to the rate at which the
stationary state energies change as the
flux is increased: .

1   In principle, this can be obtained by change of variables from the cartesian
expression 4.5. However, there are much more efficient ways of getting it; see,
for instance, M. Boas, Mathematical Methods in the Physical Sciences 3rd edn,
Wiley, New York (2006), Chapter 10, Section 9.

2   Note that there is no loss of generality here—at this stage  could be any
complex number. Later on we’ll discover that  must in fact be an integer, and
it is in anticipation of that result that I express the separation constant in a way
that looks peculiar now.

3   Again, there is no loss of generality here, since at this stage m could be any
complex number; in a moment, though, we will discover that m must in fact be
an integer. Beware: The letter m is now doing double duty, as mass and as a
separation constant. There is no graceful way to avoid this confusion, since
both uses are standard. Some authors now switch to M or μ for mass, but I hate
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to change notation in mid-stream, and I don’t think confusion will arise, a long
as you are aware of the problem.

4   This is more slippery than it looks. After all, the probability density ( ) is
single valued regardless of m. In Section 4.3 we’ll obtain the condition on m by
an entirely different—and more compelling—argument.

5   Some books (including earlier editions of this one) do not include the factor 
 in the definition of . Equation 4.27 assumes that ; for negative

values we define

A few books (including earlier versions of this one) define . I am
adopting now the more standard convention used by Mathematica.

6   Nevertheless, some authors call them (confusingly) “associated Legendre
polynomials.”

7   See, for instance, Boas (footnote 1), Chapter 5, Section 4.
8   The normalization factor is derived in Problem 4.63.
9   Those ms are masses, of course—the separation constant m does not appear in

the radial equation.
10   Actually, all we require is that the wave function be normalizable, not that it be

finite:  at the origin is normalizable (because of the  in Equation
4.31). For a compelling general argument that , see Ramamurti Shankar,
Principles of Quantum Mechanics, 2nd edn (Plenum, New York, 1994), p. 342.
For further discussion see F. A. B. Coutinho and M. Amaku, Eur. J. Phys. 30,
1015 (2009).

11   Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical
Functions, Dover, New York (1965), Chapter 10, provides an extensive listing.

12   We shall use this notation (  as a count of the number of radial nodes, n for
the order of the energy) with all central potentials. Both n and N are by their
nature integers (1, 2, 3, …); n is determined by N and  (conversely, N is
determined by n and ), but the actual relation can (as here) be complicated. In
the special case of the Coulomb potential, as we shall see, there is a delightfully
simple formula relating the two.

371



13   This is what goes into the Schrödinger equation—not the electric potential 
.

14   Note, however, that the bound states by themselves are not complete.
15   This argument does not apply when  (although the conclusion, Equation

4.59, is in fact valid for that case too). But never mind: All I am trying to do is
provide some motivation for a change of variables (Equation 4.60).

16   You might wonder why I didn’t use the series method directly on —why
factor out the asymptotic behavior before applying this procedure? Well, the
reason for peeling off  is largely aesthetic: Without this, the sequence
would begin with a long string of zeros (the first nonzero coefficient being 
); by factoring out  we obtain a series that starts out with . The  factor
is more critical—if you don’t pull that out, you get a three-term recursion
formula, involving ,  and  (try it!), and that is enormously more
difficult to work with.

17   Why not drop the 1 in ? After all, I’m ignoring  in the
numerator, and  in the denominator. In this approximation it would be fine
to drop the 1 as well, but keeping it makes the argument a little cleaner. Try
doing it without the 1, and you’ll see what I mean.

18   This makes  a polynomial of order , with (therefore)  roots, and
hence the radial wave function has  nodes.

19   It is customary to write the Bohr radius with a subscript: . But this is
cumbersome and unnecessary, so I prefer to leave the subscript off.

20   Again, n is the principal quantum number; it tells you the energy of the
electron (Equation 4.70). For unfortunate historical reasons  is called the
azimuthal quantum number and m the magnetic quantum number; as we’ll
see in Section 4.3, they are related to the angular momentum of the electron.

21   An electron volt is the energy acquired by an electron when accelerated
through an electric potential of 1 volt: 1 eV =  J.

22   As usual, there are rival normalization conventions in the literature. Older
physics books (including earlier editions of this one) leave off the factor .
But I think it is best to adopt the Mathematica standard (which sets ).
As the names suggest,  and  are polynomials (of degree q) in x.
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Incidentally, the associated Laguerre polynomials can also be written in the
form

23   If you want to see how the normalization factor is calculated, study (for
example), Leonard I. Schiff, Quantum Mechanics, 2nd edn, McGraw-Hill, New
York, 1968, page 93. In books using the older normalization convention for the
Laguerre polynomials (see footnote 22) the factor  under the square root
will be cubed.

24   These planes aren’t visible in Figure 4.8 or 4.9, since these figures show the
absolute value of , and the real and imaginary parts of the wave function
vanish on different sets of planes. However, since both sets contain the z axis,
the wave function itself must vanish on the z axis for  (see Figure 4.9).

25   The idea is to reorder the operators in such a way that  appears either to the
left or to the right, because we know (of course) what  is.

26   By its nature, this involves a time-dependent potential, and the details will have
to await Chapter 11; for our present purposes the actual mechanism involved is
immaterial.

27   The photon is a quantum of electromagnetic radiation; it’s a relativistic object
if there ever was one, and therefore outside the scope of nonrelativistic
quantum mechanics. It will be useful in a few places to speak of photons, and to
invoke the Planck formula for their energy, but please bear in mind that this is
external to the theory we are developing.

28   Thanks to John Meyer for pointing this out.
29   Because angular momentum involves the product of position and momentum,

you might worry that the ambiguity addressed in Chapter 3 (footnote 15, page
102) would arise. Fortunately, only different components of r and p are
multiplied, and they commute (Equation 4.10).

30   To reduce clutter (and avoid confusion with the unit vectors ) I’m
going to take the hats off operators for the rest of the chapter.

31   Formally, , but  (and
likewise for ), so .
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32   Actually, all we can conclude is that  is not normalizable—its norm could
be infinite, instead of zero. Problem 4.21 explores this alternative.

33   George Arfken and Hans-Jurgen Weber, Mathematical Methods for Physicists,
7th edn, Academic Press, Orlando (2013), Section 3.10.

34   For an interesting discussion, see I. R. Gatland, Am. J. Phys. 74, 191 (2006).
35   For a contrary interpretation, see Hans C. Ohanian, “What is Spin?”, Am. J.

Phys. 54, 500 (1986).
36   We shall take these as postulates for the theory of spin; the analogous formulas

for orbital angular momentum (Equation 4.99) were derived from the known
form of the operators (Equation 4.96). Actually, they both follow from
rotational invariance in three dimensions, as we shall see in Chapter 6. Indeed,
these fundamental commutation relations apply to all forms of angular
momentum, whether spin, orbital, or the combined angular momentum of a
composite system, which could be partly spin and partly orbital.

37   Because the eigenstates of spin are not functions, I will switch now to Dirac
notation. By the way, I’m running out of letters, so I’ll use m for the eigenvalue
of , just as I did for  (some authors write  and  at this stage, just to be
absolutely clear).

38   Indeed, in a mathematical sense, spin 1/2 is the simplest possible nontrivial
quantum system, for it admits just two basis states (recall Example 3.8). In
place of an infinite-dimensional Hilbert space, with all its subtleties and
complications, we find ourselves working in an ordinary two-dimensional
vector space; instead of unfamiliar differential equations and fancy functions,
we are confronted with  matrices and two-component vectors. For this
reason, some authors begin quantum mechanics with the study of spin. (An
outstanding example is John S. Townsend, A Modern Approach to Quantum
Mechanics, 2nd edn, University Books, Sausalito, CA, 2012.) But the price of
mathematical simplicity is conceptual abstraction, and I prefer not to do it that
way.

39   If it comforts you to picture the electron as a tiny spinning sphere, go ahead; I
do, and I don’t think it hurts, as long as you don’t take it literally.

40   I’m only talking about the spin state, for the moment. If the particle is moving
around, we will also need to deal with its position state , but for the moment
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let’s put that aside.
41   I hate to be fussy about notation, but perhaps I should reiterate that a ket (such

as ) is a vector in Hilbert space (in this case a -dimensional vector
space), whereas a spinor χ is a set of components of a vector, with respect to a
particular basis  and , in the case of spin , displayed as a column.

Physicists sometimes write, for instance, , but technically this

confuses a vector (which lives “out there” in Hilbert space) with its components
(a string of numbers). Similarly,  (for example) is an operator that acts on
kets; it is represented (with respect to the chosen basis) by a matrix  (sans
serif), which multiplies spinors—but again, , though perfectly
intelligible, is sloppy language.

42   People often say that  is the “probability that the particle is in the spin-up
state,” but this is bad language; what they mean is that if you measured ,  is
the probability you’d get . See footnote 18, page 103.

43   See, for example, David J. Griffiths, Introduction to Electrodynamics, 4th edn
(Pearson, Boston, 2013), Problem 5.58. Classically, the gyromagnetic ratio of
an object whose charge and mass are identically distributed is , where q is
the charge and m is the mass. For reasons that are fully explained only in
relativistic quantum theory, the gyromagnetic ratio of the electron is (almost)
exactly twice the classical value: .

44   Griffiths (footnote 43), Problem 6.21.
45   If the particle is allowed to move, there will also be kinetic energy to consider;

moreover, it will be subject to the Lorentz force , which is not derivable
from a potential energy function, and hence does not fit the Schrödinger
equation as we have formulated it so far. I’ll show you later on how to handle
this (Problem 4.42), but for the moment let’s just assume that the particle is free
to rotate, but otherwise stationary.

46   This does assume that a and b are real; you can work out the general case if
you like, but all it does is add a constant to t.

47   See, for instance, Richard P. Feynman and Robert B. Leighton, The Feynman
Lectures on Physics (Addison-Wesley, Reading, 1964), Volume II, Section 34-
3. Of course, in the classical case it is the angular momentum vector itself, not
just its expectation value, that precesses around the magnetic field.
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48   Griffiths (footnote 43), Section 6.1.2. Note that F is the negative gradient of the
energy (Equation 4.157).

49   We make them neutral so as to avoid the large-scale deflection that would
otherwise result from the Lorentz force, and heavy so we can construct
localized wave packets and treat the motion in terms of classical particle
trajectories. In practice, the Stern–Gerlach experiment doesn’t work, for
example, with a beam of free electrons. Stern and Gerlach themselves used
silver atoms; for the story of their discovery see B. Friedrich and
D. Herschbach, Physics Today 56, 53 (2003).

50   For a quantum mechanical justification of this equation see Problem 4.73.
51   More precisely, the composite system is in a linear combination of the four

states listed. For spin  I find the arrows more evocative than the four-index
kets, but you can always revert to the formal notation if you’re worried about it.

52   I say spins, for simplicity, but either one (or both) could just as well be orbital
angular momentum (for which, however, we would use the letter ).

53   For a proof you must look in a more advanced text; see, for instance, Claude
Cohen-Tannoudji, Bernard Diu, and Franck Laloë, Quantum Mechanics, Wiley,
New York (1977), Vol. 2, Chapter X.

54   The general formula is derived in Arno Bohm, Quantum Mechanics:
Foundations and Applications, 2nd edn, Springer, 1986, p. 172.

55   Readers who have not studied electrodynamics may want to skip Section 4.5.
56   See, for example, Herbert Goldstein, Charles P. Poole, and John Safko,

Classical Mechanics, 3rd edn, Prentice Hall, Upper Saddle River, NJ, 2002,
page 342.

57   In the case of electrostatics we can choose A = 0, and  is the potential energy
V.

58   Note that the potentials are given, just like the potential energy V in the regular
Schrödinger equation. In quantum electrodynamics (QED) the fields
themselves are quantized, but that’s an entirely different theory.

59   Note that p does not commute with B, so , but A does
commute with B, so .

60   For further discussion see Leslie E. Ballentine, Quantum Mechanics: A Modern
Development, World Scientific, Singapore (1998), Section 11.3.
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61   See, for example, Griffiths (footnote 43), Section 10.1.2.
62   That is to say, , , etc. are unchanged. Because Λ depends on position, 

 (with p represented by the operator ) does change, but as you found in
Equation 4.192, p does not represent the mechanical momentum  in this
context (in Lagrangian mechanics  is the so-called canonical
momentum).

63   Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959). For a significant
precursor, see W. Ehrenberg and R. E. Siday, Proc. Phys. Soc. London B62, 8
(1949).

64   See, for instance, Griffiths (footnote 43), Equation 5.71.
65   It is a peculiar property of superconducting rings that the enclosed flux is

quantized: , where  is an integer. In that case the effect is
undetectable, since , and  is just another integer.

(Incidentally, the charge q here turns out to be twice the charge of an electron;
the superconducting electrons are locked together in pairs.) However, flux
quantization is enforced by the superconductor (which induces circulating
currents to make up the difference), not by the solenoid or the electromagnetic
field, and it does not occur in the (nonsuperconducting) example considered
here.

66   The region in question must also be simply connected (no holes). This might
seem like a technicality, but in the present example we need to excise the
solenoid itself, and that leaves a hole in the space. To get around this we treat
each side of the solenoid as a separate simply-connected region. If that bothers
you, you’re not alone; it seems to have bothered Aharanov and Bohm as well,
since—in addition to this argument—they provided an alternative solution to
confirm their result (Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959)).
The Aharonov–Bohm effect can also be cast as an example of Berry’s phase
(see Chapter 11), where this issue does not arise (M. Berry,
Proc. Roy. Soc. Lond. A 392, 45 (1984)).

67   Use cylindrical coordinates centered on the axis of the solenoid; put  on the
incoming beam, and let ϕ run  on one side and  on the other, with 

 always.
68   R. G. Chambers, Phys. Rev. Lett. 5, 3 (1960).
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69   Aharonov and Bohm themselves concluded that the vector potential has a
physical significance in quantum mechanics that it lacks in classical theory, and
most physicists today would agree. For the early history of the Aharonov–
Bohm effect see H. Ehrlickson, Am. J. Phys. 38, 162 (1970).

70   For some damn reason energy levels are traditionally counted starting with 
, for the harmonic oscillator. That conflicts with good sense and with our

explicit convention (footnote 12), but please stick with it for this problem.
71   Schrödinger (Annalen der Physik 81, 109 (1926), Section 7) interpreted  as

the electric current density (this was before Born published his statistical
interpretation of the wave function), and noted that it is time-independent (in a
stationary state): “we may in a certain sense speak of a return to electrostatic
and magnetostatic atomic models. In this way the lack of radiation in [a
stationary] state would, indeed, find a startlingly simple explanation.” (I thank
Kirk McDonald for calling this reference to my attention.)

72   Nicholas Wheeler, “Coincident Spectral Lines” (unpublished Reed College
report, 2001).

73   For a variety of reasons this system has been much studied in the literature.
See, for example, J. M. Ferreyra and C. R. Proetto, Am. J. Phys. 81, 860 (2013).

74   N. D. Mermin, Physics Today, October 2011, page 8.
75   That’s not obvious but we’ll prove it in Chapter 7.
76   In this notation,  gives the probability of finding the particle in the

vicinity of r with spin up, and similarly measuring its spin along the z axis to be
up, and similarly for  with spin down.

77   See footnote 62 for a discussion of the difference between the canonical and
mechanical momentum.

78   However, the electromagnetic fields also carry angular momentum, and the
total (mechanical plus electromagnetic) is quantized in integer multiples of .
For a discussion see M. Peshkin, Physics Reports 80, 375 (1981) or Chapter 1
of Frank Wilczek, Fractional Statistics and Anyon Superconductivity, World
Scientific, New Jersey (1990).
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(5.2)

(5.3)

(5.1)

(5.4)

5
Identical Particles

◈

5.1 Two-Particle Systems

For a single particle,  is a function of the spatial coordinates, r, and
the time, t (I’ll ignore spin, for the moment). The state of a two-particle
system is a function of the coordinates of particle one , the coordinates
of particle two , and the time:

Its time evolution is determined by the Schrödinger equation:

where H is the Hamiltonian for the whole works:

(the subscript on  indicates differentiation with respect to the coordinates
of particle 1 or particle 2, as the case may be). The statistical interpretation
carries over in the obvious way:

379



(5.5)

(5.7)

(5.6)

(5.8)

(5.9)

is the probability of finding particle 1 in the volume  and particle 2 in
the volume ; as always,  must be normalized:

For time-independent potentials, we obtain a complete set of solutions
by separation of variables:

where the spatial wave function  satisfies the time-independent
Schrödinger equation:

and E is the total energy of the system. In general, solving Equation 5.7 is
difficult, but two special cases can be reduced to one-particle problems:

1.   Noninteracting particles. Suppose the particles do not interact
with one another, but each is subject to some external force. For
example, they might be attached to two different springs. In that
case the total potential energy is the sum of the two:

and Equation 5.7 can be solved by separation of variables:

Plugging Equation 5.9 into Equation 5.7, dividing by , and
collecting the terms in  alone and in  alone, we find that 
and  each satisfy the one-particle Schrödinger equation:
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(5.10)

(5.12)

(5.11)

(5.13)

and . In this case the two-particle wave function is a
simple product of one-particle wave functions,

and it makes sense to say that particle 1 is in state
a, and particle 2 is in state b. But any linear combination of such
solutions will still satisfy the (time-dependent) Schrödinger
equation—for instance

In this case the state of particle 1 depends on the state of particle 2,
and vice versa. If you measured the energy of particle 1, you might
get  (with probability 9/25), in which case the energy of particle
2 is definitely , or you might get  (probability 16/25), in which
case the energy of particle 2 is . We say that the two particles are
entangled (Schrödinger’s lovely term). An entangled state is one
that cannot be written as a product of single-particle states.1

2.   Central potentials. Suppose the particles interact only with one
another, via a potential that depends on their separation:

The hydrogen atom would be an example, if you include the
motion of the proton. In this case the two-body problem reduces to
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(5.14)

∗∗

(5.15)

an equivalent one-body problem, just as it does in classical
mechanics (see Problem 5.1).

In general, though, the two particles will be subject both to external forces
and to mutual interactions, and this makes the analysis more complicated.
For example, think of the two electrons in a helium atom: each feels the
Coulomb attraction of the nucleus (charge ), and at the same time they
repel one another:

We’ll take up this problem in later sections.

Problem 5.1 A typical interaction potential
depends only on the vector displacement 

 between the two particles: 
. In that case the Schrödinger

equation separates, if we change variables
from  to r and  

 (the center of mass).
(a)   Show that , 

, and 
, 
, where

is the reduced mass of the system.
(b)   Show that the (time-independent)

Schrödinger equation (5.7) becomes

382



(c)   Separate the variables, letting 
. Note that 

satisfies the one-particle Schrödinger
equation, with the total mass 

 in place of m, potential zero,
and energy , while  satisfies the
one-particle Schrödinger equation with
the reduced mass in place of m,
potential , and energy . The total
energy is the sum: . What
this tells us is that the center of mass
moves like a free particle, and the
relative motion (that is, the motion of
particle 2 with respect to particle 1) is
the same as if we had a single particle
with the reduced mass, subject to the
potential V. Exactly the same
decomposition occurs in classical
mechanics;2 it reduces the two-body
problem to an equivalent one-body
problem.

Problem 5.2 In view of Problem 5.1, we can
correct for the motion of the nucleus in
hydrogen by simply replacing the electron
mass with the reduced mass.
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(a)   Find (to two significant digits) the
percent error in the binding energy of
hydrogen (Equation 4.77) introduced
by our use of m instead of μ.

(b)   Find the separation in wavelength
between the red Balmer lines 

 for hydrogen and
deuterium (whose nucleus contains a
neutron as well as the proton).

(c)   Find the binding energy of
positronium (in which the proton is
replaced by a positron—positrons have
the same mass as electrons, but
opposite charge).

(d)   Suppose you wanted to confirm the
existence of muonic hydrogen, in
which the electron is replaced by a
muon (same charge, but 206.77 times
heavier). Where (i.e. at what
wavelength) would you look for the
“Lyman-α” line ?

Problem 5.3 Chlorine has two naturally
occurring isotopes, Cl35 and Cl37. Show that
the vibrational spectrum of HCl should consist
of closely spaced doublets, with a splitting
given by , where ν is the
frequency of the emitted photon. Hint: Think

384



(5.16)

of it as a harmonic oscillator, with ,
where μ is the reduced mass (Equation 5.15)
and k is presumably the same for both isotopes.

5.1.1 Bosons and Fermions

Suppose we have two noninteracting particles, number 1 in the (one-
particle) state , and number 2 in the state . In that case 
is the product (Equation 5.9):

Of course, this assumes that we can tell the particles apart—otherwise it
wouldn’t make any sense to claim that number 1 is in state  and number
2 is in state ; all we could say is that one of them is in the state  and
the other is in state , but we wouldn’t know which is which. If we were
talking classical mechanics this would be a silly objection: You can
always tell the particles apart, in principle—just paint one of them red and
the other one blue, or stamp identification numbers on them, or hire private
detectives to follow them around. But in quantum mechanics the situation
is fundamentally different: You can’t paint an electron red, or pin a label
on it, and a detective’s observations will inevitably and unpredictably alter
its state, raising the possibility that the two particles might have secretly
switched places. The fact is, all electrons are utterly identical, in a way that
no two classical objects can ever be. It’s not just that we don’t know which
electron is which; God doesn’t know which is which, because there is
really no such thing as “this” electron, or “that” electron; all we can
legitimately speak about is “an” electron.

Quantum mechanics neatly accommodates the existence of particles
that are indistinguishable in principle: We simply construct a wave
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(5.18)

(5.17)

function that is noncommittal as to which particle is in which state. There
are actually two ways to do it:

the theory admits two kinds of identical particles: bosons (the plus sign),
and fermions (the minus sign). Boson states are symmetric under
interchange, ; fermion states are antisymmetric
under interchange, . It so happens that

This connection between spin and statistics (bosons and fermions have
quite different statistical properties) can be proved in relativistic quantum
mechanics; in the nonrelativistic theory it is simply taken as an axiom.3

It follows, in particular, that two identical fermions (for example, two
electrons) cannot occupy the same state. For if , then

and we are left with no wave function at all.4 This is the famous Pauli
exclusion principle. It is not (as you may have been led to believe) a
weird ad hoc assumption applying only to electrons, but rather a
consequence of the rules for constructing two-particle wave functions,
applying to all identical fermions.

Example 5.1
Suppose we have two noninteracting (they pass right through one
another…never mind how you would set this up in practice!)
particles, both of mass m, in the infinite square well (Section 2.2).
The one-particle states are
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(where ). If the particles are distinguishable, with
number 1 in state  and number 2 in state , the composite wave
function is a simple product:

For example, the ground state is

the first excited state is doubly degenerate:

and so on. If the two particles are identical bosons, the ground state
is unchanged, but the first excited state is nondegenerate:

(still with energy ). And if the particles are identical fermions,
there is no state with energy ; the ground state is

and its energy is .
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∗ Problem 5.4
(a)   If  and  are orthogonal, and both

are normalized, what is the constant A
in Equation 5.17?

(b)   If  (and it is normalized), what
is A? (This case, of course, occurs
only for bosons.)

Problem 5.5
(a)   Write down the Hamiltonian for two

noninteracting identical particles in the
infinite square well. Verify that the
fermion ground state given in
Example 5.1 is an eigenfunction of ,
with the appropriate eigenvalue.

(b)   Find the next two excited states
(beyond the ones given in the
example)—wave functions, energies,
and degeneracies—for each of the
three cases (distinguishable, identical
bosons, identical fermions).

5.1.2 Exchange Forces

To give you some sense of what the symmetrization requirement (Equation
5.17) actually does, I’m going to work out a simple one-dimensional
example. Suppose one particle is in state , and the other is in state 

, and these two states are orthogonal and normalized. If the two
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(5.20)

(5.21)

(5.22)

(5.19)

particles are distinguishable, and number 1 is the one in state , then the
combined wave function is

if they are identical bosons, the composite wave function is (see Problem
5.4 for the normalization)

and if they are identical fermions, it is

Let’s calculate the expectation value of the square of the separation
distance between the two particles,

Case 1: Distinguishable particles. For the wave function in Equation
5.19,

(the expectation value of  in the one-particle state ),

and

In this case, then,

389



(5.23)

(Incidentally, the answer would—of course—be the same if particle 1 had
been in state , and particle 2 in state .)

Case 2: Identical particles. For the wave functions in Equations 5.20
and 5.21,

Similarly,

(Naturally, , since you can’t tell them apart.) But

where
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(5.24)

(5.25)

(5.26)

Thus

Comparing Equations 5.23 and 5.25, we see that the difference
resides in the final term:

identical bosons (the upper signs) tend to be somewhat closer together, and
identical fermions (the lower signs) somewhat farther apart, than
distinguishable particles in the same two states. Notice that  vanishes
unless the two wave functions actually overlap: if  is zero wherever 

 is nonzero, the integral in Equation 5.24 is zero. So if  represents
an electron in an atom in Chicago, and  represents an electron in an atom
in Seattle, it’s not going to make any difference whether you
antisymmetrize the wave function or not. As a practical matter, therefore,
it’s okay to pretend that electrons with non-overlapping wave functions are
distinguishable. (Indeed, this is the only thing that allows chemists to
proceed at all, for in principle every electron in the universe is linked to
every other one, via the antisymmetrization of their wave functions, and if
this really mattered, you wouldn’t be able to talk about any one unless you
were prepared to deal with them all!)

The interesting case is when the overlap integral (Equation 5.24) is
not zero. The system behaves as though there were a “force of attraction”
between identical bosons, pulling them closer together, and a “force of
repulsion” between identical fermions, pushing them apart (remember that
we are for the moment ignoring spin). We call it an exchange force,
although it’s not really a force at all5 —no physical agency is pushing on
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the particles; rather, it is a purely geometrical consequence of the
symmetrization requirement. It is also a strictly quantum mechanical
phenomenon, with no classical counterpart.

Problem 5.6 Imagine two noninteracting
particles, each of mass m, in the infinite square
well. If one is in the state  (Equation 2.28),
and the other in state  , calculate 

, assuming (a) they are
distinguishable particles, (b) they are identical
bosons, and (c) they are identical fermions.

Problem 5.7 Two noninteracting particles (of
equal mass) share the same harmonic oscillator
potential, one in the ground state and one in the
first excited state.

(a)   Construct the wave function, ,
assuming (i) they are distinguishable,
(ii) they are identical bosons, (iii) they
are identical fermions. Plot 
in each case (use, for instance,
Mathematica’s Plot3D).

(b)   Use Equations 5.23 and 5.25 to
determine  for each case.

(c)   Express each  in terms of the
relative and center-of-mass
coordinates  and 

, and integrate over R
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to get the probability of finding the
particles a distance  apart:

(the 2 accounts for the fact that r could
be positive or negative). Graph 
for the three cases.

(d)   Define the density operator by

 is the expected number of
particles in the interval dx. Compute 
for each of the three cases and plot your
results. (The result may surprise you.)

Problem 5.8 Suppose you had three particles,
one in state , one in state , and one
in state . Assuming , , and  are
orthonormal, construct the three-particle states
(analogous to Equations 5.19, 5.20, and 5.21)
representing (a) distinguishable particles, (b)
identical bosons, and (c) identical fermions.
Keep in mind that (b) must be completely
symmetric, under interchange of any pair of
particles, and (c) must be completely anti-
symmetric, in the same sense. Comment:
There’s a cute trick for constructing
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(5.27)

(5.28)

(5.29)

completely antisymmetric wave functions:
Form the Slater determinant, whose first row
is , , , etc., whose second
row is , , , etc., and so on
(this device works for any number of
particles).6

5.1.3 Spin

It is time to bring spin into the story. The complete state of an electron
(say) includes not only its position wave function, but also a spinor,
describing the orientation of its spin:7

When we put together the two-particle state,8

it is the whole works, not just the spatial part, that has to be antisymmetric
with respect to exchange:

Now, a glance back at the composite spin states (Equations 4.175 and
4.176) reveals that the singlet combination is antisymmetric (and hence
would have to be joined with a symmetric spatial function), whereas the
three triplet states are all symmetric (and would require an antisymmetric
spatial function). Thus the Pauli principle actually allows two electrons in
a given position state, as long as their spins are in the singlet configuration
(but they could not be in the same position state and in the same spin state
—say, both spin up).
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(5.30)

Problem 5.9 In Example 5.1 and Problem
5.5(b) we ignored spin (or, if you prefer, we
assumed the particles are in the same spin
state).

(a)   Do it now for particles of spin 1/2.
Construct the four lowest-energy
configurations, and specify their
energies and degeneracies. Suggestion:
Use the notation , where 

 is defined in Example 5.1 and 
 in Section 4.4.3.9

(b)   Do the same for spin 1. Hint: First
work out the spin-1 analogs to the
spin-1/2 singlet and triplet
configurations, using the Clebsch–
Gordan coefficients; note which of
them are symmetric and which
antisymmetric.10

5.1.4 Generalized Symmetrization Principle

I have assumed, for the sake of simplicity, that the particles are
noninteracting, the spin and position are decoupled (with the combined
state a product of position and spin factors), and the potential is time-
independent. But the fundamental symmetrization/antisymmetrization
requirement for identical bosons/fermions is much more general. Let us
define the exchange operator, , which interchanges the two particles:11
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(5.32)
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(5.33)

(5.34)

Clearly, , and it follows (prove it for yourself) that the eigenvalues
of  are . Now, if the two particles are identical, the Hamiltonian must
treat them the same:  and . It follows that 

 and  are compatible observables,

and hence (Equation 3.73)

If the system starts out in an eigenstate of —symmetric , or
antisymmetric —then it will stay that way forever. The
symmetrization axiom says that for identical particles the state is not
merely allowed, but required to satisfy

with the plus sign for bosons, and the minus sign for fermions.12 If you
have n identical particles, of course, the state must be symmetric or
antisymmetric under the interchange of any two:

This is the general statement, of which Equation 5.17 is a
special case.

Problem 5.10 For two spin-1/2 particles you
can construct symmetric and antisymmetric
states (the triplet and singlet combinations,
respectively). For three spin-1/2 particles you
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can construct symmetric combinations (the
quadruplet, in Problem 4.65), but no
completely anti-symmetric configuration is
possible.

(a)   Prove it. Hint: The “bulldozer”
method is to write down the most
general linear combination:

What does antisymmetry under 
tell you about the coefficients? (Note
that the eight terms are mutually
orthogonal.) Now invoke
antisymmetry under .

(b)   Suppose you put three identical
noninteracting spin-1/2 particles in the
infinite square well. What is the
ground state for this system, what is
its energy, and what is its degeneracy?
Note: You can’t put all three in the
position state  (why not?); you’ll
need two in  and the other in . But
the symmetric configuration 

is no good (because there’s no
antisymmetric spin combination to go
with it), and you can’t make a
completely antisymmetric
combination of those three terms. …In
this case you simply cannot construct
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an antisymmetric product of a spatial
state and a spin state. But you can do
it with an appropriate linear
combination of such products. Hint:
Form the Slater determinant (Problem
5.8) whose top row is , 

, .
(c)   Show that your answer to part (b),

properly normalized, can be written in
the form

where  is the wave function of
two particles in the  state and the
singlet spin configuration,

and  is the wave
function of the ith particle in the 
spin up state: .
Noting that  is antisymmetric in 

, check that  is
antisymmetric in all three exchanges 

, , and .

Problem 5.11 In Section 5.1 we found that for
noninteracting particles the wave function can
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be expressed as a product of single-particle
states (Equation 5.9)—or, for identical
particles, as a symmetrized/antisymmetrized
linear combination of such states (Equations
5.20 and 5.21). For interacting particles this is
no longer the case. A famous example is the
Laughlin wave function,13 which is an
approximation to the ground state of N
electrons confined to two dimensions in a
perpendicular magnetic field of strength B (the
setting for the fractional quantum Hall
effect). The Laughlin wave function is

where q is a positive odd integer and

(Spin is not at issue here; in the ground state all
the electrons have spin down with respect to
the direction of B, and that is a trivially
symmetric configuration.)

(a)   Show that  has the proper
antisymmetry for fermions.

(b)   For ,  describes noninteracting
particles (by which I mean that it can
be written as a single Slater
determinant—see Problem 5.8). This
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is true for any N, but check it
explicitly for . What single
particle states are occupied in this
case?

(c)   For values of q greater than 1, 
cannot be written as a single Slater
determinant, and describes interacting
particles (in practice, Coulomb
repulsion of the electrons). It can,
however, be written as a sum of Slater
determinants. Show that, for  and 

,  can be written as a sum of
two Slater determinants.

Comment: In the noninteracting
case (b) we can describe the wave
function as “three particles occupying
the three single-particle states , 
and ,” but in the interacting case (c),
no corresponding statement can be
made; in that case, the different Slater
determinants that make up 
correspond to occupation of different
sets of single-particle states.

5.2 Atoms

A neutral atom, of atomic number Z, consists of a heavy nucleus, with
electric charge Ze, surrounded by Z electrons (mass m and charge ).
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(5.36)

(5.37)

The Hamiltonian for this system is14

The term in curly brackets represents the kinetic plus
potential energy of the jth electron, in the electric field of the nucleus; the
second sum (which runs over all values of j and k except ) is the
potential energy associated with the mutual repulsion of the electrons (the
factor of 1/2 in front corrects for the fact that the summation counts each
pair twice). The problem is to solve Schrödinger’s equation,

for the wave function .15

Unfortunately, the Schrödinger equation with Hamiltonian in
Equation 5.36 cannot be solved exactly (at any rate, it hasn’t been), except
for the very simplest case,  (hydrogen). In practice, one must resort
to elaborate approximation methods. Some of these we shall explore in
Part II; for now I plan only to sketch some qualitative features of the
solutions, obtained by neglecting the electron repulsion term altogether. In
Section 5.2.1 we’ll study the ground state and excited states of helium, and
in Section 5.2.2 we’ll examine the ground states of higher atoms.

Problem 5.12
(a)   Suppose you could find a solution 

 to the Schrödinger
equation (Equation 5.37), for the
Hamiltonian in Equation 5.36.
Describe how you would construct
from it a completely symmetric
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(5.38)

(5.39)

function, and a completely
antisymmetric function, which also
satisfy the Schrödinger equation, with
the same energy. What happens to the
completely antisymmetric function if 

 is symmetric in (say)
its first two arguments ?

(b)   By the same logic, show that a
completely antisymmetric spin state
for Z electrons is impossible, if 
(this generalizes Problem 5.10(a)).

5.2.1 Helium

After hydrogen, the simplest atom is helium . The Hamiltonian,

consists of two hydrogenic Hamiltonians (with nuclear
charge ), one for electron 1 and one for electron 2, together with a final
term describing the repulsion of the two electrons. It is this last term that
causes all the trouble. If we simply ignore it, the Schrödinger equation
separates, and the solutions can be written as products of hydrogen wave
functions:

only with half the Bohr radius (Equation 4.72), and four times the Bohr
energies (Equation 4.70)—if you don’t see why, refer back to Problem
4.19. The total energy would be
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(5.41)

(5.40)

(5.42)

(5.43)

where  eV. In particular, the ground state
would be

(Equation 4.80), and its energy would be

Because  is a symmetric function, the spin state has to be antisymmetric,
so the ground state of helium should be a singlet configuration, with the
spins “oppositely aligned.” The actual ground state of helium is indeed a
singlet, but the experimentally determined energy is  eV, so the
agreement is not very good. But this is hardly surprising: We ignored
electron–electron repulsion, which is certainly not a small contribution. It
is clearly positive (see Equation 5.38), which is comforting—evidently it
brings the total energy up from  to  eV (see Problem 5.15).

The excited states of helium consist of one electron in the hydrogenic
ground state, and the other in an excited state:

(If you try to put both electrons in excited states, one immediately drops to
the ground state, releasing enough energy to knock the other one into the
continuum , leaving you with a helium ion (He+) and a free
electron. This is an interesting system in its own right—see Problem 5.13
—but it is not our present concern.) We can construct both symmetric and
antisymmetric combinations, in the usual way (Equation 5.17); the former
go with the antisymmetric spin configuration (the singlet)—they are called
parahelium—while the latter require a symmetric spin configuration (the
triplet)—they are known as orthohelium. The ground state is necessarily
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parahelium; the excited states come in both forms. Because the symmetric
spatial state brings the electrons closer together (as we discovered in
Section 5.1.2), we expect a higher interaction energy in parahelium, and
indeed, it is experimentally confirmed that the parahelium states have
somewhat higher energy than their orthohelium counterparts (see Figure
5.1).

 

Figure 5.1: Energy level diagram for helium (the notation is explained in
Section 5.2.2). Note that parahelium energies are uniformly higher than their
orthohelium counterparts. The numerical values on the vertical scale are
relative to the ground state of ionized helium (He+):  eV 
eV; to get the total energy of the state, subtract 54.4 eV.
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Problem 5.13
(a)   Suppose you put both electrons in a

helium atom into the  state; what
would the energy of the emitted
electron be? (Assume no photons are
emitted in the process.)

(b)   Describe (quantitatively) the spectrum
of the helium ion, He+. That is, state
the “Rydberg-like” formula for the
emitted wavelengths.

Problem 5.14 Discuss (qualitatively) the
energy level scheme for helium if (a) electrons
were identical bosons, and (b) if electrons were
distinguishable particles (but with the same
mass and charge). Pretend these “electrons”
still have spin 1/2, so the spin configurations
are the singlet and the triplet.

Problem 5.15
(a)   Calculate  for the state 

 (Equation 5.41). Hint: Do the 
integral first, using spherical
coordinates, and setting the polar axis
along , so that
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The  integral is easy, but be careful
to take the positive root. You’ll have
to break the  integral into two pieces,
one ranging from 0 to , the other
from  to . Answer: .

(b)   Use your result in (a) to estimate the
electron interaction energy in the
ground state of helium. Express your
answer in electron volts, and add it to 

 (Equation 5.42) to get a corrected
estimate of the ground state energy.
Compare the experimental value. (Of
course, we’re still working with an
approximate wave function, so don’t
expect perfect agreement.)

Problem 5.16 The ground state of lithium.
Ignoring electron–electron repulsion, construct
the ground state of lithium . Start with a
spatial wave function, analogous to Equation
5.41, but remember that only two electrons can
occupy the hydrogenic ground state; the third
goes to .16 What is the energy of this state?
Now tack on the spin, and antisymmetrize (if
you get stuck, refer back to Problem 5.10).
What’s the degeneracy of the ground state?

5.2.2 The Periodic Table
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The ground state electron configurations for heavier atoms can be pieced
together in much the same way. To first approximation (ignoring their
mutual repulsion altogether) the individual electrons occupy one-particle
hydrogenic states , called orbitals, in the Coulomb potential of a
nucleus with charge Ze. If electrons were bosons (or distinguishable
particles) they would all shake down to the ground state , and
chemistry would be very dull indeed. But electrons are in fact identical
fermions, subject to the Pauli exclusion principle, so only two can occupy
any given orbital (one with spin up, and one with spin down—or, more
precisely, in the singlet configuration). There are  hydrogenic wave
functions (all with the same energy ) for a given value of n, so the 
shell has room for two electrons, the  shell holds eight,  takes
18, and in general the nth shell can accommodate  electrons.
Qualitatively, the horizonal rows on the Periodic Table correspond to
filling out each shell (if this were the whole story, they would have lengths
2, 8, 18, 32, 50, etc., instead of 2, 8, 8, 18, 18, etc.; we’ll see in a moment
how the electron–electron repulsion throws the counting off).

With helium, the  shell is filled, so the next atom, lithium 
, has to put one electron into the  shell. Now, for  we can

have  or ; which of these will the third electron choose? In the
absence of electron–electron interactions, they have the same energy (the
Bohr energies depend on n, remember, but not on ). But the effect of
electron repulsion is to favor the lowest value of , for the following
reason. Angular momentum tends to throw the electron outward, and the
farther out it gets, the more effectively the inner electrons screen the
nucleus (roughly speaking, the innermost electron “sees” the full nuclear
charge Ze, but the outermost electron sees an effective charge hardly
greater than e). Within a given shell, therefore, the state with lowest
energy (which is to say, the most tightly bound electron) is , and the
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energy increases with increasing . Thus the third electron in lithium
occupies the orbital (2,0,0).17 The next atom (beryllium, with ) also
fits into this state (only with “opposite spin”), but boron  has to
make use of .

Continuing in this way, we reach neon , at which point the 
 shell is filled, and we advance to the next row of the periodic table

and begin to populate the  shell. First there are two atoms (sodium
and magnesium) with , and then there are six with  (aluminum
through argon). Following argon there “should” be 10 atoms with 
and ; however, by this time the screening effect is so strong that it
overlaps the next shell; potassium  and calcium  choose 

, , in preference to , . After that we drop back to pick
up the ,  stragglers (scandium through zinc), followed by , 

 (gallium through krypton), at which point we again make a
premature jump to the next row , and wait until later to slip in the 

 and  orbitals from the  shell. For details of this intricate
counterpoint I refer you to any book on atomic physics.18

I would be delinquent if I failed to mention the archaic nomenclature
for atomic states, because all chemists and most physicists use it (and the
people who make up the Graduate Record Exam love this sort of thing).
For reasons known best to nineteenth-century spectroscopists,  is
called s (for “sharp”),  is p (for “principal”),  is d (“diffuse”),
and  is f (“fundamental”); after that I guess they ran out of
imagination, because it now continues alphabetically (g, h, i, skip j, just to
be utterly perverse, k, l, etc.).19 The state of a particular electron is
represented by the pair , with n (the number) giving the shell, and  (the
letter) specifying the orbital angular momentum; the magnetic quantum
number m is not listed, but an exponent is used to indicate the number of
electrons that occupy the state in question. Thus the configuration
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(5.44)

(5.45)

tells us that there are two electrons in the orbital (1,0,0), two in the orbital
(2,0,0), and two in some combination of the orbitals (2,1,1), (2,1,0), and
(2,1,−1). This happens to be the ground state of carbon.

In that example there are two electrons with orbital angular
momentum quantum number 1, so the total orbital angular momentum
quantum number, L (capital L—not to be confused with the L denoting 

—instead of , to indicate that this pertains to the total, not to any one
particle) could be 2, 1, or 0. Meanwhile, the two  electrons are locked
together in the singlet state, with total spin zero, and so are the two 
electrons, but the two  electrons could be in the singlet configuration
or the triplet configuration. So the total spin quantum number S (capital,
again, because it’s the total) could be 1 or 0. Evidently the grand total
(orbital plus spin), J, could be 3, 2, 1, or 0 (Equation 4.182). There exist
rituals, known as Hund’s Rules (see Problem 5.18) for figuring out what
these totals will be, for a particular atom. The result is recorded as the
following hieroglyphic:

(where S and J are the numbers, and L the letter—capitalized, because
we’re talking about the totals). The ground state of carbon happens to be
3 P0: the total spin is 1 (hence the 3), the total orbital angular momentum is
1 (hence the P), and the grand total angular momentum is zero (hence the
0). In Table 5.1 the individual configurations and the total angular
momenta (in the notation of Equation 5.45) are listed, for the first four
rows of the Periodic Table.20

Table 5.1: Ground-state electron configurations for the first four rows of the
Periodic Table.
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∗ Problem 5.17
(a)   Figure out the electron configurations

(in the notation of Equation 5.44) for
the first two rows of the Periodic Table
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(up to neon), and check your results
against Table 5.1.

(b)   Figure out the corresponding total
angular momenta, in the notation of
Equation 5.45, for the first four
elements. List all the possibilities for
boron, carbon, and nitrogen.

Problem 5.18
(a)   Hund’s first rule says that, consistent

with the Pauli principle, the state with
the highest total spin  will have the
lowest energy. What would this
predict in the case of the excited states
of helium?

(b)   Hund’s second rule says that, for a
given spin, the state with the highest
total orbital angular momentum ,
consistent with overall
antisymmetrization, will have the
lowest energy. Why doesn’t carbon
have ? Hint: Note that the “top
of the ladder”  is symmetric.

(c)   Hund’s third rule says that if a
subshell  is no more than half
filled, then the lowest energy level has 

; if it is more than half
filled, then  has the lowest
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energy. Use this to resolve the boron
ambiguity in Problem 5.17(b).

(d)   Use Hund’s rules, together with the
fact that a symmetric spin state must
go with an antisymmetric position
state (and vice versa) to resolve the
carbon and nitrogen ambiguities in
Problem 5.17(b). Hint: Always go to
the “top of the ladder” to figure out the
symmetry of a state.

Problem 5.19 The ground state of dysprosium
(element 66, in the 6th row of the Periodic
Table) is listed as 5 I8. What are the total spin,
total orbital, and grand total angular
momentum quantum numbers? Suggest a
likely electron configuration for dysprosium.

5.3 Solids

In the solid state, a few of the loosely-bound outermost valence electrons
in each atom become detached, and roam around throughout the material,
no longer subject only to the Coulomb field of a specific “parent” nucleus,
but rather to the combined potential of the entire crystal lattice. In this
section we will examine two extremely primitive models: first, the
“electron gas” theory of Sommerfeld, which ignores all forces (except the
confining boundaries), treating the wandering electrons as free particles in
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(5.46)

a box (the three-dimensional analog to an infinite square well); and
second, Bloch’s theory, which introduces a periodic potential representing
the electrical attraction of the regularly spaced, positively charged, nuclei
(but still ignores electron–electron repulsion). These models are no more
than the first halting steps toward a quantum theory of solids, but already
they reveal the critical role of the Pauli exclusion principle in accounting
for “solidity,” and provide illuminating insight into the remarkable
electrical properties of conductors, semi-conductors, and insulators.

5.3.1 The Free Electron Gas

Suppose the object in question is a rectangular solid, with dimensions , 
, , and imagine that an electron inside experiences no forces at all, except
at the impenetrable walls:

The Schrödinger equation,

separates, in Cartesian coordinates: , with

and . Letting

we obtain the general solutions
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(5.49)

(5.50)

(5.51)

(5.47)

(5.48)

The boundary conditions require that , so 
, and , so

where each n is a positive integer:

The (normalized) wave functions are

and the allowed energies are

where k is the magnitude of the wave vector, .
If you imagine a three-dimensional space, with axes , , , and

planes drawn in at , , , … , at , 
, , … , and at , , , … , each

intersection point represents a distinct (one-particle) stationary state
(Figure 5.2). Each block in this grid, and hence also each state, occupies a
volume

of “k-space,” where  is the volume of the object itself. Suppose
our sample contains N atoms, and each atom contributes d free electrons.
(In practice, N will be enormous—on the order of Avogadro’s number, for
an object of macroscopic size—whereas d is a small number—1, 2, or 3,
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(5.52)

(5.53)

typically.) If electrons were bosons (or distinguishable particles), they
would all settle down to the ground state, .21 But electrons are in fact
identical fermions, subject to the Pauli exclusion principle, so only two of
them can occupy any given state. They will fill up one octant of a sphere
in k-space,22 whose radius, , is determined by the fact that each pair of
electrons requires a volume  (Equation 5.51):

Thus

where

is the free electron density (the number of free electrons per unit volume).
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(5.54)

Figure 5.2: Free electron gas. Each intersection on the grid represents a
stationary state. The shaded volume is one “block,” and there is one state
(potentially two electrons) for every block.

The boundary separating occupied and unoccupied states, in k-space,
is called the Fermi surface (hence the subscript F). The corresponding
energy is the Fermi energy, ; for a free electron gas,

The total energy of the electron gas can be calculated as follows: A shell
of thickness dk (Figure 5.3) contains a volume
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(5.55)

(5.56)

so the number of electron states in the shell is

Each of these states carries an energy  (Equation 5.50), so the
energy of the electrons in the shell is

and hence the total energy of all the filled states is

 

Figure 5.3: One octant of a spherical shell in k-space.

This quantum mechanical energy plays a role rather analogous to the
internal thermal energy  of an ordinary gas. In particular, it exerts a
pressure on the walls, for if the box expands by an amount dV, the total
energy decreases:
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(5.57)

and this shows up as work done on the outside  by the
quantum pressure P. Evidently

Here, then, is a partial answer to the question of why a cold solid object
doesn’t simply collapse: There is a stabilizing internal pressure, having
nothing to do with electron–electron repulsion (which we have ignored) or
thermal motion (which we have excluded), but is strictly quantum
mechanical, and derives ultimately from the antisymmetrization
requirement for the wave functions of identical fermions. It is sometimes
called degeneracy pressure, though “exclusion pressure” might be a
better term.23

Problem 5.20 Find the average energy per free
electron , as a fraction of the Fermi
energy. Answer: .

Problem 5.21 The density of copper is 8.96
g/cm3, and its atomic weight is 63.5 g/mole.

(a)   Calculate the Fermi energy for copper
(Equation 5.54). Assume , and
give your answer in electron volts.

(b)   What is the corresponding electron
velocity? Hint: Set . Is
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it safe to assume the electrons in
copper are nonrelativistic?

(c)   At what temperature would the
characteristic thermal energy ( ,
where  is the Boltzmann constant
and T is the Kelvin temperature) equal
the Fermi energy, for copper?
Comment: This is called the Fermi
temperature, . As long as the
actual temperature is substantially
below the Fermi temperature, the
material can be regarded as “cold,”
with most of the electrons in the
lowest accessible state. Since the
melting point of copper is 1356 K,
solid copper is always cold.

(d)   Calculate the degeneracy pressure
(Equation 5.57) of copper, in the
electron gas model.

Problem 5.22 Helium-3 is fermion with spin 
 (unlike the more common isotope helium-4

which is a boson). At low temperatures 
, helium-3 can be treated as a Fermi

gas (Section 5.3.1). Given a density of 82
kg/m3, calculate  (Problem 5.21(c)) for
helium-3.
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Problem 5.23 The bulk modulus of a
substance is the ratio of a small decrease in
pressure to the resulting fractional increase in
volume:

Show that , in the free electron gas
model, and use your result in Problem 5.21(d)
to estimate the bulk modulus of copper.
Comment: The observed value is 
N/m2, but don’t expect perfect agreement—
after all, we’re neglecting all electron–nucleus
and electron–electron forces! Actually, it is
rather surprising that this calculation comes as
close as it does.

5.3.2 Band Structure

We’re now going to improve on the free electron model, by including the
forces exerted on the electrons by the regularly spaced, positively charged,
essentially stationary nuclei. The qualitative behavior of solids is dictated
to a remarkable degree by the mere fact that this potential is periodic—its
actual shape is relevant only to the finer details. To show you how it goes,
I’m going to develop the simplest possible model: a one-dimensional
Dirac comb, consisting of evenly spaced delta-function spikes (Figure
5.4).24 But first I need to introduce a powerful theorem that vastly
simplifies the analysis of periodic potentials.
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(5.59)

(5.58)

(5.60)

(5.61)

Figure 5.4: The Dirac comb, Equation 5.64.

A periodic potential is one that repeats itself after some fixed distance
a:

Bloch’s theorem tells us that for such a potential the solutions to the
Schrödinger equation,

can be taken to satisfy the condition

for some constant q (by “constant” I mean that it is independent of x; it
may well depend on E).25 In a moment we will discover that q is in fact
real, so although  itself is not periodic,  is:

as one would certainly expect.26

Of course, no real solid goes on forever, and the edges are going to
spoil the periodicity of , and render Bloch’s theorem inapplicable.
However, for any macroscopic crystal, containing something on the order
of Avogadro’s number of atoms, it is hardly imaginable that edge effects
can significantly influence the behavior of electrons deep inside. This
suggests the following device to salvage Bloch’s theorem: We wrap the x
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(5.63)

(5.64)

(5.62)

axis around in a circle, and connect it onto its tail, after a large number 
 of periods; formally, we impose the boundary condition

It follows (from Equation 5.60) that

so , or , and hence

In particular, q is necessarily real. The virtue of Bloch’s theorem is that we
need only solve the Schrödinger equation within a single cell (say, on the
interval ); recursive application of Equation 5.60 generates the
solution everywhere else.

Now, suppose the potential consists of a long string of delta-function
spikes (the Dirac comb):

(In Figure 5.4 you must imagine that the x axis has been “wrapped
around”, so the Nth spike actually appears at .) No one would
pretend that this is a realistic model, but remember, it is only the effect of
periodicity that concerns us here; the classic Kronig–Penney model27

used a repeating rectangular pattern, and many authors still prefer that
one.28 In the region  the potential is zero, so

or
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(5.65)

(5.69)

(5.70)

(5.66)

(5.67)

(5.68)

where

as usual.
The general solution is

According to Bloch’s theorem, the wave function in the cell immediately
to the left of the origin is

At ,  must be continuous, so

its derivative suffers a discontinuity proportional to the strength of the
delta function (Equation 2.128, with the sign of α switched, since these are
spikes instead of wells):

Solving Equation 5.68 for  yields

Substituting this into Equation 5.69, and cancelling kB, we find

which simplifies to
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(5.71)

(5.72)

(5.73)

This is the fundamental result, from which all else follows.29

Equation 5.71 determines the possible values of k, and hence the
allowed energies. To simplify the notation, let

so the right side of Equation 5.71 can be written as

The constant β is a dimensionless measure of the “strength” of the delta
function. In Figure 5.5 I have plotted , for the case . The
important thing to notice is that  strays outside the range , and
in such regions there is no hope of solving Equation 5.71, since ,
of course, cannot be greater than 1. These gaps represent forbidden
energies; they are separated by bands of allowed energies. Within a given
band, virtually any energy is allowed, since according to Equation 5.63, 

, where N is a huge number, and n can be any integer. You
might imagine drawing N horizontal lines on Figure 5.5, at values of 

 ranging from +1  down to  , and back
almost to +1 —at this point the Bloch factor  recycles, so
no new solutions are generated by further increasing n. The intersection of
each of these lines with  yields an allowed energy. Evidently there are
N states in each band, so closely spaced that for most purposes we can
regard them as forming a continuum (Figure 5.6).
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Figure 5.5: Graph of  (Equation 5.73) for , showing allowed bands
separated by forbidden gaps.

 

Figure 5.6: The allowed energies for a periodic potential form essentially
continuous bands.
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So far, we’ve only put one electron in our potential. In practice there
will be Nd of them, where d is again the number of “free” electrons per
atom. Because of the Pauli exclusion principle, only two electrons can
occupy a given spatial state, so if , they will half fill the first band, if 

 they will completely fill the first band, if  they half fill the
second band, and so on. (In three dimensions, and with more realistic
potentials, the band structure may be more complicated, but the existence
of allowed bands, separated by forbidden gaps, persists—band structure is
the signature of a periodic potential.30 )

Now, if the topmost band is only partly filled, it takes very little
energy to excite an electron to the next allowed level, and such a material
will be a conductor (a metal). On the other hand, if the top band is
completely filled, it takes a relatively large energy to excite an electron,
since it has to jump across the forbidden zone. Such materials are typically
insulators, though if the gap is rather narrow, and the temperature
sufficiently high, then random thermal energy can knock an electron over
the hump, and the material is a semiconductor (silicon and germanium are
examples).31 In the free electron model all solids should be metals, since
there are no large gaps in the spectrum of allowed energies. It takes the
band theory to account for the extraordinary range of electrical
conductivities exhibited by the solids in nature.

Problem 5.24
(a)   Using Equations 5.66 and 5.70, show

that the wave function for a particle in
the periodic delta function potential
can be written in the form
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(Don’t bother to determine the
normalization constant C.)

(b)   At the top of a band, where ,
(a) yields  (indeterminate).
Find the correct wave function for this
case. Note what happens to  at each
delta function.

Problem 5.25 Find the energy at the bottom of
the first allowed band, for the case ,
correct to three significant digits. For the sake
of argument, assume  eV.

Problem 5.26 Suppose we use delta function
wells, instead of spikes (i.e. switch the sign of
α in Equation 5.64). Analyze this case,
constructing the analog to Figure 5.5. This
requires no new calculation, for the positive
energy solutions (except that β is now
negative; use  for the graph), but you
do need to work out the negative energy
solutions (let  and , for 

); your graph will now extend to negative
z). How many states are there in the first
allowed band?
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Problem 5.27 Show that most of the energies
determined by Equation 5.71 are doubly
degenerate. What are the exceptional cases?
Hint: Try it for , to see how it
goes. What are the possible values of 
in each case?

Problem 5.28 Make a plot of E vs. q for the
band structure in Section 5.3.2. Use  (in
units where ). Hint: In
Mathematica, ContourPlot will graph  as
defined implicitly by Equation 5.71. On other
platforms the plot can be obtained as follows:

You will then have a list of pairs 
 which you can

plot.

Choose a large number (say 30,000) of
equally-spaced values for the energy in the
range  and .

 For each value of E, compute the right-hand
side of Equation 5.71. If the result is
between  and 1, solve for q from
Equation 5.71 and record the pair of values 

 and  (there are two solutions
for each energy).
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Further Problems on Chapter 5

Problem 5.29 Suppose you have three
particles, and three distinct one-particle
states , , and ) are
available. How many different three-
particle states can be constructed (a) if they
are distinguishable particles, (b) if they are
identical bosons, (c) if they are identical
fermions? (The particles need not be in
different states—  would
be one possibility, if the particles are
distinguishable.)

Problem 5.30 Calculate the Fermi energy for
electrons in a two-dimensional infinite
square well. Let σ be the number of free
electrons per unit area.

Problem 5.31 Repeat the analysis of Problem
2.58 to estimate the cohesive energy for a
three-dimensional metal, including the
effects of spin.

Problem 5.32 Consider a free electron gas
(Section 5.3.1) with unequal numbers of
spin-up and spin-down particles  and 

 respectively). Such a gas would have a
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(5.74)

net magnetization (magnetic dipole
moment per unit volume)

where  is the
Bohr magneton. (The minus sign is there,
of course, because the charge of the
electron is negative.)
(a)   Assuming that the electrons occupy

the lowest energy levels consistent
with the number of particles in each
spin orientation, find . Check that
your answer reduces to Equation 5.56
when .

(b)   Show that for 
 (which is

to say, ), the
energy density is

The energy is a minimum for ,
so the ground state will have zero
magnetization. However, if the gas is
placed in a magnetic field (or in the
presence of interactions between the
particles) it may be energetically
favorable for the gas to magnetize.

430



This is explored in Problems 5.33 and
5.34.

Problem 5.33 Pauli paramagnetism. If the
free electron gas (Section 5.3.1) is placed
in a uniform magnetic field , the
energies of the spin-up and spin-down
states will be different:32

There will be more spin-down states
occupied than spin-up states (since they are
lower in energy), and consequently the
system will acquire a magnetization (see
Problem 5.32).
(a)   In the approximation that ,

find the magnetization that minimizes
the total energy. Hint: Use the result of
Problem 5.32(b).

(b)   The magnetic susceptibility is33

Calculate the magnetic susceptibility
for aluminum 
and compare the experimental
value34 of .

Problem 5.34 The Stoner criterion. The free-
electron gas model (Section 5.3.1) ignores
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the Coulomb repulsion between electrons.
Because of the exchange force
(Section 5.1.2), Coulomb repulsion has a
stronger effect on two electrons with
antiparallel spins (which behave in a way
like distinguishable particles) than two
electrons with parallel spins (whose
position wave function must be
antisymmetric). As a crude way to take
account of Coulomb repulsion, pretend that
every pair of electrons with opposite spin
carries extra energy U, while electrons with
the same spin do not interact at all; this
adds  to the total energy of
the electron gas. As you will show, above a
critical value of U, it becomes energetically
favorable for the gas to spontaneously
magnetize ; the material
becomes ferromagnetic.
(a)   Rewrite  in terms of the density ρ

and the magnetization M
(Equation 5.74).

(b)   Assuming that , for what
minimum value of U is a non-zero
magnetization energetically favored?
Hint: Use the result of
Problem 5.32(b).

Problem 5.35 Certain cold stars (called white
dwarfs) are stabilized against gravitational
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collapse by the degeneracy pressure of
their electrons (Equation 5.57). Assuming
constant density, the radius R of such an
object can be calculated as follows:
(a)   Write the total electron energy

(Equation 5.56) in terms of the radius,
the number of nucleons (protons and
neutrons) N, the number of electrons
per nucleon d, and the mass of the
electron m. Beware: In this problem
we are recycling the letters N and d for
a slightly different purpose than in the
text.

(b)   Look up, or calculate, the gravitational
energy of a uniformly dense sphere.
Express your answer in terms of G
(the constant of universal gravitation),
R, N, and M (the mass of a nucleon).
Note that the gravitational energy is
negative.

(c)   Find the radius for which the total
energy, (a) plus (b), is a minimum.
Answer:

(Note that the radius decreases as the
total mass increases!) Put in the actual
numbers, for everything except N,
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using  (actually, d decreases a
bit as the atomic number increases, but
this is close enough for our purposes).
Answer:  m.

(d)   Determine the radius, in kilometers, of
a white dwarf with the mass of the
sun.

(e)   Determine the Fermi energy, in
electron volts, for the white dwarf in
(d), and compare it with the rest
energy of an electron. Note that this
system is getting dangerously
relativistic (see Problem 5.36).

Problem 5.36 We can extend the theory of a
free electron gas (Section 5.3.1) to the
relativistic domain by replacing the
classical kinetic energy, , with
the relativistic formula, 

. Momentum is
related to the wave vector in the usual way:

. In particular, in the extreme
relativistic limit, .
(a)   Replace  in Equation 5.55 by

the ultra-relativistic expression, ,
and calculate  in this regime.

(b)   Repeat parts (a) and (b) of Problem
5.35 for the ultra-relativistic electron
gas. Notice that in this case there is no
stable minimum, regardless of R; if

434



the total energy is positive,
degeneracy forces exceed gravitational
forces, and the star will expand,
whereas if the total is negative,
gravitational forces win out, and the
star will collapse. Find the critical
number of nucleons, , such that
gravitational collapse occurs for 

. This is called the
Chandrasekhar limit. Answer: 

. What is the corresponding
stellar mass (give your answer as a
multiple of the sun’s mass). Stars
heavier than this will not form white
dwarfs, but collapse further, becoming
(if conditions are right) neutron stars.

(c)   At extremely high density, inverse
beta decay, ,
converts virtually all of the protons
and electrons into neutrons (liberating
neutrinos, which carry off energy, in
the process). Eventually neutron
degeneracy pressure stabilizes the
collapse, just as electron degeneracy
does for the white dwarf (see Problem
5.35). Calculate the radius of a neutron
star with the mass of the sun. Also
calculate the (neutron) Fermi energy,
and compare it to the rest energy of a
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neutron. Is it reasonable to treat a
neutron star nonrelativistically?

Problem 5.37 An important quantity in many
calculations is the density of states :

For a one-dimensional band structure,

where  counts the number of
states in the range dq (see Equation 5.63),
and the factor of 2 accounts for the fact that
states with q and  have the same energy.
Therefore

(a)   Show that for  (a free particle)
the density of states is given by

(b)   Find the density of states for  by
differentiating Equation 5.71 with
respect to q to determine . Note:
Your answer should be written as a
function of E only (well, and α, m, ,
a, and N) and must not contain q (use
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(5.75)

k as a shorthand for , if you
like).

(c)   Make a single plot showing 
for both  and  (in units
where ). Comment: The
divergences at the band edges are
examples of van Hove singularities.35

Problem 5.38 The harmonic chain consists of
N equal masses arranged along a line and
connected to their neighbors by identical
springs:

where  is the displacement of the jth
mass from its equilibrium position. This
system (and its extension to two or three
dimensions—the harmonic crystal) can be
used to model the vibrations of a solid. For
simplicity we will use periodic boundary
conditions: , and introduce the
ladder operators36

where  and
the frequencies are given by
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(5.76)

(a)   Prove that, for integers k and 
between 1 and ,

Hint: Sum the geometric series.
(b)   Derive the commutation relations for

the ladder operators:

(c)   Using Equation 5.75,
show that

where  is the center of
mass coordinate.

(d)   Finally, show that

Comment: Written in this form above, the
Hamiltonian describes  independent
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oscillators with frequencies  (as well as a
center of mass that moves as a free particle
of mass ). We can immediately write
down the allowed energies:

where  is the momentum of the center of
mass and  is the energy level
of the kth mode of vibration. It is
conventional to call  the number of
phonons in the kth mode. Phonons are the
quanta of sound (atomic vibrations), just as
photons are the quanta of light. The ladder
operators  and  are called phonon
creation and annihilation operators since
they increase or decrease the number of
phonons in the kth mode.

Problem 5.39 In Section 5.3.1 we put the
electrons in a box with impenetrable walls.
The same results can be obtained using
periodic boundary conditions. We still
imagine the electrons to be confined to a
box with sides of length , , and  but
instead of requiring the wave function to
vanish on each wall, we require it to take
the same value on opposite walls:
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In this case we can represent the wave
functions as traveling waves,

rather than as standing waves (Equation
5.49). Periodic boundary conditions—
while certainly not physical—are often
easier to work with (to describe something
like electrical current a basis of traveling
waves is more natural than a basis of
standing waves) and if you are computing
bulk properties of a material it shouldn’t
matter which you use.
(a)   Show that with periodic boundary

conditions the wave vector satisfies

where each n is an integer (not
necessarily positive). What is the k-
space volume occupied by each block
on the grid (corresponding to Equation
5.51)?

(b)   Compute , , and  for the free
electron gas with periodic boundary
conditions. What compensates for the
larger volume occupied by each k-
space block (part (a)) to make these all
come out the same as in Section 5.3.1?
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1   The classic example of an entangled state is two spin-1/2 particles in the singlet
configuration (Equation 4.176).

2   See, for example, Jerry B. Marion and Stephen T. Thornton, Classical
Dynamics of Particles and Systems, 4th edn, Saunders, Fort Worth, TX (1995),
Section 8.2.

3   It seems strange that relativity should have anything to do with it, and there has
been a lot of discussion as to whether it might be possible to prove the spin-
statistics connection in other ways. See, for example, Robert C. Hilborn,
Am. J. Phys. 63, 298 (1995); Ian Duck and E. C. G. Sudarshan, Pauli and the
Spin-Statistics Theorem, World Scientific, Singapore (1997). For a
comprehensive bibliography on spin and statistics see C. Curceanu,
J. D. Gillaspy, and R. C. Hilborn, Am. J. Phys. 80, 561 (2010).

4   I’m still leaving out the spin, don’t forget—if this bothers you (after all, a
spinless fermion is an oxymoron), assume they’re in the same spin state. I’ll
show you how spin affects the story in Section 5.1.3

5   For an incisive critique of this terminology see W. J. Mullin and G. Blaylock,
Am. J. Phys. 71, 1223 (2003).

6   To construct a completely symmetric configuration, use the permanent (same
as determinant, but without the minus signs).

7   In the absence of coupling between spin and position, we are free to assume
that the state is separable in its spin and spatial coordinates. This just says that
the probability of getting spin up is independent of the location of the particle.
In the presence of coupling, the general state would take the form of a linear
combination:  as in Problem 4.64.

8   I’ll let  stand for the combined spin state; in Dirac notation it is some
linear combination of the states . I assume that the state is again a
simple product of a position state and a spin state; as you’ll see in Problem
5.10, this is not always true when three or more electrons are involved—even in
the absence of coupling.

9   Of course, spin requires three dimensions, whereas we ordinarily think of the
infinite square well as existing in one dimension. But it could represent a
particle in three dimensions that is confined to a one-dimensional wire.

10   This problem was suggested by Greg Elliott.
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11    switches the particles ; this means exchanging their positions, their
spins, and any other properties they might possess. If you like, it switches the
labels, 1 and 2. I claimed (in Chapter 1) that all our operators would involve
multiplication or differentiation; that was a lie. The exchange operator is an
exception—and for that matter so is the projection operator (Section 3.6.2).

12   It is sometimes alleged that the symmetrization requirement (Equation 5.33) is
forced by the fact that  and  commute. This is false: It is perfectly possible to
imagine a system of two distinguishable particles (say, an electron and a
positron) for which the Hamiltonian is symmetric, and yet there is no
requirement that the state be symmetric (or antisymmetric). But identical
particles have to occupy symmetric or antisymmetric states, and this is a new
fundamental law—on a par, logically, with Schrödinger’s equation and the
statistical interpretation. Of course, there didn’t have to be any such things as
identical particles; it could have been that every single particle in the universe
was distinguishable from every other one. Quantum mechanics allows for the
possibility of identical particles, and nature (being lazy) seized the opportunity.
(But don’t complain—this makes matters enormously simpler!)

13   “Robert B. Laughlin—Nobel Lecture: Fractional Quantization.”
Nobelprize.org. Nobel Media AB 2014. 
http://www.nobelprize.org/nobel_prizes/physics/laureates/1998/laughlin-
lecture.html .

14   I’m assuming the nucleus is stationary. The trick of accounting for nuclear
motion by using the reduced mass (Problem 5.1) works only for the two-body
problem; fortunately, the nucleus is so much heavier than the electrons that the
correction is extremely small even in the case of hydrogen (see Problem 5.2(a)),
and it is smaller still for other atoms. There are more interesting effects, due to
magnetic interactions associated with electron spin, relativistic corrections, and
the finite size of the nucleus. We’ll look into these in later chapters, but all of
them are minute corrections to the “purely coulombic” atom described by
Equation 5.36.

15   Because the Hamiltonian (5.36) makes no reference to spin, the product 
 still satisfies the Schrödinger equation. However,

for  such product states cannot in general meet the (anti-)symmetrization
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requirement, and it is necessary to construct linear combinations, with permuted
indices (see Problem 5.16). But that comes at the end of the story; for the
moment we are only concerned with the spatial wave function.

16   Actually,  would do just as well, but electron–electron repulsion favors 
, as we shall see.

17   This standard argument has been called into question by W. Stacey and
F. Marsiglio, EPL, 100, 43002 (2012).

18   See, for example, Ugo Fano and L. Fano, Basic Physics of Atoms and
Molecules, Wiley, New York (1959), Chapter 18, or the classic by Gerhard
Herzberg, Atomic Spectra and Atomic Structure, Dover, New York (1944).

19   The shells themselves are assigned equally arbitrary nicknames, starting (don’t
ask me why) with K: The K shell is , the L shell is , M is , and so
on (at least they’re in alphabetical order).

20   After krypton—element 36—the situation gets more complicated (fine
structure starts to play a significant role in the ordering of the states) so it is not
for want of space that the table terminates there.

21   I’m assuming there is no appreciable thermal excitation, or other disturbance,
to lift the solid out of its collective ground state. If you like, I’m talking about a
“cold” solid, though (as you will see in Problem 5.21(c)), typical solids are still
“cold,” in this sense, far above room temperature.

22   Because N is such a huge number, we need not worry about the distinction
between the actual jagged edge of the grid and the smooth spherical surface that
approximates it.

23   We derived Equations 5.52, 5.54, 5.56, and 5.57 for the special case of an
infinite rectangular well, but they hold for containers of any shape, as long as
the number of particles is extremely large.

24   It would be more natural to let the delta functions go down, so as to represent
the attractive force of the nuclei. But then there would be negative energy
solutions as well as positive energy solutions, and that makes the calculations
more cumbersome (see Problem 5.26). Since all we’re trying to do here is
explore the consequences of periodicity, it is simpler to adopt this less plausible
shape; if it comforts you, think of the nuclei as residing at , , ,
….
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25   The proof of Bloch’s theorem will come in Chapter 6 (see Section 6.2.2).
26   Indeed, you might be tempted to reverse the argument, starting with Equation

5.61, as a way of proving Bloch’s theorem. It doesn’t work, for Equation 5.61
alone would allow the phase factor in Equation 5.60 to be a function of x.

27   R. de L. Kronig and W. G. Penney, Proc. R. Soc. Lond., ser. A, 130, 499
(1930).

28   See, for instance, David Park, Introduction to the Quantum Theory, 3nd edn,
McGraw-Hill, New York (1992).

29   For the Kronig–Penney potential (footnote 27, page 221), the formula is more
complicated, but it shares the qualitative features we are about to explore.

30   Regardless of dimension, if d is an odd integer you are guaranteed to have
partially-filled bands and you would expect metallic behavior. If d is an even
integer, it depends on the specific band structure whether there will be partially-
filled bands or not. Interestingly, some materials, called Mott insulators, are
nonconductors even though d is odd. In that case it is the interactions between
electrons that leads to the insulating behavior, not the presence of gaps in the
single-particle energy spectrum.

31   Semiconductors typically have band gaps of 4 eV or less, small enough that
thermal excitation at room temperature (  eV) produces perceptible
conductivity. The conductivity of a semiconductor can be controlled by
doping: including a few atoms of larger or smaller d; this puts some “extra”
electrons into the next higher band, or creates some holes in the previously
filled one, allowing in either case for weak electric currents to flow.

32   Here we are considering only the coupling of the spin to the magnetic field, and
ignoring any coupling of the orbital motion.

33   Strictly speaking, the susceptibility is , but the difference is negligible
when, as here, .

34   For some metals, such as copper, the agreement is not so good—even the sign
is wrong: copper is diamagnetic . The explanation for this discrepancy
lies in what has been left out of our model. In addition to the paramagnetic
coupling of the spin magnetic moment to an applied field there is a coupling of
the orbital magnetic moment to an applied field and this has both paramagnetic
and diamagnetic contributions (see Problem 4.72). In addition, the free electron
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gas model ignores the tightly-bound core electrons and these also couple to the
magnetic field. In the case of copper, it is the diamagnetic coupling of the core
electrons that dominates.

35   These one-dimensional Van Hove singularities have been observed in the
spectroscopy of carbon nanotubes; see J. W. G. Wildöer et al., Nature, 391, 59
(1998).

36   If you are familiar with the classical problem of coupled oscillators, these
ladder operators are straightforward to construct. Start with the normal mode
coordinates you would use to decouple the classical problem, namely

The frequencies  are the classical normal mode frequencies, and you simply
create a pair of ladder operators for each normal mode, by analogy with the
single-particle case (Equation 2.48).
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6
Symmetries & Conservation Laws

◈

6.1 Introduction

Conservation laws (energy, momentum, and angular momentum) are
familiar from your first course in classical mechanics. These same
conservation laws hold in quantum mechanics; in both contexts they are
the result of symmetries. In this chapter we will explain what a symmetry
is and what it means for something to be conserved in quantum mechanics
—and show how the two are related. Along the way we’ll investigate two
related properties of quantum systems—energy level degeneracy and the
selection rules that distinguish allowed from “forbidden” transitions.

What is a symmetry? It is some transformation that leaves the system
unchanged. As an example consider rotating a square piece of paper, as
shown in Figure 6.1. If you rotate it by 30  about an axis through its center
it will be in a different orientation than the one it started in, but if you
rotate it by 90  it will resume its original orientation; you wouldn’t even
know it had been rotated unless (say) you wrote numbers on the corners
(in which case they would be permuted). A square therefore has a discrete
rotational symmetry: a rotation by  for any integer n leaves it
unchanged.1 If you repeated this experiment with a circular piece of paper,
a rotation by any angle would leave it unchanged; the circle has continuous
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(6.1)

rotational symmetry. We will see that both discrete and continuous
symmetries are important in quantum mechanics.

 

Figure 6.1: A square has a discrete rotational symmetry; it is unchanged when
rotated by  or multiples thereof. A circle has continuous rotational
symmetry; it is unchanged when rotated by any angle α.

Now imagine that the shapes in Figure 6.1 refer not to pieces of
paper, but to the boundaries of a two-dimensional infinite square well. In
that case the potential energy would have the same rotational symmetries
as the piece of paper and (because the kinetic energy is unchanged by a
rotation) the Hamiltonian would also be invariant. In quantum mechanics,
when we say that a system has a symmetry, this is what we mean: that the
Hamiltonian is unchanged by some transformation, such as a rotation or a
translation.

6.1.1 Transformations in Space

In this section, we introduce the quantum mechanical operators that
implement translations, inversions, and rotations. We define each of these
operators by how it acts on an arbitrary function. The translation
operator takes a function and shifts it a distance a. The operator that
accomplishes this is defined by the relation
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The sign can be confusing at first; this equation says that the translated
function  at x is equal to the untranslated function  at  (Figure 6.2)
—the function itself has been shifted to the right by an amount a.

 

Figure 6.2: A wave function  and the translated wave function 
. Note that the value of  at x is equal to the value of  at

.

The operator that reflects a function about the origin, the parity
operator in one dimension, is defined by

The effect of parity is shown graphically in Figure 6.3. In three dimensions
parity changes the sign of all three coordinates: 

.2
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(6.2)

Figure 6.3: A function  and the function  after
a spatial inversion. The value of  at x is equal to the value of  at .

Finally, the operator that rotates a function about the z axis through an
angle  is most naturally expressed in polar coordinates as

When we take up the study of rotations in Section 6.5, we will introduce
expressions for rotations about arbitrary axes. The action of the rotation
operator on a function  is illustrated in Figure 6.4.

 

Figure 6.4: A function  and the rotated function 
 after a counter-clockwise rotation about the vertical

axis by an angle .
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∗ Problem 6.1 Consider the parity operator in
three dimensions.

(a)   Show that  is
equivalent to a mirror reflection
followed by a rotation.

(b)   Show that, for  expressed in polar
coordinates, the action of the parity
operator is

(c)   Show that for the hydrogenic orbitals,

That is,  is an eigenstate of the
parity operator, with eigenvalue .
Note: This result actually applies to
the stationary states of any central
potential . For a central
potential, the eigenstates may be
written in the separable form 

 where only the radial
function —which plays no role in
determining the parity of the state—
depends on the specific functional
form of .

6.2 The Translation Operator
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(6.3)

∗

(6.4)

Equation 6.1 defines the translation operator. We can express  in
terms of the momentum operator, to which it is intimately related. To that
end, we replace  by its Taylor series3

The right-hand side of this equation is the exponential function,4 so

We say that momentum is the “generator” of translations.5

Note that  is a unitary operator:6

The first equality is obvious physically (the inverse operation of shifting
something to the right is shifting it by an equal amount to the left), and the
second equality then follows from taking the adjoint of Equation 6.3 (see
Problem 6.2).

Problem 6.2 Show that, for a Hermitian
operator , the operator  is

unitary. Hint: First you need to prove that the
adjoint is given by ; then prove

that . Problem 3.5 may help.

6.2.1 How Operators Transform
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(6.5)

(6.6)

So far I have shown how to translate a function; this has an obvious
graphical interpretation via Figure 6.2. We can also consider what it means
to translate an operator. The transformed operator  is defined to be the
operator that gives the same expectation value in the untranslated state 
as does the operator  in the translated state :

There are two ways to calculate the effect of a translation on an
expectation value. One could actually shift the wave function over some
distance (this is called an active transformation) or one could leave the
wave function where it was and shift the origin of our coordinate system
by the same amount in the opposite direction (a passive transformation).
The operator  is the operator in this shifted coordinate system.

Using Equation 6.1,

Here I am using the fact that the adjoint of an operator is defined such that,
if , then  (see Problem 3.5). Because
Equation 6.5 is to hold for all , it follows that

The transformed operator for the case  is worked out in Example 6.1.
Figure 6.5 illustrates the equivalence of the two ways of carrying out the
transformation.

Example 6.1
Find the operator  obtained by applying a translation through a
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(6.7)

distance a to the operator . That is, what is the action of , as
defined by Equation 6.6, on an arbitrary ?
Solution: Using the definition of  (Equation 6.6) and a test
function  we have

and since  (Equation 6.4),

From Equation 6.1

and from Equation 6.1 again, , so

Finally we may read off the operator

As expected, Equation 6.7 corresponds to shifting the origin of our
coordinates to the left by a so that positions in these transformed
coordinates are greater by a than in the untransformed coordinates.
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Figure 6.5: Active vs. passive transformations: (a) depicts the original
function, (b) illustrates an active transformation in which the function is
shifted to the right by an amount a, and (c) illustrates a passive transformation
where the axes are shifted to the left by an amount a. A point on the wave a
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(6.8)

distance b from the origin before the transformation is a distance  from
the origin after the transformation in either (b) or (c); this is the equivalence of
the two pictures.

In Problem 6.3 you will apply a translation to the momentum operator
to show that : the momentum operator is unchanged by this
transformation. Physically, this is because the particle’s momentum is
independent of where you place the origin of your coordinates, depending
only on differences in position: . Once you know how the
position and momentum operators behave under a translation, you know
how any operator does, since

Problem 6.4 will walk you through the proof.

Problem 6.3 Show that the operator 
obtained by applying a translation to the
operator  is .

Problem 6.4 Prove Equation 6.8. You may
assume that  can be written in a power
series

for some constants .

6.2.2 Translational Symmetry
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(6.9)

(6.10)

So far we have seen how a function behaves under a translation and how
an operator behaves under a translation. I am now in a position to make
precise the notion of a symmetry that I mentioned in the introduction. A
system is translationally invariant (equivalent to saying it has
translational symmetry) if the Hamiltonian is unchanged by the
transformation:

Because  is unitary (Equation 6.4) we can multiply both sides of this
equation by  to get

Therefore, a system has translational symmetry if the Hamiltonian
commutes with the translation operator:

For a particle of mass m moving in a one-dimensional potential, the
Hamiltonian is

According to Equation 6.8, the transformed Hamiltonian is

so translational symmetry implies that

Now, there are two very different physical settings where Equation 6.10
might arise. The first is a constant potential, where Equation 6.10 holds for
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every value of a; such a system is said to have continuous translational
symmetry. The second is a periodic potential, such as an electron might
encounter in a crystal, where Equation 6.10 holds only for a discrete set of
as; such a system is said to have discrete translational symmetry. The
two cases are illustrated in Figure 6.6.

 

Figure 6.6: Potentials for a system with continuous (top) and discrete (bottom)
translational symmetry. In the former case the potential is the same when
shifted right or left by any amount; in the latter case the potential is the same
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(6.12)

(6.11)

when shifted right or left by an integer multiple of a.

Discrete Translational Symmetry and Bloch’s Theorem

What are the implications of translational symmetry? For a system with a
discrete translational symmetry, the most important consequence is
Bloch’s theorem; the theorem specifies the form taken by the stationary
states. We used this theorem in Section 5.3.2; I will now prove it.

In Section A.5 it is shown that if two operators commute, then they
have a complete set of simultaneous eigenstates. This means that if the
Hamiltonian is translationally invariant (which is to say, if it commutes
with the translation operator), then the eigenstates  of the Hamiltonian
can be chosen to be simultaneously eigenstates of :

where  is the eigenvalue associated with . Since  is unitary, its
eigenvalues have magnitude 1 (see Problem A.30), which means that  can
be written as  for some real number ϕ. By convention we write 

 where  is called the crystal momentum. Therefore, the
stationary states of a particle of mass m moving in a periodic potential
have the property

There is a more illuminating way to write Equation 6.11:7

where  is a periodic function of x:  and  is a
traveling wave (recall that a traveling wave by itself describes a free
particle—Section 2.4) with wavelength . Equation 6.12 is Bloch’s
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theorem and it says that the stationary states of a particle in a periodic
potential are periodic functions multiplying traveling waves. Note that just
because the Hamiltonian is translationally invariant, that doesn’t mean the
stationary states themselves are translationally invariant, it simply means
that they can be chosen to be eigenstates of the translation operator.

Bloch’s theorem is truly remarkable. It tells us that the stationary
states of a particle in a periodic potential (such as an electron in a crystal)
are, apart from a periodic modulation, traveling waves. As such, they have
a nonzero velocity.8 This means that an electron could travel through a
perfect crystal without scattering! That has dramatic implications for
electronic conduction in solids.

Continuous Translational Symmetry and Momentum Conservation

If a system has continuous translation symmetry then the Hamiltonian
commutes with  for any choice of a. In this case it is useful to consider
an infinitesimal translation

where δ is an infinitesimal length.9

If the Hamiltonian has continuous translational symmetry, then it
must be unchanged under any translation, including an infinitesimal one;
equivalently it commutes with the translation operator, and hence

So if the Hamiltonian has continuous translational symmetry, it must
commute with the momentum operator. And if the Hamiltonian commutes
with momentum, then according to the “generalized Ehrenfest’s theorem”
(Equation 3.73)
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(6.13)

∗∗∗ 

This is a statement of momentum conservation and we have now shown
that continuous translational symmetry implies that momentum is
conserved. This is our first example of a powerful general principle:
symmetries imply conservation laws.10

Of course, if we’re talking about a single particle of mass m moving
in a potential , the only potential that has continuous translational
symmetry is the constant potential, which is equivalent to the free particle.
And it is pretty obvious that momentum is conserved in that case. But the
analysis here readily extends to a system of interacting particles (see
Problem 6.7). The fact that momentum is conserved in that case as well (so
long as the Hamiltonian is translationally invariant) is a highly nontrivial
result. In any event, the point to remember is that conservation of
momentum is a consequence of translational symmetry.

Problem 6.5 Show that Equation 6.12 follows
from Equation 6.11. Hint: First write 

, which is certainly true for
some , and then show that  is
necessarily a periodic function of x.

Problem 6.6 Consider a particle of mass m
moving in a potential  with period a. We
know from Bloch’s theorem that the wave
function can be written in the form of
Equation 6.12. Note: It is conventional to label
the states with quantum numbers n and q as 
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(6.14)

 where  is the nth
energy for a given value of q.

(a)   Show that u satisfies the equation

(b)   Use the technique from
Problem 2.61 to solve the differential
equation for . You need to use a
two-sided difference for the first
derivative so that you have a
Hermitian matrix to diagonalize: 

. For the potential in
the interval 0 to a let

with . (You will need
to modify the technique slightly to
account for the fact that the function 

 is periodic.) Find the lowest two
energies for the following values of
the crystal momentum:  = , 

, 0, , π. Note that q and 
 describe the same wave

function (Equation 6.12), so there is
no reason to consider values of 
outside of the interval from  to π.
In solid state physics, the values of q
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inside this range constitute the first
Brillouin zone.

(c)   Make a plot of the energies  and 
 for values of q between  and 
. If you’ve automated the code that

you used in part (b), you should be
able to show a large number of q
values in this range. If not, simply plot
the values that you computed in (b).

Problem 6.7 Consider two particles of mass 
 and  (in one dimension) that interact via

a potential that depends only on the distance
between the particles , so that the
Hamiltonian is

Acting on a two-particle wave function the
translation operator would be

(a)   Show that the translation operator can
be written

where  is the total
momentum.
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(b)   Show that the total momentum is
conserved for this system.

6.3 Conservation Laws

In classical mechanics the meaning of a conservation law is
straightforward: the quantity in question is the same before and after some
event. Drop a rock, and potential energy is converted into kinetic energy,
but the total is the same just before it hits the ground as when it was
released; collide two billiard balls and momentum is transferred from one
to the other, but the total remains unchanged. But in quantum mechanics a
system does not in general have a definite energy (or momentum) before
the process begins (or afterward). What does it mean, in that case, to say
that the observable Q is (or is not) conserved? Here are two possibilities:

Under what conditions does each of these conservation laws hold?
Let us stipulate that the observable in question does not depend

explicitly on time: . In that case the generalized Ehrenfest
theorem (Equation 3.73) tells us that the expectation value of Q is
independent of time if The operator  commutes with the Hamiltonian. It
so happens that the same criterion guaranatees conservation by the second
definition.

I will now prove this result. Recall that the probability of getting the
result  in a measurement of Q at time t is (Equation 3.43)

First definition: The expectation value  is independent of time.

Second definition: The probability of getting any particular value
is independent of time.
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(6.16)

where  is the corresponding eigenvector: .11 We know
that the time evolution of the wave function is (Equation 2.17)

where the  are the eigenstates of , and therefore

Now the key point: since  and  commute we can find a complete set of
simultaneous eigenstates for them (see Section A.5); without loss of
generality then . Using the orthonormality of the ,

which is clearly independent of time.

6.4 Parity

6.4.1 Parity in One Dimension

A spatial inversion is implemented by the parity operator ; in one
dimension,

Evidently, the parity operator is its own inverse: ; in Problem 6.8
you will show that it is Hermitian: . Putting this together, the parity
operator is unitary as well:
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(6.20)

(6.17)

(6.18)

(6.19)

Operators transform under a spatial inversion as

I won’t repeat the argument leading up to Equation 6.17, since it is
identical to the one by which we arrived at Equation 6.6 in the case of
translations. The position and momentum operators are “odd under parity”
(Problem 6.10):

and this tells us how any operator transforms (see Problem 6.4):

A system has inversion symmetry if the Hamiltonian is unchanged
by a parity transformation:

or, using the unitarity of the parity operator,

If our Hamiltonian describes a particle of mass m in a one-dimensional
potential , then inversion symmetry simply means that the potential is
an even function of position:

The implications of inversion symmetry are two: First, we can find a
complete set of simultaneous eigenstates of  and . Let such an
eigenstate be written ; it satisfies
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since the eigenvalues of the parity operator are restricted to 
(Problem 6.8). So the stationary states of a potential that is an even
function of position are themselves even or odd functions (or can be
chosen as such, in the case of degeneracy).12 This property is familiar from
the simple harmonic oscillator, the infinite square well (if the origin is
placed at the center of the well), and the Dirac delta function potential, and
you proved it in general in Problem 2.1.

Second, according to Ehrenfest’s theorem, if the Hamiltonian has an
inversion symmetry then

so parity is conserved for a particle moving in a symmetric potential. And
not just the expectation value, but the probability of any particular
outcome in a measurement, in accord with the theorem of Section 6.3.
Parity conservation means, for example, that if the wave function of a
particle in a harmonic oscillator potential is even at  then it will be
even at any later time t; see Figure 6.7.
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Figure 6.7: This filmstrip shows the time evolution of a particular wave
function  for a particle in the harmonic oscillator

potential. The solid and dashed curves are the real and imaginary parts of the
wave function respectively, and time increases from top to bottom. Since
parity is conserved, a wave function which is initially an even function of
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(6.23)

(6.24)

(6.21)

(6.22)

position (as this one is) remains an even function at all later times.

Problem 6.8
(a)   Show that the parity operator  is

Hermitian.
(b)   Show that the eigenvalues of the

parity operator are .

6.4.2 Parity in Three Dimensions

The spatial inversion generated by the parity operator in three dimensions
is

The operators  and  transform as

Any other operator transforms as

Example 6.2
Find the parity-transformed angular momentum operator 

, in terms of .
Solution: Since , Equation 6.23 tells us that
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We have a special name for vectors like , that are even under
parity. We call them pseudovectors, since they don’t change sign
under parity the way “true” vectors, such as  or , do. Similarly,
scalars that are odd under parity are called pseudoscalars, since
they do not behave under parity the way that “true” scalars (such as

 which is even under parity) do. See Problem 6.9. Note: The
labels scalar and vector describe how the operators behave under
rotations; we will define these terms carefully in the next section.
“True” vectors and pseudovectors behave the same way under a
rotation—they are both vectors.

In three dimensions, the Hamiltonian for a particle of mass m moving
in a potential  will have inversion symmetry if .
Importantly, any central potential satisfies this condition. As in the one-
dimensional case, parity is conserved for such systems, and the eigenstates
of the Hamiltonian may be chosen to be simultaneously eigenstates of
parity. In Problem 6.1 you proved that the eigenstates of a particle in a
central potential, written , are eigenstates
of parity:13

Problem 6.9
(a)   Under parity, a “true” scalar operator

does not change:

whereas a pseudoscalar changes sign.
Show therefore that  for a
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(6.25)

“true” scalar, whereas  for

a pseudoscalar. Note: the anti-
commutator of two operators  and 
is defined as .

(b)   Similarly, a “true” vector changes sign

whereas a pseudovector is unchanged.
Show therefore that  for a

“true” vector and  for a

pseudovector.

6.4.3 Parity Selection Rules

Selection rules tell you when a matrix element is zero based on the
symmetry of the situation. Recall that a matrix element is any object of the
form ; an expectation value is a special case of a matrix element
with . One operator whose selection rules are physically
important is the electric dipole moment operator

The selection rules for this operator—the operator itself is nothing more
than the charge of the particle times its position—determine which atomic
transitions are allowed and which are forbidden (see Chapter 11). It is odd
under parity since the position vector  is odd:

Now consider the matrix elements of the electric dipole operator
between two states  and  (we label the corresponding kets 
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and . Using Equation 6.25 we have

From this we see immediately that

This is called Laporte’s rule; it says that matrix elements of the dipole
moment operator vanish between states with the same parity. The
reasoning by which we obtained Equation 6.26 can be generalized to
derive selection rules for any operator, as long as you know how that
operator transforms under parity. In particular, Laporte’s rule applies to
any operator that is odd under parity. The selection rule for an operator
that is even under parity, such as , is derived in Problem 6.11.

Problem 6.10 Show that the position and
momentum operators are odd under parity.
That is, prove Equations 6.18, 6.19, and, by
extension, 6.21 and 6.22.
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∗

operator.

Problem 6.12 Spin angular momentum, , is
even under parity, just like orbital angular
momentum :

Acting on a spinor written in the
standard basis (Equation 4.139), the parity
operator becomes a  matrix. Show that,
due to Equation 6.27, this matrix must be a
constant times the identity matrix. As such, the
parity of a spinor isn’t very interesting since
both spin states are parity eigenstates with the
same eigenvalue. We can arbitrarily choose
that parity to be , so the parity operator has
no effect on the spin portion of the wave
function.14

Problem 6.13 Consider an electron in a
hydrogen atom.

(a)   Show that if the electron is in the
ground state, then necessarily .
No calculation allowed.

(b)   Show that if the electron is in an 
state, then  need not vanish. Give
an example of a wave function for the
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(6.29)

(6.28)

Problem 6.13 Consider an electron in a
hydrogen atom.

(a)   Show that if the electron is in the
ground state, then necessarily .
No calculation allowed.

(b)   Show that if the electron is in an 
state, then  need not vanish. Give
an example of a wave function for the
energy level  that has a non-
vanishing  and compute  for
this state.

6.5 Rotational Symmetry

6.5.1 Rotations About the z Axis

The operator that rotates a function about the z axis by an angle 
(Equation 6.2)

is closely related to the z component of angular momentum
(Equation 4.129). By the same reasoning that led to Equation 6.3,

and we say that  is the generator of rotations about the z axis (compare
Equation 6.3).

How do the operators  and  transform under rotations? To answer
this question we use the infinitesimal form of the operator:
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(6.31)

∗∗

(I used Equation 4.122 for the commutator). Similar calculations show that
 and . We can combine these results into a matrix

equation

That doesn’t look quite right for a rotation. Shouldn’t it be

Yes, but don’t forget, we are assuming  is infinitesimal, so (dropping
terms of order  and higher)  and .15

Problem 6.14 In this problem you will
establish the correspondence between
Equations 6.30 and 6.31.

(a)   Diagonalize the matrix16

to obtain the matrix

where  is the unitary matrix whose
columns are the (normalized)
eigenvectors of .

(b)   Use the binomial expansion to show
that  is a diagonal
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(6.32)

where  is the unitary matrix whose
columns are the (normalized)
eigenvectors of .

(b)   Use the binomial expansion to show
that  is a diagonal
matrix with entries  and  on the
diagonal.

(c)   Transform back to the original basis to
show that

agrees with the matrix in
Equation 6.31.

6.5.2 Rotations in Three Dimensions

Equation 6.29 can be generalized in the obvious way to a rotation about an
axis along the unit vector n:

Just as linear momentum is the generator of translations, angular
momentum is the generator of rotations.

Any operator (with three components) that transforms the same way
as the position operator under rotations is called a vector operator. By
“transforms the same way” we mean that  where  is the same
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(6.34)

(see Problem 6.16), and we may take Equation 6.33 as the definition of a
vector operator. So far we have encountered three such operators, ,  and 

:

(see Equations 4.99 and 4.122).
A scalar operator is a single quantity that is unchanged by rotations;

this is equivalent to saying that the operator commutes with :

We can now classify operators as either scalars or vectors, based on their
commutation relations with  (how they transform under a rotation), and
as “true” or pseudo-quantities, based on their commutators with  (how
they transform under parity). These results are summarized in Table 6.1.18

Table 6.1: Operators are classified as vectors or scalars based on their
commutation relations with , which encode how they transform under a
rotation, and as pseudo- or “true” quantities based on their commutation
relations with , which encode how they transform under a spatial inversion.
The curly brackets in the first column denote the anti-commutator, defined in
Problem 6.9. To include the spin  in this table, one simply replaces 
everywhere it appears in the third column with  (Problems 6.12
and 6.32, respectively, discuss the effect of parity and rotations on spinors). ,
like , is then a pseudovector and  is a pseudoscalar.
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(6.35)

(6.36)

The curly brackets in the first column denote the anti-commutator, defined in
Problem 6.9. To include the spin  in this table, one simply replaces 
everywhere it appears in the third column with  (Problems 6.12
and 6.32, respectively, discuss the effect of parity and rotations on spinors). ,
like , is then a pseudovector and  is a pseudoscalar.

continuous rotational symmetry

For a particle of mass m moving in a potential , the Hamiltonian

is rotationally invariant if  (the central potentials studied in
Section 4.1.1). In this case the Hamiltonian commutes with a rotation by
any angle about an arbitrary axis

In particular, Equation 6.35 must hold for an infinitesimal rotation

which means that the Hamiltonian commutes with the three components of
L:
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∗

for a central potential. Thus, angular momentum conservation is a
consequence of rotational invariance. And beyond the statement 6.37,
angular momentum conservation means that the probability distributions
(for each component of the angular momentum) are independent of time as
well—see Section 6.3.

Since the Hamiltonian for a central potential commutes with all three
components of angular momentum, it also commutes with . The
operators , , and  form a complete set of compatible observables
for the bound states of a central potential. Compatible means that they
commute pairwise

so that the eigenstates of  can be chosen to be simultaneous eigenstates
of  and .

Saying they are complete means that the quantum numbers n, , and m
uniquely specify a bound state of the Hamiltonian. This is familiar from
our solution to the hydrogen atom, the infinite spherical well, and the
three-dimensional harmonic oscillator, but it is true for any central
potential.19

Problem 6.15 Show how Equation 6.34
guarantees that a scalar is unchanged by a
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three-dimensional harmonic oscillator, but it is true for any central
potential.19

Problem 6.15 Show how Equation 6.34
guarantees that a scalar is unchanged by a
rotation: .

Problem 6.16 Working from Equation 6.33,
find how the vector operator  transforms for
an infinitesimal rotation by an angle δ about
the y axis. That is, find the matrix  in

Problem 6.17 Consider the action of an
infinitesimal rotation about the n axis of an
angular momentum eigenstate . Show that

and find the complex numbers  (they will
depend on δ, n, and  as well as m and .
This result makes sense: a rotation doesn’t
change the magnitude of the angular
momentum (specified by  but does change its
projection along the z axis (specified by .
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So why does symmetry lead to degeneracy in the energy spectrum? The
basic idea is this: if we have a stationary state , then  is a
stationary state with the same energy. The proof is straightforward:

For example, if you have an eigenstate of a spherically-symmetric
Hamiltonian and you rotate that state about some axis, you must get back
another state of the same energy.

You might think that symmetry would always lead to degeneracy, and
that continuous symmetries would lead to infinite degeneracy, but that is
not the case. The reason is that the two states  and  might be the
same.21 As an example, consider the Hamiltonian for the harmonic
oscillator in one dimension; it commutes with parity. All of its stationary
states are either even or odd, so when you act on one with the parity
operator you get back the same state you started with (perhaps multiplied
by , but that, physically, is the same state). There is therefore no
degeneracy associated with inversion symmetry in this case.

In fact, if there is only a single symmetry operator  (or if there are
multiple symmetry operators that all commute), you do not get degeneracy
in the spectrum. The reason is the same theorem we’ve now quoted many
times: since  and  commute, we can find simultaneous eigenstates 
of  and  and these states transform into themselves under the symmetry
operation: .

But what if there are two operators that commute with the
Hamiltonian call them  and , but do not commute with each other? In
this case, degeneracy in the energy spectrum is inevitable. Why?
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of  and  and these states transform into themselves under the symmetry
operation: .

But what if there are two operators that commute with the
Hamiltonian call them  and , but do not commute with each other? In
this case, degeneracy in the energy spectrum is inevitable. Why?

First, consider a state  that is an eigenstate of both  and  with
eigenvalues  and  respectively. Since  and  commute we know that
the state  is also an eigenstate of  with eigenvalue . Since 
and  do not commute we know (Section A.5) that there cannot exist a
complete set of simultaneous eigenstates of all three operators ,  and 

. Therefore, there must be some  such that  is distinct from  
specifically, it is not an eigenstate of  meaning that the energy level 
is at least doubly degenerate. The presence of multiple non-commuting
symmetry operators guarantees degeneracy of the energy spectrum.

This is precisely the situation we have encountered in the case of
central potentials. Here the Hamiltonian commutes with rotations about
any axis or equivalently with the generators , , and  but those
rotations don’t commute with each other. So we know that there will be
degeneracy in the spectrum of a particle in a central potential. The
following example shows exactly how much degeneracy is explained by
rotational invariance.

Example 6.3
Consider an eigenstate of a central potential  with energy .
Use the fact that the Hamiltonian for a central potential commutes
with any component of , and therefore also with  and , to
show that  are necessarily also eigenstates with the same
energy as .22

Solution: Since the Hamiltonian commutes with  we have
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or

(I canceled the constant  from both sides in
the last expression). This argument could obviously be repeated to
show that  has the same energy as , and so on until
you’ve exhausted the ladder of states. Therefore, rotational
invariance explains why states which differ only in the quantum
number m have the same energy, and since there are 
different values of m,  is the “normal” degeneracy for
energies in a central potential.

Of course, the degeneracy of hydrogen (neglecting spin) is  
 (Equation 4.85) which is greater than  

.23 Evidently hydrogen has more degeneracy than is explained by
rotational invariance alone. The source of the extra degeneracy is an
additional symmetry that is unique to the  potential; this is explored in
Problem 6.34.24

In this section we have focused on continuous rotational symmetry,
but discrete rotational symmetry, as experienced (for instance) by an
electron in a crystal, can also be of interest. Problem 6.33 explores one
such system.

Problem 6.18 Consider the free particle in one
dimension: . This Hamiltonian has
both translational symmetry and inversion
symmetry.

(a)   Show that translations and inversion
don’t commute.
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Problem 6.18 Consider the free particle in one
dimension: . This Hamiltonian has
both translational symmetry and inversion
symmetry.

(a)   Show that translations and inversion
don’t commute.

(b)   Because of the translational symmetry
we know that the eigenstates of  can
be chosen to be simultaneous
eigenstates of momentum, namely 

 (Equation 3.32). Show that the
parity operator turns  into 

; these two states must
therefore have the same energy.

(c)   Alternatively, because of the inversion
symmetry we know that the
eigenstates of  can be chosen to be
simultaneous eigenstates of parity,
namely

Show that the translation operator
mixes these two states together; they
therefore must be degenerate.

Note: Both parity and translational invariance
are required to explain the degeneracy in the
free-particle spectrum. Without parity, there is
no reason for  and  to have the
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Problem 6.19 For any vector operator  one
can define raising and lowering operators as

(a)   Using Equation 6.33, show that

(b)   Show that, if  is an eigenstate of 
and  with eigenvalues 
and  respectively, then either  is
zero or  is also an eigenstate of 
and  with eigenvalues 

 and 
respectively. This means that, acting
on a state with maximal , the
operator  either “raises” both the 
and m values by 1 or destroys the
state.

6.7 Rotational Selection Rules

The most general statement of the rotational selection rules is the Wigner–
Eckart Theorem; as a practical matter, it is arguably the most important
theorem in all of quantum mechanics. Rather than prove the theorem in
full generality I will work out the selection rules for the two classes of
operators one encounters most often: scalar operators (in Section 6.7.1)
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The most general statement of the rotational selection rules is the Wigner–
Eckart Theorem; as a practical matter, it is arguably the most important
theorem in all of quantum mechanics. Rather than prove the theorem in
full generality I will work out the selection rules for the two classes of
operators one encounters most often: scalar operators (in Section 6.7.1)
and vector operators (in Section 6.7.2). In deriving these selection rules we
consider only how the operators behave under a rotation; therefore, the
results of this section apply equally well to “true” scalars and
pseudoscalars, and those of the next section apply equally well to “true”
vectors and pseudeovectors. These selection rules can be combined with
the parity selection rules of Section 6.4.3 to obtain a larger set of selection
rules for the operator.

6.7.1 Selection Rules for Scalar Operators

The commutation relations for a scalar operator  with the three
components of angular momentum (Equation 6.34) can be rewritten in
terms of the raising and lowering operators as

We derive selection rules for  by sandwiching these commutators
between two states of definite angular momentum, which we will write as 

 and . These might be hydrogenic orbitals, but they need not
be (in fact they need not even be eigenstates of any Hamiltonian but I’ll
leave the quantum number n there so they look familiar); we require only
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(6.43)

(6.44)

(6.45)

and therefore

using the hermiticity of . Equation 6.43 says that the matrix elements
of a scalar operator vanish unless . Repeating this
procedure with Equation 6.42 we get

This tells us that the matrix elements of a scalar operator vanish unless 
.26 These, then, are the selection rules for a scalar operator:

 and .
However, we can get even more information about the matrix

elements from the remaining commutators: (I’ll just do the  case and
leave the – case for Problem 6.20)

where (from Problem 4.21)

(I also used the fact that  is the Hermitian conjugate of : 
.)27 Both terms in Equation 6.45 are zero unless 

 and , as we proved in Equations 6.43 and 6.44. When
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(6.46)

(6.47)

(6.45)
where (from Problem 4.21)

(I also used the fact that  is the Hermitian conjugate of : 
.)27 Both terms in Equation 6.45 are zero unless 

 and , as we proved in Equations 6.43 and 6.44. When
these conditions are satisfied, the two coefficients are equal 

and Equation 6.45 reduces to

Evidently the matrix elements of a scalar operator are independent of m.
The results of this section can be summarized as follows:

The funny-looking matrix element on the right, with two bars, is called a
reduced matrix element and is just shorthand for “a constant that depends
on n, , and , but not m.”

Example 6.4
(a)   Find  for all four of the degenerate  states of a

hydrogen atom.
Solution: From Equation 6.47 we have, for the states with ,
the following equality:
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(6.48)

The spherical harmonics are normalized (Equation 4.31), so the
angular integral is 1, and the radial functions  are listed in
Table 4.7, giving

That determines three of the expectation values. The final
expectation value is

Summarizing:

(b)   Find the expectation value of  for an
electron in the superposition state

Solution: We can expand the expectation value as
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(6.49)

∗

(b)   Find the expectation value of  for an electron in the
superposition state

Solution: We can expand the expectation value as

From Equation 6.47 we see that two of these matrix elements
vanish, and

Problem 6.20 Show that the commutator 
 leads to the same rule,

Equation 6.46, as does the commutator 
.

Problem 6.21 For an electron in the hydrogen
state
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(6.50)

(6.51)

(6.52)

(6.53)

(6.54)

(6.55)

understanding atomic transitions (Chapter 11). We begin by defining, by
analogy with the angular momentum raising and lowering operators, the
operators28

Written in terms of these operators, Equation 6.33 becomes

as you will show in Problem 6.22(a).29 Just as for the scalar operator in
Section 6.7.1, we sandwich each of these commutators between two states
of definite angular momentum to derive (a) conditions under which the
matrix elements are guaranteed to vanish and (b) relations between matrix
elements with differing values of m or different components of .

From Equation 6.51,

and since our states are eigenstates of , this simplifies to

Equation 6.55 says that either , or else the matrix element of 
must vanish. Equation 6.50 works out similarly (see Problem 6.22) and
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(6.55)

(6.56)

(6.57)

(6.58)

(6.59)

(6.60)

(6.61)

and since our states are eigenstates of , this simplifies to

Equation 6.55 says that either , or else the matrix element of 
must vanish. Equation 6.50 works out similarly (see Problem 6.22) and
this first set of commutators gives us the selection rules for m:

Note that, if desired, these expressions can be turned back into selection
rules for the x- and y-components of our operator, since

The remaining commutators, Equations 6.52–6.54, yield a selection
rule on  and relations among the nonzero matrix elements. As shown in
Problem 6.24, the results may be summarized as30
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Example 6.5
Find all of the matrix elements of  between the states with 

 and :

where , , and .
Solution: With the vector operator , our components are 

, , and . We start by calculating one
of the matrix elements,

From Equation 6.61 we can then determine the reduced matrix
element

Therefore

We can now find all of the remaining matrix elements from
Equations 6.59–6.60 with the help of the Clebsch–Gordan table.
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(6.63)

Therefore

We can now find all of the remaining matrix elements from
Equations 6.59–6.60 with the help of the Clebsch–Gordan table.
The relevant coefficients are shown in Figure 6.8. The nonzero
matrix elements are

with the reduced matrix element given by Equation 6.63. The other
thirty-six matrix elements vanish due to the selection rules
(Equations 6.56–6.58 and 6.62). We have determined all forty-five
matrix elements and have only needed to evaluate a single integral.
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Figure 6.8:  The Clebsch–Gordan coefficients for .

It is no coincidence that the Clebsch–Gordan coefficients appear in
Equations 6.59–6.61. States have angular momentum, but operators also
carry angular momentum. A scalar operator (Equation 6.34) has —it
is unchanged by a rotation—just as a state of angular momentum 0 is
unchanged. A vector operator (Equation 6.33) has ; its three
components transform into each other under a rotation in the same way the
triplet of states with angular momentum  transform into each other.31

When we act on a state with an operator, we add together the angular
momentum of the state and the operator to obtain the angular momentum
of the resultant state; this addition of angular momenta is the source of the
Clebsch–Gordan coefficients in Equations 6.59–6.61.32

Problem 6.22
(a)   Show that the commutation relations,

Equations 6.50–6.54, follow from the
definition of a vector operator,
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(6.65)

(6.64)

(6.66)

Problem 6.22
(a)   Show that the commutation relations,

Equations 6.50–6.54, follow from the
definition of a vector operator,
Equation 6.33. If you did Problem 6.19
you already derived one of these.

(b)   Derive Equation 6.57.

Problem 6.23 The Clebsch–Gordan
coefficients are defined by Equation 4.183.
Adding together two states with angular
momentum  and  produces a state with total
angular momentum J according to

(a)   From Equation 6.64,
show that the Clebsch–Gordan
coefficients satisfy

(b)   Apply  to
Equation 6.64 to derive the recursion
relations for Clebsch–Gordan
coefficients:
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(a)   Sandwich each of the six commutation
relations in Equations 6.52–6.54
between  and  to obtain
relations between matrix elements of 
. As an example, Equation 6.52 with
the upper signs gives

(b)   Using the results in Problem 6.23,
show that the six expressions you
wrote down in part (a) are satisfied by
Equations 6.59–6.61.

Problem 6.25 Express the expectation value of
the dipole moment  for an electron in the
hydrogen state

in terms of a single reduced matrix element,
and evaluate the expectation value. Note: this
is the expectation value of a vector so you need
to compute all three components. Don’t forget
Laporte’s rule!

6.8 Translations in Time
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(6.68)

(6.69)

(6.71)

(6.67)

6.8 Translations in Time

In this section we study time-translation invariance. Consider a solution 
 to the time-dependent Schrödinger equation

We can define the operator that propagates the wave function forward in
time,  by

 can be expressed in terms of the Hamiltonian, and doing so is
straightforward if the Hamiltonian is not itself a function of time. In that
case, expanding the right-hand side of Equation 6.67 in a Taylor series
gives33

Therefore, in the case of a time-independent Hamiltonian, the time-
evolution operator is34

We say that the Hamiltonian is the generator of translations in time.
Note that  is a unitary operator (see Problem 6.2).

The time-evolution operator offers a compact way to state the
procedure for solving the time-dependent Schrödinger equation. To see the
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Then

In this sense Equation 6.71 is shorthand for the process of expanding the
initial wave function in terms of stationary states and then tacking on the
“wiggle factors” to obtain the wave function at a later time (Section 2.1).

6.8.1 The Heisenberg Picture

Just as for the other transformations studied in this chapter, we can
examine the effect of applying time translation to operators, as well as to
wave functions. The transformed operators are called Heisenberg-picture
operators and we follow the convention of giving them a subscript H rather
than a prime:

Example 6.6
A particle of mass m moves in one dimension in a potential :

Find the position operator in the Heisenberg picture for an
infinitesimal time translation δ.
Solution: From Equation 6.71,
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Find the position operator in the Heisenberg picture for an
infinitesimal time translation δ.
Solution: From Equation 6.71,

Applying Equation 6.72, we have

so

(making use of the fact that the Heisenberg-picture operators at
time 0 are just the untransformed operators). This looks exactly
like classical mechanics: . The Heisenberg
picture illuminates the connection between classical and quantum
mechanics: the quantum operators obey the classical equations of
motion (see Problem 6.29).

Example 6.7
A particle of mass m moves in one dimension in a harmonic-
oscillator potential:

Find the position operator in the Heisenberg picture at time t.
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(6.74)

(6.73)

of raising and lowering operators we have (using Equations 2.62,
2.67, and 2.70)

Thus35

Or, using Equation 2.48 to express  in terms of  and ,

As in Example 6.6 we see that the Heisenberg-picture operator
satisfies the classical equation of motion for a mass on a spring.

In this book we have been working in the Schrödinger picture, so-
named by Dirac because it was the picture that Schrödinger himself had in
mind. In the Schrödinger picture, the wave function evolves in time
according to the Schrödinger equation

500



mind. In the Schrödinger picture, the wave function evolves in time
according to the Schrödinger equation

The operators  and  have no time dependence of their own,
and the time dependence of expectation values (or, more generally, matrix
elements) comes from the time dependence of the wave function:36

In the Heisenberg picture, the wave function is constant in time, 
, and the operators evolve in time according to

Equation 6.72. In the Heisenberg picture, the time dependence of
expectation values (or matrix elements) is carried by the operators.

Of course, the two pictures are entirely equivalent since

A nice analogy for the two pictures runs as follows. On an ordinary
clock, the hands move in a clockwise direction while the numbers stay
fixed. But one could equally well design a clock where the hands are
stationary and the numbers move in the counter-clockwise direction. The
correspondence between these two clocks is roughly the correspondence
between the Schrödinger and Heisenberg pictures, the hands representing
the wave function and the numbers representing the operator. Other
pictures could be introduced as well, in which both the hands of the clock
and the numbers on the dial move at intermediate rates such that the clock
still tells the correct time.37
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(6.76)

(6.75)

motion.

Problem 6.27 Consider a free particle of mass
m. Show that the position and momentum
operators in the Heisenberg picture are given
by

Comment on the relationship between these
equations and the classical equations of
motion. Hint: you will first need to evaluate
the commutator ; this will allow you to

evaluate the commutator .

6.8.2 Time-Translation Invariance

If the Hamiltonian is time-dependent one can still write the formal solution
to the Schrödinger equation in terms of the time-translation operator, :

but  no longer takes the simple form 6.71.38 (See Problem 11.23 for the
general case.) For an infinitesimal time interval δ (see Problem 6.28)

Time-translation invariance means that the time evolution is
independent of which time interval we are considering. In other words
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(6.75)

Problem 6.26 Work out  for the system
in Example 6.7 and comment on the
correspondence with the classical equation of
motion.

Problem 6.27 Consider a free particle of mass
m. Show that the position and momentum
operators in the Heisenberg picture are given
by

Comment on the relationship between these
equations and the classical equations of
motion. Hint: you will first need to evaluate
the commutator ; this will allow you to

evaluate the commutator .

6.8.2 Time-Translation Invariance

If the Hamiltonian is time-dependent one can still write the formal solution
to the Schrödinger equation in terms of the time-translation operator, :

but  no longer takes the simple form 6.71.38 (See Problem 11.23 for the
general case.) For an infinitesimal time interval δ (see Problem 6.28)
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(6.78)

∗∗∗

(6.79)

equation for an infinitesimal time δ. Hint:
expand  in a Taylor series.

Problem 6.29 Differentiate Equation 6.72 to
obtain the Heisenberg equations of motion

(for  and  independent of time).39 Plug in 
 and  to obtain the differential

equations for  and  in the Heisenberg
picture for a single particle of mass m moving
in a potential .

Problem 6.30 Consider a time-independent
Hamiltonian for a particle moving in one
dimension that has stationary states  with
energies .

(a)   Show that the solution to the time-
dependent Schrödinger equation can
be written

where , known as the
propagator, is
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(6.78)

∗∗∗

Problem 6.28 Show that Equations 6.75 and
6.76 are the solution to the Schrödinger
equation for an infinitesimal time δ. Hint:
expand  in a Taylor series.

Problem 6.29 Differentiate Equation 6.72 to
obtain the Heisenberg equations of motion

(for  and  independent of time).39 Plug in 
 and  to obtain the differential

equations for  and  in the Heisenberg
picture for a single particle of mass m moving
in a potential .

Problem 6.30 Consider a time-independent
Hamiltonian for a particle moving in one
dimension that has stationary states  with
energies .

(a)   Show that the solution to the time-
dependent Schrödinger equation can
be written

where , known as the
propagator, is
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(6.81)

Compare your answer with
Problem 2.21.

Further Problems on Chapter 6

Problem 6.31 In deriving Equation 6.3 we
assumed that our function had a Taylor
series. The result holds more generally if
we define the exponential of an operator by
its spectral decomposition,

rather than its power series. Here I’ve
given the operator in Dirac notation; acting
on a position-space function (see the
discussion on page 123) this means

where  is the
momentum space wave function
corresponding to  and  is defined
in Equation 3.32. Show that the operator 

, as given by Equation 6.81, applied to
the function
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(6.81)

(e)   Find  for a free particle that
starts out in the state

Compare your answer with
Problem 2.21.

Further Problems on Chapter 6

Problem 6.31 In deriving Equation 6.3 we
assumed that our function had a Taylor
series. The result holds more generally if
we define the exponential of an operator by
its spectral decomposition,

rather than its power series. Here I’ve
given the operator in Dirac notation; acting
on a position-space function (see the
discussion on page 123) this means

where  is the
momentum space wave function
corresponding to  and  is defined
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where θ and ϕ are the polar
coordinates of the unit vector  that
describes the axis of rotation.

(d)   Verify that the matrix  in part (c) is
unitary.

(e)   Compute explicitly the matrix 
 where  is a rotation by

an angle  about the z axis and verify
that it returns the expected result. Hint:
rewrite your result for  in terms of 

 and .
(f)   Construct the matrix for a π rotation

about the x axis and verify that it turns
an up spin into a down spin.

(g)   Find the matrix describing a 
rotation about the z axis. Why is this
answer surprising?41

Problem 6.33 Consider a particle of mass m in
a two-dimensional infinite square well with
sides of length L. With the origin placed at
the center of the well, the stationary states
can be written as

with energies
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(c)   Show that your result from part (b)
becomes, in the standard basis of spin
up and spin down along the z axis, the
matrix

where θ and ϕ are the polar
coordinates of the unit vector  that
describes the axis of rotation.

(d)   Verify that the matrix  in part (c) is
unitary.

(e)   Compute explicitly the matrix 
 where  is a rotation by

an angle  about the z axis and verify
that it returns the expected result. Hint:
rewrite your result for  in terms of 

 and .
(f)   Construct the matrix for a π rotation

about the x axis and verify that it turns
an up spin into a down spin.

(g)   Find the matrix describing a 
rotation about the z axis. Why is this
answer surprising?41

Problem 6.33 Consider a particle of mass m in
a two-dimensional infinite square well with
sides of length L. With the origin placed at
the center of the well, the stationary states
can be written as
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symmetry of the square means that
there must be additional symmetry
explaining the degeneracy of these two
states.42

Problem 6.34 The Coulomb potential has
more symmetry than simply rotational
invariance. This additional symmetry is
manifest in an additional conserved
quantity, the Laplace–Runge–Lenz vector

where  is the potential energy, 
.43 The complete set of

commutators for the conserved quantities
in the hydrogen atom is

The physical content of these equations is
that (i)  is a conserved quantity, (ii)  is a
conserved quantity, (iii)  is a vector, and
(iv)  is a vector ((v) has no obvious
interpretation). There are two additional
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(rotation by an integer multiple of ,
reflection across a diagonal, or
reflection along a line bisecting two
sides). The fact that  and  are not
connected to each other by any
symmetry of the square means that
there must be additional symmetry
explaining the degeneracy of these two
states.42

Problem 6.34 The Coulomb potential has
more symmetry than simply rotational
invariance. This additional symmetry is
manifest in an additional conserved
quantity, the Laplace–Runge–Lenz vector

where  is the potential energy, 
.43 The complete set of

commutators for the conserved quantities
in the hydrogen atom is
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Figure 6.9:  The degenerate  states of the
hydrogen atom, and the symmetry operations that
connect them.

Problem 6.35 A Galilean transformation
performs a boost from a reference frame 
to a reference frame  moving with
velocity  with respect to  (the origins
of the two frames coincide at . The
unitary operator that carries out a Galilean
transformation at time t is

(a)   Find  and  for an
infinitesimal transformation with
velocity δ. What is the physical
meaning of your result?

(b)   Show that
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Figure 6.9 shows how the degenerate
states of hydrogen are related by the
generators  and .

 

Figure 6.9:  The degenerate  states of the
hydrogen atom, and the symmetry operations that
connect them.

Problem 6.35 A Galilean transformation
performs a boost from a reference frame 
to a reference frame  moving with
velocity  with respect to  (the origins
of the two frames coincide at . The
unitary operator that carries out a Galilean
transformation at time t is
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(Figure 6.10). Suppose we could
instantaneously reverse the ball’s velocity
when it reaches . Neglecting air
resistance, it would retrace the path that
took it from  to  and arrive back at 
after another time t had passed, traveling
with a velocity . This is an example of
time-reversal invariance—reverse the
motion of a particle at any point along its
trajectory and it will retrace its path with an
equal and opposite velocity at all positions.

 

Figure 6.10:  A ball thrown through the air
(ignore air resistance) is an example of a system
with time-reversal symmetry. If we flip the
velocity of the particle at any point along its
trajectory, it will retrace its path.
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result.

Problem 6.36 A ball thrown through the air
leaves your hand at position  with a
velocity of  and arrives a time t later at
position  traveling with a velocity 
(Figure 6.10). Suppose we could
instantaneously reverse the ball’s velocity
when it reaches . Neglecting air
resistance, it would retrace the path that
took it from  to  and arrive back at 
after another time t had passed, traveling
with a velocity . This is an example of
time-reversal invariance—reverse the
motion of a particle at any point along its
trajectory and it will retrace its path with an
equal and opposite velocity at all positions.
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(6.82)

Figure 6.11:  An external magnetic field breaks
time-reversal symmetry. Shown is the trajectory
of a particle of charge  traveling in a uniform
magnetic field pointing into the page. If we flip
the particle’s velocity from  to  at the point
shown, the particle does not retrace its path, but
instead moves onto a new circular orbit.

The time-reversal operator  is the
operator that reverses the momentum of the
particle , leaving its position
unchanged. A better name would really be
the “reversal of the direction of motion”
operator.45 For a spinless particle, the time-
reversal operator  simply complex
conjugates the position-space wave
function46

(a)   Show that the operators  and 
transform under time reversal as

Hint: Do this by calculating the action
of  and  on an arbitrary test
function .

(b)   We can write down a mathematical
statement of time-reversal invariance
from our discussion above. We take a
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A familiar example of a system that
does not exhibit time-reversal symmetry is
a charged particle moving in an external
magnetic field.44 In that case, when you
reverse the velocity of the particle, the
Lorentz force will also change sign and the
particle will not retrace its path; this is
illustrated in Figure 6.11.

 

Figure 6.11:  An external magnetic field breaks
time-reversal symmetry. Shown is the trajectory
of a particle of charge  traveling in a uniform
magnetic field pointing into the page. If we flip
the particle’s velocity from  to  at the point
shown, the particle does not retrace its path, but
instead moves onto a new circular orbit.

The time-reversal operator  is the
operator that reverses the momentum of the
particle , leaving its position
unchanged. A better name would really be
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states share the same energy, as
guaranteed by (c).

Problem 6.37 As an angular momentum, a
particle’s spin must flip under time reversal
(Problem 6.36). The action of time-reversal
on a spinor (Section 4.4.1) is in fact

so that, in addition to the complex
conjugation, the up and down components
are interchanged.47

(a)   Show that  for a spin-
particle.

(b)   Consider an eigenstate  of a time-
reversal invariant Hamiltonian
(Equation 6.83) with energy . We
know that  is also an
eigenstate of  with the same energy 

. There two possibilities: either 
and  are the same state (meaning 

 for some complex
constant  or they are distinct states.
Show that the first case leads to a
contradiction in the case of a spin-
particle, meaning the energy level
must be (at least) two-fold degenerate
in that case.
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(6.83)

(6.84)

infinitesimal time interval δ. Show
that time-reversal invariance requires

(c)   Show that, for a time-reversal
invariant Hamiltonian, if  is a
stationary state with energy , then 

 is also a stationary state with the
same energy . If the energy is
nondegenerate, this means that the
stationary state can be chosen as real.

(d)   What do you get by time-reversing a
momentum eigenfunction 
(Equation 3.32)? How about a
hydrogen wave function ?
Comment on each state’s relation to
the untransformed state and verify that
the transformed and untransformed
states share the same energy, as
guaranteed by (c).

Problem 6.37 As an angular momentum, a
particle’s spin must flip under time reversal
(Problem 6.36). The action of time-reversal
on a spinor (Section 4.4.1) is in fact

so that, in addition to the complex
conjugation, the up and down components
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7   It is clear that Equation 6.12 satisfies Equation 6.11. In Problem 6.5 you’ll
prove that they are in fact equivalent statements.

8   For a delightful proof using perturbation theory, see Neil Ashcroft and
N. David Mermin, Solid State Physics, Cengage, Belmont, 1976 (p. 765), after
you have completed Problem 6.6 and studied Chapter 7.

9   For the case of continuous symmetries, it is often much easier to work with the
infinitesimal form of the transformation; any finite transformation can then be
built up as a product of infinitesimal transformations. In particular, the finite
translation by a is a sequence of N infinitesimal translations with  in the
limit that :

For a proof see R. Shankar, Basic Training in Mathematics: A Fitness Program
for Science Students, Plenum Press, New York, 1995 (p.11).

10   In the case of a discrete translational symmetry, momentum is not conserved,
but there is a conserved quantity closely related to the discrete translational
symmetry, which is the crystal momentum. For a discussion of crystal
momentum see Steven H. Simon, The Oxford Solid State Basics, Oxford, 2013,
p.84.

11   If the spectrum of  is degenerate there are distinct eigenvectors with the same
eigenvalue :  for , then we need to sum over those
states:

Except for the sum over i the proof proceeds unchanged.
12   For bound (normalizable) states in one dimension, there is no degeneracy and

every bound state of a symmetric potential is automatically an eigenstate of
parity. (However, see Problem 2.46.) For scattering states, degeneracy does
occur.

13   Note that Equation 6.24 could equivalently be written as . The fact

that parity commutes with every component of the angular momentum and
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1   A square of course has other symmetries as well, namely mirror symmetries
about axes along a diagonal or bisecting two sides. The set of all
transformations that leave the square unchanged is called , the “dihedral
group” of degree 4.

2   The parity operation in three dimensions can be realized as a mirror reflection
followed by a rotation (see Problem 6.1). In two dimensions, the transformation

 is no different from a 180  rotation. We will use the term
parity exclusively for spatial inversion, , in one or three
dimensions.

3   I’m assuming that our function has a Taylor series expansion, but the final
result applies more generally. See Problem 6.31 for the details.

4   See Section 3.6.2 for the definition of the exponential of an operator.
5   The term comes from the study of Lie groups (the group of translations is an

example). If you’re interested, an introduction to Lie groups (written for
physicists) can be found in George B. Arfken, Hans J. Weber, and Frank E.
Harris, Mathematical Methods for Physicists, 7th edn, Academic Press, New
York (2013), Section 17.7.

6   Unitary operators are discussed in Problem A.30. A unitary operator is one
whose adjoint is also its inverse: .

7   It is clear that Equation 6.12 satisfies Equation 6.11. In Problem 6.5 you’ll
prove that they are in fact equivalent statements.

8   For a delightful proof using perturbation theory, see Neil Ashcroft and
N. David Mermin, Solid State Physics, Cengage, Belmont, 1976 (p. 765), after
you have completed Problem 6.6 and studied Chapter 7.

9   For the case of continuous symmetries, it is often much easier to work with the
infinitesimal form of the transformation; any finite transformation can then be
built up as a product of infinitesimal transformations. In particular, the finite
translation by a is a sequence of N infinitesimal translations with  in the
limit that :

For a proof see R. Shankar, Basic Training in Mathematics: A Fitness Program
for Science Students, Plenum Press, New York, 1995 (p.11).
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23   I don’t mean that they necessarily occur in this order. Look back at the infinite
spherical well (Figure 4.3): starting with the ground state the degeneracies are 

. These are precisely the degrees of degeneracy we expect
for rotational invariance  for integer  but the symmetry considerations
don’t tell us where in the spectrum each degeneracy will occur.

24   For the three-dimensional harmonic oscillator the degeneracy is 
 (Problem 4.46) which again is greater than . For a

discussion of the additional symmetry in the oscillator problem see D. M.
Fradkin, Am. J. Phys. 33, 207 (1965).

25   Importantly, they satisfy Equations 4.118 and 4.120.
26   The other root of the quadratic  is ; since 

and  are non-negative integers this isn’t possible.
27   Since  and  are Hermitian,

28   The operators  are, up to constants, components of what are known as
spherical tensor operators of rank 1, written  where k is the rank and q the
component of the operator:

Similarly, the scalar operator f treated in Section 6.7.1 is a rank-0 spherical
tensor operator:

29   Equations 6.51–6.54 each stand for two equations: read the upper signs all the
way across, or the lower signs.

30   A warning about notation: In the selection rules for the scalar operator r,

and for a component (say z) of the vector operator r,
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and m, the energy uniquely specifies the state. The principal quantum number n
indexes those energy values that lead to normalizable solutions.

20   When we can’t identify the symmetry responsible for a particular degeneracy,
we call it an accidental degeneracy. In most such cases, the degeneracy turns
out to be no accident at all, but instead due to symmetry that is more difficult to
identify than, say, rotational invariance. The canonical example is the larger
symmetry group of the hydrogen atom (Problem 6.34).

21   This is highly non-classical. In classical mechanics, if you take a Keplerian
orbit there will always be some axis about which you can rotate it to get a
different Keplerian orbit (of the same energy) and in fact there will be an
infinite number of such orbits with different orientations. In quantum
mechanics, if you rotate the ground state of hydrogen you get back exactly the
same state regardless of which axis you choose, and if you rotate one of the
states with  and , you get back a linear combination of the three
orthogonal states with these quantum numbers.

22   Of course, we already know the energies are equal since the radial equation,
Equation 4.35, does not depend on m. This example demonstrates that
rotational invariance is behind the degeneracy.

23   I don’t mean that they necessarily occur in this order. Look back at the infinite
spherical well (Figure 4.3): starting with the ground state the degeneracies are 

. These are precisely the degrees of degeneracy we expect
for rotational invariance  for integer  but the symmetry considerations
don’t tell us where in the spectrum each degeneracy will occur.

24   For the three-dimensional harmonic oscillator the degeneracy is 
 (Problem 4.46) which again is greater than . For a

discussion of the additional symmetry in the oscillator problem see D. M.
Fradkin, Am. J. Phys. 33, 207 (1965).

25   Importantly, they satisfy Equations 4.118 and 4.120.
26   The other root of the quadratic  is ; since 

and  are non-negative integers this isn’t possible.
27   Since  and  are Hermitian,
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See also M. Amaku et al., Am. J. Phys. 85, 692 (2017).
35   Since Equation 6.73 holds for any stationary state  and since the  constitute

a complete set of states, the operators must in fact be identical.
36   I am assuming that , like  or , has no explicit time dependence.
37   Of these other possible pictures the most important is the interaction picture

(or Dirac picture) which is often employed in time-dependent perturbation
theory.

38   And is a function of both the initial time  and the final time t, not simply the
amount of time for which the wave function has evolved.

39   For time-dependent  and  the generalization is

40   The integrals in (c)–(e) can all be done with the following identity:

which was derived in Problem 2.21.
41   For a discussion of how this sign change is actually measured, see S. A.

Werner et al., Phys. Rev. Lett. 35, 1053 (1975).
42   See F. Leyvraz, et al., Am. J. Phys. 65, 1087 (1997) for a discussion of this

“accidental” degeneracy.
43   The full symmetry of the Coulomb Hamiltonian is not just the obvious three-

dimensional rotation group (known to mathematicians as SO(3)), but the four-
dimensional rotation group (SO(4)), which has six generators  and . (If the
four axes are w, x, y, and z, the generators correspond to rotations in each of the
six orthogonal planes, wx, wy, wz (that’s  and yz, zx, xy (that’s .

44   By external magnetic field, I mean that we we only reverse the velocity of our
charge q, and not the velocities of the charges producing the magnetic field. If
we reversed those velocities as well, the magnetic field would also switch
directions, the Lorentz force on the charge q would be unchanged by the
reversal, and the system would in fact be time-reversal invariant.

45   See Eugene P. Wigner, Group Theory and its Applications to Quantum
Mechanics and Atomic Spectra (Academic Press, New York, 1959), p. 325.
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(6.70)

33   Why is this analysis limited to the case where  is independent of time?
Whether or not  depends on time, Schrödinger’s equation says .
However, if  is time dependent then the second derivative of  is given by

and higher derivatives will be even more complicated. Therefore, Equation 6.69
only follows from Equation 6.68 when  has no time dependence. See also
Problem 11.23.

34   This derivation assumes that the actual solution to Schrodinger’s equation, 
, can be expanded as a Taylor series in t, and nothing guarantees that. B.

R. Holstein and A. R. Swift, A. J. Phys. 40, 829 (1989) give an innocent-
seeming example where such an expansion does not exist. Nonetheless,
Equation 6.71 still holds in such cases as long as we define the exponential
function through its spectral decomposition (Equation 3.103):

See also M. Amaku et al., Am. J. Phys. 85, 692 (2017).
35   Since Equation 6.73 holds for any stationary state  and since the  constitute

a complete set of states, the operators must in fact be identical.
36   I am assuming that , like  or , has no explicit time dependence.
37   Of these other possible pictures the most important is the interaction picture

(or Dirac picture) which is often employed in time-dependent perturbation
theory.

38   And is a function of both the initial time  and the final time t, not simply the
amount of time for which the wave function has evolved.

39   For time-dependent  and  the generalization is

40   The integrals in (c)–(e) can all be done with the following identity:
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Part II
Applications

◈
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(7.2)

(7.1)

(7.3)

7
Time-Independent Perturbation Theory

◈

7.1 Nondegenerate Perturbation Theory

7.1.1 General Formulation

Suppose we have solved the (time-independent) Schrödinger equation for
some potential (say, the one-dimensional infinite square well):

obtaining a complete set of orthonormal eigenfunctions, ,

and the corresponding eigenvalues . Now we perturb the potential
slightly (say, by putting a little bump in the bottom of the well—
Figure 7.1). We’d like to find the new eigenfunctions and eigenvalues:

but unless we are very lucky, we’re not going to be able to solve the
Schrödinger equation exactly, for this more complicated potential.
Perturbation theory is a systematic procedure for obtaining approximate
solutions to the perturbed problem, by building on the known exact
solutions to the unperturbed case.
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(7.6)

(7.4)

(7.5)

 

Figure 7.1: Infinite square well with small perturbation.

To begin with we write the new Hamiltonian as the sum of two terms:

where  is the perturbation (the superscript 0 always identifies the
unperturbed quantity). For the moment we’ll take  to be a small number;
later we’ll crank it up to 1, and H will be the true Hamiltonian. Next we
write  and  as power series in :

Here  is the first-order correction to the nth eigenvalue, and  is the
first-order correction to the nth eigenfunction;  and  are the second-
order corrections, and so on. Plugging Equations 7.5 and 7.6 into
Equation 7.3, we have:
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(7.7)

(7.8)

(7.9)

or (collecting like powers of :

To lowest order1  this yields , which is nothing new
(Equation 7.1). To first order ,

To second order ,

and so on. (I’m done with , now—it was just a device to keep track of the
different orders—so crank it up to 1.)

7.1.2 First-Order Theory

Taking the inner product of Equation 7.7 with  (that is, multiplying by 
 and integrating),

But  is hermitian, so

and this cancels the first term on the right. Moreover, , so2

This is the fundamental result of first-order perturbation theory; as a
practical matter, it may well be the most frequently used equation in
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quantum mechanics. It says that the first-order correction to the energy is
the expectation value of the perturbation, in the unperturbed state.

Example 7.1
The unperturbed wave functions for the infinite square well are
(Equation 2.31)

Suppose we perturb the system by simply raising the “floor” of the
well a constant amount  (Figure 7.2). Find the first-order
correction to the energies.

 

Figure 7.2:  Constant perturbation over the whole well.

Solution: In this case , and the first-order correction to the
energy of the nth state is
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The corrected energy levels, then, are ; they are
simply lifted by the amount . Of course! The only surprising
thing is that in this case the first-order theory yields the exact
answer. Evidently for a constant perturbation all the higher
corrections vanish.3 On the other hand, if the perturbation extends
only half-way across the well (Figure 7.3), then

In this case every energy level is lifted by . That’s not the
exact result, presumably, but it does seem reasonable, as a first-
order approximation.

 

Figure 7.3:  Constant perturbation over half the well.

Equation 7.9 is the first-order correction to the energy; to find the
first-order correction to the wave function we rewrite Equation 7.7:
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(7.10)

(7.11)

(7.12)

The right side is a known function, so this amounts to an inhomogeneous
differential equation for . Now, the unperturbed wave functions
constitute a complete set, so  (like any other function) can be expressed
as a linear combination of them:

(There is no need to include  in the sum, for if  satisfies Equation
7.10, so too does , for any constant α, and we can use this
freedom to subtract off the  term.4 ) If we could determine the
coefficients , we’d be done.

Well, putting Equation 7.11 into Equation 7.10, and using the fact
that  satisfies the unperturbed Schrödinger equation (Equation 7.1), we
have

Taking the inner product with ,

If , the left side is zero, and we recover Equation 7.9; if , we get

or
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(7.13)

∗

∗

so

Notice that the denominator is safe (since there is no coefficient with 
 as long as the unperturbed energy spectrum is nondegenerate. But

if two different unperturbed states share the same energy, we’re in serious
trouble (we divided by zero to get Equation 7.12); in that case we need
degenerate perturbation theory, which I’ll come to in Section 7.2.

That completes first-order perturbation theory: The first-order
correction to the energy, , is given by Equation 7.9, and the first-order
correction to the wave function, , is given by Equation 7.13.

Problem 7.1 Suppose we put a delta-function
bump in the center of the infinite square well:

where α is a constant.
(a)   Find the first-order correction to the

allowed energies. Explain why the
energies are not perturbed for even n.

(b)   Find the first three nonzero terms in
the expansion (Equation 7.13) of the
correction to the ground state, .

Problem 7.2 For the harmonic oscillator 
, the allowed energies are
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where  is the classical frequency.
Now suppose the spring constant increases
slightly: . (Perhaps we cool the
spring, so it becomes less flexible.)

(a)   Find the exact new energies (trivial, in
this case). Expand your formula as a
power series in ϵ, up to second order.

(b)   Now calculate the first-order
perturbation in the energy, using
Equation 7.9. What is  here?
Compare your result with part (a).
Hint: It is not necessary—in fact, it is
not permitted—to calculate a single
integral in doing this problem.

Problem 7.3 Two identical spin-zero bosons
are placed in an infinite square well (Equation
2.22). They interact weakly with one another,
via the potential

(where  is a constant with the dimensions of
energy, and a is the width of the well).

(a)   First, ignoring the interaction between
the particles, find the ground state and
the first excited state—both the wave
functions and the associated energies.

(b)   Use first-order perturbation theory to
estimate the effect of the particle–
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(7.14)

particle interaction on the energies of
the ground state and the first excited
state.

7.1.3 Second-Order Energies

Proceeding as before, we take the inner product of the second-order
equation (Equation 7.8) with :

Again, we exploit the hermiticity of :

so the first term on the left cancels the first term on the right. Meanwhile, 
, and we are left with a formula for :

But

(because the sum excludes , and all the others are orthogonal), so

or, finally,

535



(7.15)

∗∗

This is the fundamental result of second-order perturbation theory.
We could go on to calculate the second-order correction to the wave

function , the third-order correction to the energy, and so on, but in
practice Equation 7.15 is ordinarily as far as it is useful to pursue this
method.5

Problem 7.4 Apply perturbation theory to the
most general two-level system. The
unperturbed Hamiltonian is

and the perturbation is

with ,  and  real, so that  is
hermitian. As in Section 7.1.1,  is a constant
that will later be set to 1.

(a)   Find the exact energies for this two-
level system.

(b)   Expand your result from (a) to second
order in  (and then set  to 1). Verify
that the terms in the series agree with
the results from perturbation theory in
Sections 7.1.2 and 7.1.3. Assume that 

.
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(c)   Setting , show that the
series in (b) only converges if

Comment: In general, perturbation
theory is only valid if the matrix
elements of the perturbation are small
compared to the energy level spacings.
Otherwise, the first few terms (which
are all we ever calculate) will give a
poor approximation to the quantity of
interest and, as shown here, the series
may fail to converge at all, in which
case the first few terms tell us nothing.

Problem 7.5
(a)   Find the second-order correction to the

energies  for the potential in
Problem 7.1. Comment: You can sum
the series explicitly, obtaining 

 for odd n.
(b)   Calculate the second-order correction

to the ground state energy  for the
potential in Problem 7.2. Check that
your result is consistent with the exact
solution.
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∗∗ 

Problem 7.6 Consider a charged particle in the
one-dimensional harmonic oscillator potential.
Suppose we turn on a weak electric field ,
so that the potential energy is shifted by an
amount .

(a)   Show that there is no first-order
change in the energy levels, and
calculate the second-order correction.
Hint: See Problem 3.39.

(b)   The Schrödinger equation can be
solved directly in this case, by a
change of variables: 

. Find the exact
energies, and show that they are
consistent with the perturbation theory
approximation.

Problem 7.7 Consider a particle in the
potential shown in Figure 7.3.

(a)   Find the first-order correction to the
ground-state wave function. The first
three nonzero terms in the sum will
suffice.

(b)   Using the method of Problem 2.61
find (numerically) the ground-state
wave function and energy. Use 

 and . Compare
the energy obtained numerically to the
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result from first-order perturbation
theory (see Example 7.1).

(c)   Make a single plot showing (i) the
unperturbed ground-state wave
function, (ii) the numerical ground-
state wave function, and (ii) the first-
order approximation to the ground-
state wave function. Note: Make sure
you’ve properly normalized your
numerical result,

7.2 Degenerate Perturbation Theory

If the unperturbed states are degenerate—that is, if two (or more) distinct
states  and  share the same energy—then ordinary perturbation
theory fails:  (Equation 7.12) and  (Equation 7.15) blow up (unless,
perhaps, the numerator vanishes, —a loophole that will be
important to us later on). In the degenerate case, therefore, there is no
reason to trust even the first-order correction to the energy (Equation 7.9),
and we must look for some other way to handle the problem. Note this is
not a minor problem; almost all applications of perturbation theory involve
degeneracy.

7.2.1 Two-Fold Degeneracy

Suppose that
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(7.16)

(7.17)

(7.18)

with  and  both normalized. Note that any linear combination of these
states,

is still an eigenstate of , with the same eigenvalue :

Typically, the perturbation  will “break” (or “lift”) the degeneracy: As
we increase  (from 0 to 1), the common unperturbed energy  splits into
two (Figure 7.4). Going the other direction, when we turn off the
perturbation, the “upper” state reduces down to one linear combination of 

 and , and the “lower” state reduces to some (orthogonal) linear
combination, but we don’t know a priori what these “good” linear
combinations will be. For this reason we can’t even calculate the first-
order energy (Equation 7.9)—we don’t know what unperturbed states to
use.

 

Figure 7.4: “Lifting” of a degeneracy by a perturbation.
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(7.19)

(7.20)

The “good” states are defined as the limit of the true eigenstates as the
perturbation is switched off  but that isn’t how you find them in
realistic situations (if you knew the exact eigenstates you wouldn’t need
perturbation theory). Before I show you the practical techniques for
calculating them, we’ll look at an example where we can take the 
limit of the exact eigenstates.

Example 7.2
Consider a particle of mass m in a two-dimensional oscillator
potential

to which is added a perturbation

The unperturbed first-excited state (with  is two-fold
degenerate, and one basis for those two degenerate states is

where  and  refer to the one-dimensional harmonic oscillator
states (Equation 2.86). To find the “good” linear combinations,
solve for the exact eigenstates of  and take their limit
as . Hint: The problem can be solved by rotating coordinates

Solution: In terms of the rotated coordinates, the Hamiltonian is
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(7.21)

This amounts to two independent one-dimensional oscillators. The
exact solutions are

where  are one-dimensional oscillator states with frequencies 
 respectively. The first few exact energies,

are shown in Figure 7.5.

 

Figure 7.5:  Exact energy levels as a function of ϵ for Example 7.2.

The two states which grow out of the degenerate first-excited states
as ϵ is increased have ,  (lower state) and , 
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(7.23)

(7.22)

(7.24)

(7.25)

(upper state). If we track these states back to  (in that limit 
 we get

Therefore the “good” states for this problem are

In this example we were able to find the exact eigenstates of H and
then turn off the perturbation to see what states they evolve from.
But how do we find the “good” states when we can’t solve the
system exactly?

For the moment let’s just write the “good” unperturbed states in
generic form (Equation 7.17), keeping α and β adjustable. We want to
solve the Schrödinger equation,

with  and

Plugging these into Equation 7.24, and collecting like
powers of  (as before) we find
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(7.28)

(7.30)

(7.26)

(7.27)

(7.29)

But  (Equation 7.18), so the first terms cancel; at order  we
have

Taking the inner product with :

Because  is hermitian, the first term on the left cancels the first term on
the right. Putting in Equation 7.17, and exploiting the orthonormality
condition (Equation 7.16), we obtain

or, more compactly,

where

Similarly, the inner product with  yields

Notice that the Ws are (in principle) known—they are just the “matrix
elements” of , with respect to the unperturbed wave functions  and 
. Written in matrix form, Equations 7.27 and 7.29 are
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(7.31)

(7.33)

(7.32)

The eigenvalues of the matrix  give the first-order corrections to the
energy  and the corresponding eigenvectors tell us the coefficients α
and β that determine the “good” states.6

The Appendix (Section A.5) shows how to obtain the eigenvalues of a
matrix; I’ll reproduce those steps here to find a general solution for .
First, move all the terms in Equation 7.30 to the left-hand side.

This equation only has non-trivial solutions if the matrix on the left is non-
invertible—that is to say, if its determinant vanishes:

where we used the fact that . Solving the
quadratic,

This is the fundamental result of degenerate perturbation theory; the two
roots correspond to the two perturbed energies.

Example 7.3
Returning to Example 7.2, show that diagonalizing the matrix 
gives the same “good” states we found by solving the problem
exactly.

Solution: We need to calculate the matrix elements of . First,
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(the integrands are both odd functions). Similarly, , and we
need only compute

These two integrals are equal, and recalling (Equation 2.70)

we have

Therefore, the matrix  is

The (normalized) eigenvectors of this matrix are

These eigenvectors tell us which linear combination of  and 
are the good states:
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(7.34)

(7.35)

just as in Equation 7.23. The eigenvalues of the matrix ,

give the first-order corrections to the energy (compare 7.33).

If it happens that  in Equation 7.30 then the two eigenvectors
are

and the energies,

are precisely what we would have obtained using nondegenerate
perturbation theory (Equation 7.9). We have simply been lucky: The states 

 and  were already the “good” linear combinations. Obviously, it
would be greatly to our advantage if we could somehow guess the “good”
states right from the start—then we could go ahead and use nondegenerate
perturbation theory. As it turns out, we can very often do this by exploiting
the theorem in the following section.

7.2.2 “Good” States

Theorem:  Let A be a hermitian operator that commutes with 
and . If  and  (the degenerate eigenfunctions of  are also
eigenfunctions of A, with distinct eigenvalues,
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(7.37)

(7.38)

(7.36)

then  and  are the “good” states to use in perturbation theory.

Proof:   Since  and A commute, there exist
simultaneous eigenstates  where

The fact that A is hermitian means

(making use of the fact that μ is real). This holds true for any value of
 and taking the limit as  we have

and similarly

Now the good states are linear combinations of  and : 
. From above it follows that either , in

which case  and the good state is simply , or 
 and the good state is . QED

Once we identify the “good” states, either by solving Equation 7.30
or by applying this theorem, we can use these “good” states as our
unperturbed states and apply ordinary non-degenerate perturbation theory.7

In most cases, the operator  will be suggested by symmetry; as you saw
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(7.39)

in Chapter 6, symmetries are associated with operators that commute with 
—precisely what are required to identify the good states.

Example 7.4
Find an operator  that satisfies the requirements of the preceding
theorem to construct the “good” states in Examples 7.2 and 7.3.

Solution: The perturbation  has less symmetry than .  had
continuous rotational symmetry, but  is only invariant
under rotations by integer multiples of π. For , take the operator 

 that rotates a function counterclockwise by an angle π.
Acting on our stats  and  we have

That’s no good; we need an operator with distinct eigenvalues.
How about the operator that interchanges x and y? This is a
reflection about a 45  diagonal of the well. Call this operator . 
commutes with both  and , since they are unchanged when
you switch x and y. Now,

So our degenerate eigenstates are not eigenstates of . But we can
construct linear combinations that are:

Then
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These are “good” states, since they are eigenstates of an operator 
with distinct eigenvalues , and  commutes with both  and 

.

Moral: If you’re faced with degenerate states, look around for some
hermitian operator A that commutes with  and ; pick as your
unperturbed states ones that are simultaneously eigenfunctions of  and
A (with distinct eigenvalues). Then use ordinary first-order perturbation
theory. If you can’t find such an operator, you’ll have to resort to Equation
7.33, but in practice this is seldom necessary.

Problem 7.8 Let the two “good” unperturbed
states be

where  and  are determined (up to
normalization) by Equation 7.27 (or Equation
7.29). Show explicitly that

(a)    are orthogonal ;
(b)   ;
(c)   , with  given by

Equation 7.33.

Problem 7.9 Consider a particle of mass m
that is free to move in a one-dimensional
region of length L that closes on itself (for
instance, a bead that slides frictionlessly on a
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circular wire of circumference L, as in Problem
2.46).

(a)   Show that the stationary states can be
written in the form

where , , , … , and the
allowed energies are

Notice that—with the exception of the
ground state —these are all
doubly degenerate.

(b)   Now suppose we introduce the
perturbation

where . (This puts a little
“dimple” in the potential at , as
though we bent the wire slightly to
make a “trap”.) Find the first-order
correction to , using Equation 7.33.
Hint: To evaluate the integrals, exploit
the fact that  to extend the limits
from  to ; after all,  is
essentially zero outside .

(c)   What are the “good” linear
combinations of  and , for this
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(7.40)

(7.41)

(7.42)

problem? (Hint: use Eq. 7.27.) Show
that with these states you get the first-
order correction using Equation 7.9.

(d)   Find a hermitian operator A that fits
the requirements of the theorem, and
show that the simultaneous eigenstates
of  and A are precisely the ones you
used in (c).

7.2.3 Higher-Order Degeneracy

In the previous section I assumed the degeneracy was two-fold, but it is
easy to see how the method generalizes. In the case of n-fold degeneracy,
we look for the eigenvalues of the  matrix

For three-fold degeneracy (with degenerate states , , and  the first-
order corrections to the energies  are the eigenvalues of , determined
by solving

and the “good” states are the corresponding eigenvectors:8

Once again, if you can think of an operator A that commutes with 
and , and use the simultaneous eigenfunctions of A and , then the W
matrix will automatically be diagonal, and you won’t have to fuss with
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calculating the off-diagonal elements of  or solving the characteristic
equation.9 (If you’re nervous about my generalization from two-fold
degeneracy to n-fold degeneracy, work Problem 7.13.)

Problem 7.10 Show that the first-order energy
corrections computed in Example 7.3
(Equation 7.34) agree with an expansion of the
exact solution (Equation 7.21) to first order
in ϵ.

Problem 7.11 Suppose we perturb the infinite
cubical well (Problem 4.2) by putting a delta
function “bump” at the point :

Find the first-order corrections to the energy of
the ground state and the (triply degenerate)
first excited states.

Problem 7.12 Consider a quantum system
with just three linearly independent states.
Suppose the Hamiltonian, in matrix form, is

where  is a constant, and ϵ is some small
number .
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(a)   Write down the eigenvectors and
eigenvalues of the unperturbed
Hamiltonian .

(b)   Solve for the exact eigenvalues of .
Expand each of them as a power series
in ϵ, up to second order.

(c)   Use first- and second-order non-
degenerate perturbation theory to find
the approximate eigenvalue for the
state that grows out of the
nondegenerate eigenvector of .
Compare the exact result, from (b).

(d)   Use degenerate perturbation theory to
find the first-order correction to the
two initially degenerate eigenvalues.
Compare the exact results.

Problem 7.13 In the text I asserted that the
first-order corrections to an n-fold degenerate
energy are the eigenvalues of the W matrix,
and I justified this claim as the “natural”
generalization of the case . Prove it, by
reproducing the steps in Section 7.2.1, starting
with
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(7.43)

(7.44)

(generalizing Equation 7.17), and ending by
showing that the analog to Equation 7.27 can
be interpreted as the eigenvalue equation for
the matrix .

7.3 The Fine Structure of Hydrogen

In our study of the hydrogen atom (Section 4.2) we took the Hamiltonian
—called the Bohr Hamiltonian—to be

(electron kinetic energy plus Coulombic potential energy). But this is not
quite the whole story. We have already learned how to correct for the
motion of the nucleus: Just replace m by the reduced mass (Problem 5.1).
More significant is the so-called fine structure, which is actually due to
two distinct mechanisms: a relativistic correction, and spin-orbit
coupling. Compared to the Bohr energies (Equation 4.70), fine structure is
a tiny perturbation—smaller by a factor of , where

is the famous fine structure constant. Smaller still (by another factor of 
 is the Lamb shift, associated with the quantization of the electric field,

and smaller by yet another order of magnitude is the hyperfine structure,
which is due to the interaction between the magnetic dipole moments of
the electron and the proton. This hierarchy is summarized in Table 7.1. In
the present section we will analyze the fine structure of hydrogen, as an
application of time-independent perturbation theory.
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Table 7.1: Hierarchy of corrections to the Bohr energies of hydrogen.

Problem 7.14
(a)   Express the Bohr energies in terms of

the fine structure constant and the rest
energy  of the electron.

(b)   Calculate the fine structure constant
from first principles (i.e., without
recourse to the empirical values of ,
e, , and . Comment: The fine
structure constant is undoubtedly the
most fundamental pure
(dimensionless) number in all of
physics. It relates the basic constants
of electromagnetism (the charge of the
electron), relativity (the speed of
light), and quantum mechanics
(Planck’s constant). If you can solve
part (b), you have the most certain
Nobel Prize in history waiting for you.
But I wouldn’t recommend spending a
lot of time on it right now; many smart
people have tried, and all (so far) have
failed.
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(7.47)

(7.48)

(7.49)

7.3.1 The Relativistic Correction

The first term in the Hamiltonian is supposed to represent kinetic energy:

and the canonical substitution  yields the operator

But Equation 7.45 is the classical expression for kinetic energy; the
relativistic formula is

The first term is the total relativistic energy (not counting potential energy,
which we aren’t concerned with at the moment), and the second term is the
rest energy—the difference is the energy attributable to motion.

We need to express T in terms of the (relativistic) momentum,

instead of velocity. Notice that

so

This relativistic equation for kinetic energy reduces (of course) to the
classical result (Equation 7.45), in the nonrelativistic limit ;
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(7.50)

(7.53)

(7.54)

(7.55)

expanding in powers of the small number , we have

The lowest-order10 relativistic correction to the
Hamiltonian is therefore

In first-order perturbation theory, the correction to  is given by the
expectation value of  in the unperturbed state (Equation 7.9):

Now, the Schrödinger equation (for the unperturbed states) says

and hence11

So far this is entirely general; but we’re interested in
hydrogen, for which :

where  is the Bohr energy of the state in question.
To complete the job, we need the expectation values of  and ,

in the (unperturbed) state  (Equation 4.89). The first is easy (see
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(7.58)

Problem 7.15):

where a is the Bohr radius (Equation 4.72). The second is not so simple to
derive (see Problem 7.42), but the answer is12

It follows that

or, eliminating a (using Equation 4.72) and expressing everything in terms
of  (using Equation 4.70):

Evidently the relativistic correction is smaller than , by a factor of about 
.

You might have noticed that I used non-degenerate perturbation
theory in this calculation (Equation 7.52), in spite of the fact that the
hydrogen atom is highly degenerate. But the perturbation is spherically
symmetric, so it commutes with  and . Moreover, the eigenfunctions
of these operators (taken together) have distinct eigenvalues for the 
states with a given . Luckily, then, the wave functions  are the
“good” states for this problem (or, as we say, n, , and m are the good
quantum numbers), so as it happens the use of nondegenerate
perturbation theory was legitimate (see the “Moral” to Section 7.2.1).
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From Equation 7.58 we see that some of the degeneracy of the nth
energy level has lifted. The -fold degeneracy in m remains; as we
saw in Example 6.3 it is due to rotational symmetry, a symmetry that
remains intact with this perturbation. On the other hand, the “accidental”
degeneracy in  has disappeared; since its source is an additional symmetry
unique to the  potential (see Problem 6.34), we expect that degeneracy
to be broken by practically any perturbation.

Problem 7.15 Use the virial theorem (Problem
4.48) to prove Equation 7.56.

Problem 7.16 In Problem 4.52 you calculated
the expectation value of  in the state .
Check your answer for the special cases 
(trivial),  (Equation 7.56), 
(Equation 7.57), and  (Equation 7.66).
Comment on the case .

Problem 7.17 Find the (lowest-order)
relativistic correction to the energy levels of
the one-dimensional harmonic oscillator. Hint:
Use the technique of Problem 2.12.

Problem 7.18 Show that  is hermitian, for
hydrogen states with . Hint: For such
states  is independent of θ and ϕ, so
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(Equation 4.13). Using integration by parts,
show that

Check that the boundary term vanishes for 
, which goes like

near the origin.
The case of  is more subtle. The

Laplacian of  picks up a delta function (see,
for example, D. J. Griffiths, Introduction to
Electrodynamics, 4th edn, Eq. 1.102). Show
that

and confirm that  is hermitian.13 

7.3.2 Spin-Orbit Coupling

Imagine the electron in orbit around the nucleus; from the electron’s point
of view, the proton is circling around it (Figure 7.6). This orbiting positive
charge sets up a magnetic field B, in the electron frame, which exerts a
torque on the spinning electron, tending to align its magnetic moment 
along the direction of the field. The Hamiltonian (Equation 4.157) is
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(7.59)

To begin with, we need to figure out the magnetic field of the proton (B)
and the dipole moment of the electron .

 

Figure 7.6: Hydrogen atom, from the electron’s perspective.

The Magnetic Field of the Proton. If we picture the proton (from
the electron’s perspective) as a continuous current loop (Figure 7.6), its
magnetic field can be calculated from the Biot–Savart law:

with an effective current , where e is the charge of the proton and
T is the period of the orbit. On the other hand, the orbital angular
momentum of the electron (in the rest frame of the nucleus) is 

. Moreover, B and L point in the same direction (up,
in Figure 7.6), so

(I used  to eliminate  in favor of .)
The Magnetic Dipole Moment of the Electron. The magnetic dipole

moment of a spinning charge is related to its (spin) angular momentum;
the proportionality factor is the gyromagnetic ratio (which we already
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encountered in Section 4.4.2). Let’s derive it, this time, using classical

electrodynamics. Consider first a charge q smeared out around a ring of
radius r, which rotates about the axis with period T (Figure 7.7). The
magnetic dipole moment of the ring is defined as the current  times
the area :

If the mass of the ring is m, its angular momentum is the moment of inertia
 times the angular velocity :

The gyromagnetic ratio for this configuration is evidently .
Notice that it is independent of r (and . If I had some more complicated
object, such as a sphere (all I require is that it be a figure of revolution,
rotating about its axis), I could calculate  and S by chopping it into little
rings, and adding up their contributions. As long as the mass and the
charge are distributed in the same manner (so that the charge-to-mass ratio
is uniform), the gyromagnetic ratio will be the same for each ring, and
hence also for the object as a whole. Moreover, the directions of  and S
are the same (or opposite, if the charge is negative), so
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Figure 7.7: A ring of charge, rotating about its axis.

That was a purely classical calculation, however; as it turns out the
electron’s magnetic moment is twice the classical value:

The “extra” factor of 2 was explained by Dirac, in his relativistic theory of
the electron.14

Putting all this together, we have

But there is a serious fraud in this calculation: I did the analysis in the rest
frame of the electron, but that’s not an inertial system—it accelerates, as
the electron orbits around the nucleus. You can get away with this if you
make an appropriate kinematic correction, known as the Thomas
precession.15 In this context it throws in a factor of 1/2:16

This is the spin-orbit interaction; apart from two corrections (the
modified gyromagnetic ratio for the electron and the Thomas precession
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(7.64)

factor—which, coincidentally, exactly cancel one another) it is just what

you would expect on the basis of a naive classical model. Physically, it is
due to the torque exerted on the magnetic dipole moment of the spinning
electron, by the magnetic field of the proton, in the electron’s
instantaneous rest frame.

Now the quantum mechanics. In the presence of spin-orbit coupling,
the Hamiltonian no longer commutes with L and S, so the spin and orbital
angular momenta are not separately conserved (see Problem 7.19).
However,  does commute with ,  and the total angular momentum

and hence these quantities are conserved (Equation 3.73). To put it another
way, the eigenstates of  and  are not “good” states to use in
perturbation theory, but the eigenstates of , , , and  are. Now

so

and therefore the eigenvalues of  are

In this case, of course, . Meanwhile, the expectation value of 
(see Problem 7.43)17 is

and we conclude that

565



(7.67)

(7.68)
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or, expressing it all in terms of :18

It is remarkable, considering the totally different physical
mechanisms involved, that the relativistic correction and the spin-orbit
coupling are of the same order . Adding them together, we get the
complete fine-structure formula (see Problem 7.20):

Combining this with the Bohr formula, we obtain the grand result for the
energy levels of hydrogen, including fine structure:

Fine structure breaks the degeneracy in  (that is, for a given n, the
different allowed values of  do not all carry the same energy), but it still
preserves degeneracy in j (see Figure 7.8). The z-component eigenvalues
for orbital and spin angular momentum  and  are no longer “good”
quantum numbers—the stationary states are linear combinations of states
with different values of these quantities; the “good” quantum numbers are
n, , s, j, and .19
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Figure 7.8: Energy levels of hydrogen, including fine structure (not to scale).

Problem 7.19 Evaluate the following
commutators: (a) , (b) , (c) 

, (d) , (e) , (f) 
. Hint: L and S satisfy the

fundamental commutation relations for angular
momentum (Equations 4.99 and 4.134), but
they commute with each other.

Problem 7.20 Derive the fine structure
formula (Equation 7.68) from the relativistic
correction (Equation 7.58) and the spin-orbit
coupling (Equation 7.67). Hint: Note that 
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 (except for , where only the
plus sign occurs); treat the plus sign and the
minus sign separately, and you’ll find that you
get the same final answer either way.

Problem 7.21 The most prominent feature of
the hydrogen spectrum in the visible region is
the red Balmer line, coming from the transition

 to . First of all, determine the
wavelength and frequency of this line
according to the Bohr theory. Fine structure
splits this line into several closely-spaced lines;
the question is: How many, and what is their
spacing? Hint: First determine how many
sublevels the  level splits into, and find 

 for each of these, in eV. Then do the same
for . Draw an energy level diagram
showing all possible transitions from  to 

. The energy released (in the form of a
photon) is , the first part being
common to all of them, and  (due to fine
structure) varying from one transition to the
next. Find  (in eV) for each transition.
Finally, convert to photon frequency, and
determine the spacing between adjacent
spectral lines (in Hz)—not the frequency
interval between each line and the unperturbed
line (which is, of course, unobservable), but
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the frequency interval between each line and
the next one. Your final answer should take the
form: “The red Balmer line splits into (???)
lines. In order of increasing frequency, they
come from the transitions (1)  to 

, (2)  to , …. The
frequency spacing between line (1) and line (2)
is (???) Hz, the spacing between line (2) and
line (3) is (???) Hz, ….”

Problem 7.22 The exact fine-structure formula
for hydrogen (obtained from the Dirac
equation without recourse to perturbation
theory) is20 

Expand to order  (noting that , and
show that you recover Equation 7.69.

7.4 The Zeeman Effect

When an atom is placed in a uniform external magnetic field , the
energy levels are shifted. This phenomenon is known as the Zeeman
effect. For a single electron, the perturbation is21
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where

(Equation 7.62) is the magnetic dipole moment associated with electron
spin, and

(Equation 7.61) is the dipole moment associated with orbital motion.22

Thus

The nature of the Zeeman splitting depends critically on the strength
of the external field in comparison with the internal field (Equation 7.60)
that gives rise to spin-orbit coupling. If , then fine structure
dominates, and  can be treated as a small perturbation, whereas if 

, then the Zeeman effect dominates, and fine structure becomes
the perturbation. In the intermediate zone, where the two fields are
comparable, we need the full machinery of degenerate perturbation theory,
and it is necessary to diagonalize the relevant portion of the Hamiltonian
“by hand.” In the following sections we shall explore each of these
regimes briefly, for the case of hydrogen.

Problem 7.23 Use Equation 7.60 to estimate
the internal field in hydrogen, and characterize
quantitatively a “strong” and “weak” Zeeman
field.
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7.4.1 Weak-Field Zeeman Effect

If , fine structure dominates; we treat  as the
“unperturbed” Hamiltonian and  as the perturbation. Our “unperturbed”
eigenstates are then those appropriate to fine structure:  and the
“unperturbed” energies are  (Equation 7.69). Even though fine structure
has lifted some of the degeneracy in the Bohr model, these states are still
degenerate, since the energy does not depend on  or . Luckily the states

 are the “good” states for treating the perturbation  (meaning we
don’t have to write down the  matrix for —it’s already diagonal)
since  commutes with  (so long as we align  with the z axis) and 

, and each of the degenerate states is uniquely labeled by the two
quantum numbers  and .

In first-order perturbation theory, the Zeeman correction to the energy
is

where, as mentioned above, we align  with the z axis to eliminate the
off-diagonal elements of . Now . Unfortunately, we do
not immediately know the expectation value of S. But we can figure it out,
as follows: The total angular momentum  is constant
(Figure 7.9); L and S precess rapidly about this fixed vector. In particular,
the (time) average value of S is just its projection along J:

But , so , and hence

from which it follows that23
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(7.80)

(7.78)
The term in square brackets is known as the Landé g-
factor, .24

 

Figure 7.9: In the presence of spin-orbit coupling, L and S are not separately
conserved; they precess about the fixed total angular momentum, J.

The energy corrections are then

where

is the so-called Bohr magneton. Recall (Example 6.3) that degeneracy in
the quantum number m is a consequence of rotational invariance.25 The
perturbation  picks out a specific direction in space (the direction of 
which breaks the rotational symmetry and lifts the degeneracy in m.

The total energy is the sum of the fine-structure part (Equation 7.69)
and the Zeeman contribution (Equation 7.79). For example, the ground
state , , , and therefore  splits into two levels:
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with the plus sign for , and minus for . These energies
are plotted (as functions of  in Figure 7.10.

 

Figure 7.10: Weak-field Zeeman splitting of the ground state of hydrogen; the
upper line  has slope 1, the lower line  has slope .

Problem 7.24 Consider the (eight) 
states, . Find the energy of each state,
under weak-field Zeeman splitting, and
construct a diagram like Figure 7.10 to show
how the energies evolve as  increases.
Label each line clearly, and indicate its slope.

Problem 7.25 Use the Wigner–Eckart theorem
(Equations 6.59–6.61) to prove that the matrix
elements of any two vector operators, V and
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W, are proportional in a basis of angular-
momentum eigenstates:

Comment: With  replaced by j
(the theorem holds regardless of whether the
states are eigenstates of orbital, spin, or total
angular momentum),  and ,
this proves Equation 7.77.

7.4.2 Strong-Field Zeeman Effect

If , the Zeeman effect dominates26 and we take the
“unperturbed” Hamiltonian to be  and the perturbation to be 
. The Zeeman Hamiltonian is

and it is straightforward to compute the “unperturbed” energies:

The states we are using here:  are degenerate, since the energy
does not depend on , and there is an additional degeneracy due to the fact
that, for example,  and  or  and  have the
same energy. Again we are lucky;  are the “good” states for
treating the perturbation. The fine structure Hamiltonian  commutes
with both  and with  (these two operators serve as A in the theorem of
Section 7.2.2); the first operator resolves the degeneracy in  and the

574



(7.85)
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(7.84)

second resolves the degeneracy from coincidences in 
.

In first-order perturbation theory the fine structure correction to these
levels is

The relativistic contribution is the same as before (Equation 7.58); for the
spin-orbit term (Equation 7.63) we need

(note that  for eigenstates of  and .
Putting all this together (Problem 7.26), we conclude that

(The term in square brackets is indeterminate for ; its correct value in
this case is 1—see Problem 7.28.) The total energy is the sum of the
Zeeman part (Equation 7.83) and the fine structure contribution (Equation
7.86).

Problem 7.26 Starting with Equation 7.84, and
using Equations 7.58, 7.63, 7.66, and 7.85,
derive Equation 7.86.

Problem 7.27 Consider the (eight) 
states, . Find the energy of each state,
under strong-field Zeeman splitting. Express
each answer as the sum of three terms: the
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Bohr energy, the fine-structure (proportional to
, and the Zeeman contribution (proportional

to . If you ignore fine structure
altogether, how many distinct levels are there,
and what are their degeneracies?

Problem 7.28 If , then , ,
and the “good” states are the same  for
weak and strong fields. Determine  (from
Equation 7.74) and the fine structure energies
(Equation 7.69), and write down the general
result for the  Zeeman effect—regardless
of the strength of the field. Show that the
strong-field formula (Equation 7.86)
reproduces this result, provided that we
interpret the indeterminate term in square
brackets as 1.

7.4.3 Intermediate-Field Zeeman Effect

In the intermediate regime neither  nor  dominates, and we must treat
the two on an equal footing, as perturbations to the Bohr Hamiltonian
(Equation 7.43):

I’ll confine my attention here to the case  (you get to do  in
Problem 7.30). It’s not obvious what the “good” states are, so we’ll have to
resort to the full machinery of degenerate perturbation theory. I’ll choose
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basis states characterized by , j, and .27 Using the Clebsch–Gordan
coefficients (Problem 4.60 or Table 4.8) to express  as linear
combinations of ,28 we have:

In this basis the nonzero matrix elements of  are all on the
diagonal, and given by Equation 7.68;  has four off-diagonal elements,
and the complete matrix  is (see Problem 7.29):

where
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The first four eigenvalues are already displayed along the diagonal; it
remains only to find the eigenvalues of the two  blocks. The
characteristic equation for the first of these is

and the quadratic formula gives the eigenvalues:

The eigenvalues of the second block are the same, but with the sign of β
reversed. The eight energies are listed in Table 7.2, and plotted against 
in Figure 7.11. In the zero-field limit  they reduce to the fine
structure values; for weak fields  they reproduce what you got in
Problem 7.24; for strong fields  we recover the results of Problem
7.27 (note the convergence to five distinct energy levels, at very high
fields, as predicted in Problem 7.27).

Table 7.2: Energy levels for the  states of hydrogen, with fine structure
and Zeeman splitting.
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Figure 7.11: Zeeman splitting of the  states of hydrogen, in the weak,
intermediate, and strong field regimes.

Problem 7.29 Work out the matrix elements of
 and , and construct the W matrix given

in the text, for .

Problem 7.30 Analyze the Zeeman effect for
the  states of hydrogen, in the weak,
strong, and intermediate field regimes.
Construct a table of energies (analogous to
Table 7.2), plot them as functions of the
external field (as in Figure 7.11), and check
that the intermediate-field results reduce
properly in the two limiting cases. Hint: The
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Wigner–Eckart theorem comes in handy here.
In Chapter 6 we wrote the theorem in terms of
the orbital angular momentum  but it also
holds for states of total angular momentum j.
In particular,

for any vector operator V (and  is a
vector operator).

7.5 Hyperfine Splitting in Hydrogen

The proton itself constitutes a magnetic dipole, though its dipole moment
is much smaller than the electron’s because of the mass in the denominator
(Equation 7.62):

(The proton is a composite structure, made up of three quarks, and its
gyromagnetic ratio is not as simple as the electron’s—hence the explicit g-
factor , whose measured value is 5.59 as opposed to 2.00 for the
electron.) According to classical electrodynamics, a dipole  sets up a
magnetic field29

So the Hamiltonian of the electron, in the magnetic field due to the
proton’s magnetic dipole moment, is (Equation 7.59)
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According to perturbation theory, the first-order
correction to the energy (Equation 7.9) is the expectation value of the
perturbing Hamiltonian:

In the ground state (or any other state for which  the wave function is
spherically symmetric, and the first expectation value vanishes (see
Problem 7.31). Meanwhile, from Equation 4.80 we find that 

, so

in the ground state. This is called spin-spin coupling, because it involves
the dot product of two spins (contrast spin-orbit coupling, which involves 

.
In the presence of spin-spin coupling, the individual spin angular

momenta are no longer conserved; the “good” states are eigenvectors of
the total spin,

As before, we square this out to get
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But the electron and proton both have spin 1/2, so . In
the triplet state (spins “parallel”) the total spin is 1, and hence ; in
the singlet state the total spin is 0, and . Thus

Spin-spin coupling breaks the spin degeneracy of the ground state,
lifting the triplet configuration and depressing the singlet (see Figure 7.12).
The energy gap is

The frequency of the photon emitted in a transition from the triplet to the
singlet state is

and the corresponding wavelength is  cm, which falls in the
microwave region. This famous 21-centimeter line is among the most
pervasive forms of radiation in the universe.

 

Figure 7.12: Hyperfine splitting in the ground state of hydrogen.
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Problem 7.31 Let a and b be two constant
vectors. Show that

(the integration is over the usual
range: , . Use this result
to demonstrate that

for states with . Hint: 
 Do the

angular integrals first.

Problem 7.32 By appropriate modification of
the hydrogen formula, determine the hyperfine
splitting in the ground state of (a) muonic
hydrogen (in which a muon—same charge and
g-factor as the electron, but 207 times the mass
—substitutes for the electron), (b)
positronium (in which a positron—same mass
and g-factor as the electron, but opposite
charge—substitutes for the proton), and (c)
muonium (in which an anti-muon—same
mass and g-factor as a muon, but opposite
charge—substitutes for the proton). Hint:
Don’t forget to use the reduced mass (Problem
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5.1) in calculating the “Bohr radius” of these
exotic “atoms,” but use the actual masses in
the gyromagnetic ratios. Incidentally, the
answer you get for positronium 
eV) is quite far from the experimental value 

 eV); the large discrepancy is due
to pair annihilation , which
contributes an extra , and does not
occur (of course) in ordinary hydrogen,
muonic hydrogen, or muonium.30 

Further Problems on Chapter 7

Problem 7.33 Estimate the correction to the
ground state energy of hydrogen due to the
finite size of the nucleus. Treat the proton
as a uniformly charged spherical shell of
radius b, so the potential energy of an
electron inside the shell is constant: 

; this isn’t very realistic, but it
is the simplest model, and it will give us
the right order of magnitude. Expand your
result in powers of the small parameter 

, where a is the Bohr radius, and keep
only the leading term, so your final answer
takes the form
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Your business is to determine the constant
A and the power n. Finally, put in 

 m (roughly the radius of the
proton) and work out the actual number.
How does it compare with fine structure
and hyperfine structure?

Problem 7.34 In this problem you will develop
an alternative approach to degenerate
perturbation theory. Consider an
unperturbed Hamiltonian  with two
degenerate states  and  (energy ),
and a perturbation . Define the operator
that projects31 onto the degenerate
subspace:

The Hamiltonian can be written

where

The idea is to treat  as the
“unperturbed” Hamiltonian and  as the
perturbation; as you’ll soon discover,  is
nondegenerate, so we can use ordinary
nondegenerate perturbation theory.
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(a)   First we need to find the eigenstates of
.

i.   Show that any eigenstate 
(other than  or  of  is
also an eigenstate of  with
the same eigenvalue.

ii.   Show that the “good” states 
 (with α and β

determined by solving
Equation 7.30) are eigenstates
of  with energies .

(b)   Assuming that  and  are distinct,
you now have a nondegenerate
unperturbed Hamiltonian  and you
can do nondegenerate perturbation
theory using the perturbation . Find
an expression for the energy to second
order for the states  in (ii).
Comment: One advantage of this
approach is that it also handles the
case where the unperturbed energies
are not exactly equal, but very
close:32 . In this case one
must still use degenerate perturbation
theory; an important example of this
occurs in the nearly-free electron
approximation for calculating band
structure.33 
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Problem 7.35 Here is an application of the
technique developed in Problem 7.34.
Consider the Hamiltonian

(a)   Find the projection operator  (it’s a 
 matrix) that projects onto the

subspace spanned by

Then construct the matrices  and .
(b)   Solve for the eigenstates of  and

verify…
i.   that its spectrum is

nondegenerate,
ii.   that the nondegenerate

eigenstate of 

is also an eigenstate of 
with the same eigenvalue.

(c)   What are the “good” states, and what
are their energies, to first order in the
perturbation?
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Problem 7.36 Consider the isotropic three-
dimensional harmonic oscillator (Problem
4.46). Discuss the effect (in first order) of
the perturbation

(for some constant  on
(a)   the ground state;
(b)   the (triply degenerate) first excited

state. Hint: Use the answers to
Problems 2.12 and 3.39.

Problem 7.37 Van der Waals interaction.
Consider two atoms a distance R apart.
Because they are electrically neutral you
might suppose there would be no force
between them, but if they are polarizable
there is in fact a weak attraction. To model
this system, picture each atom as an
electron (mass m, charge  attached by a
spring (spring constant  to the nucleus
(charge , as in Figure 7.13. We’ll
assume the nuclei are heavy, and
essentially motionless. The Hamiltonian
for the unperturbed system is

The Coulomb interaction
between the atoms is
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(7.107)

(7.108)

(7.104)
(a)   Explain Equation

7.104. Assuming that  and  are
both much less than R, show that

(b)   Show that the total Hamiltonian 
plus Equation 7.105) separates into
two harmonic oscillator Hamiltonians:

under the change
variables

(c)   The ground state
energy for this Hamiltonian is
evidently

Without the Coulomb
interaction it would have been 

, where .
Assuming that , show
that
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Conclusion: There is an
attractive potential between the atoms,
proportional to the inverse sixth power
of their separation. This is the van der
Waals interaction between two
neutral atoms.

(d)   Now do the same calculation using
second-order perturbation theory.
Hint: The unperturbed states are of the
form , where  is a
one-particle oscillator wave function
with mass m and spring constant k; 

 is the second-order correction to
the ground state energy, for the
perturbation in Equation 7.105 (notice
that the first-order correction is
zero).34 

Figure 7.13:  Two nearby polarizable atoms
(Problem 7.37).

Problem 7.38 Suppose the Hamiltonian H, for
a particular quantum system, is a function
of some parameter ; let  and 
be the eigenvalues and eigenfunctions of 
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(7.112)

. The Feynman–Hellmann
theorem35 states that

(assuming either that  is nondegenerate,
or—if degenerate—that the s are the
“good” linear combinations of the
degenerate eigenfunctions).
(a)   Prove the Feynman–Hellmann

theorem. Hint: Use Equation 7.9.
(b)   Apply it to the one-dimensional

harmonic oscillator, (i) using 
(this yields a formula for the
expectation value of , (ii) using 

 (this yields , and (iii) using 
 (this yields a relation between 

 and . Compare your answers to
Problem 2.12, and the virial theorem
predictions (Problem 3.37).

Problem 7.39 Consider a three-level system
with the unperturbed Hamiltonian

 and the perturbation
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Since the  matrix  is diagonal (and
in fact identically  in the basis of states 

 and , you might assume they
are the good states, but they’re not. To see
this:
(a)   Obtain the exact eigenvalues for the

perturbed Hamiltonian .
(b)   Expand your results from part (a) as a

power series in  up to second order.
(c)   What do you obtain by applying

nondegenerate perturbation theory to
find the energies of all three states (up
to second order)? This would work if
the assumption about the good states
above were correct.

Moral: If any of the eigenvalues of  are
equal, the states that diagonalize  are not
unique, and diagonalizing  does not
determine the “good” states. When this
happens (and it’s not uncommon), you
need to use second-order degenerate
perturbation theory (see Problem 7.40).

Problem 7.40 If it happens that the square root
in Equation 7.33 vanishes, then ;
the degeneracy is not lifted at first order. In
this case, diagonalizing the  matrix puts
no restriction on α and β and you still don’t
know what the “good” states are. If you
need to determine the “good” states—for
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example to calculate higher-order
corrections—you need to use second-
order degenerate perturbation theory.
(a)   Show that, for the two-fold

degeneracy studied in Section 7.2.1,
the first-order correction to the wave
function in degenerate perturbation
theory is

(b)   Consider the terms of order 
(corresponding to Equation 7.8 in the
nondegenerate case) to show that α
and β are determined by finding the
eigenvectors of the matrix  (the
superscript denotes second order, not 

 squared) where

and that the eigenvalues of this matrix
correspond to the second-order
energies .

(c)   Show that second-order degenerate
perturbation theory, developed in ,
gives the correct energies to second
order for the three-state Hamiltonian in
Problem 7.39.
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∗∗ Problem 7.41 A free particle of mass m is
confined to a ring of circumference L such
that . The unperturbed
Hamiltonian is

to which we add a perturbation

(a)   Show that the unperturbed states may
be written

for  and that, apart from 
, all of these states are two-fold

degenerate.
(b)   Find a general expression for the

matrix elements of the perturbation:

(c)   Consider the degenerate pair of states
with . Construct the matrix 
and calculate the first-order energy
corrections, . Note that the
degeneracy does not lift at first order.
Therefore, diagonalizing  does not
tell us what the “good” states are.
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(d)   Construct the matrix 
(Problem 7.40) for the states ,
and show that the degeneracy lifts at
second order. What are the good linear
combinations of the states with 
?

(e)   What are the energies, accurate to
second order, for these states?36 

Problem 7.42 The Feynman–Hellmann
theorem (Problem 7.38) can be used to
determine the expectation values of  and

 for hydrogen.37 The effective
Hamiltonian for the radial wave functions
is (Equation 4.53)

and the eigenvalues (expressed in terms of 
38 are (Equation 4.70)

(a)   Use  in the Feynman–Hellmann
theorem to obtain . Check your
result against Equation 7.56.

(b)   Use  to obtain . Check your
answer with Equation 7.57.

Problem 7.43 Prove Kramers’ relation:39 
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(7.113)
which relates the
expectation values of r to three different
powers , , and , for an electron
in the state  of hydrogen. Hint:
Rewrite the radial equation (Equation 4.53)
in the form

and use it to express  in terms
of , , and . Then use
integration by parts to reduce the second
derivative. Show that 

, and 

. Take it from there.

Problem 7.44
(a)   Plug , , , and  into

Kramers’ relation (Equation 7.113) to
obtain formulas for , , , and 

. Note that you could continue
indefinitely, to find any positive
power.

(b)   In the other direction, however, you
hit a snag. Put in , and show
that all you get is a relation between 

 and .
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(c)   But if you can get  by some other
means, you can apply the Kramers
relation to obtain the rest of the
negative powers. Use Equation 7.57
(which is derived in Problem 7.42) to
determine , and check your
answer against Equation 7.66.

Problem 7.45 When an atom is placed in a
uniform external electric field , the
energy levels are shifted—a phenomenon
known as the Stark effect (it is the
electrical analog to the Zeeman effect). In
this problem we analyze the Stark effect
for the  and  states of hydrogen.
Let the field point in the z direction, so the
potential energy of the electron is

Treat this as a perturbation on the Bohr
Hamiltonian (Equation 7.43). (Spin is
irrelevant to this problem, so ignore it, and
neglect the fine structure.)
(a)   Show that the ground state energy is

not affected by this perturbation, in
first order.

(b)   The first excited state is four-fold
degenerate: , , , .
Using degenerate perturbation theory,
determine the first-order corrections to
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the energy. Into how many levels does
 split?

(c)   What are the “good” wave functions
for part (b)? Find the expectation value
of the electric dipole moment 

, in each of these “good”
states. Notice that the results are
independent of the applied field—
evidently hydrogen in its first excited
state can carry a permanent electric
dipole moment.

Hint: There are lots of integrals in this
problem, but almost all of them are zero.
So study each one carefully, before you do
any calculations: If the ϕ integral vanishes,
there’s not much point in doing the r and θ
integrals! You can avoid those integrals
altogether if you use the selection rules of
Sections 6.4.3 and 6.7.2. Partial answer: 

; all other elements
are zero.

Problem 7.46 Consider the Stark effect
(Problem 7.45) for the  states of
hydrogen. There are initially nine
degenerate states,  (neglecting spin, as
before), and we turn on an electric field in
the z direction.
(a)   Construct the  matrix

representing the perturbing
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Hamiltonian. Partial answer: 
, 
, 

.
(b)   Find the eigenvalues, and their

degeneracies.

Problem 7.47 Calculate the wavelength, in
centimeters, of the photon emitted under a
hyperfine transition in the ground state 

 of deuterium. Deuterium is
“heavy” hydrogen, with an extra neutron in
the nucleus; the proton and neutron bind
together to form a deuteron, with spin 1
and magnetic moment

the deuteron g-factor is 1.71.

Problem 7.48 In a crystal, the electric field of
neighboring ions perturbs the energy levels
of an atom. As a crude model, imagine that
a hydrogen atom is surrounded by three
pairs of point charges, as shown in
Figure 7.14. (Spin is irrelevant to this
problem, so ignore it.)
(a)   Assuming that , , and 

, show that
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where

(b)   Find the lowest-order correction to the
ground state energy.

(c)   Calculate the first-order corrections to
the energy of the first excited states 

. Into how many levels does
this four-fold degenerate system split,
(i) in the case of cubic symmetry, 

; (ii) in the case of
tetragonal symmetry, ;
(iii) in the general case of
orthorhombic symmetry (all three
different)? Note: you might recognize
the “good” states from Problem 4.71.

Figure 7.14:  Hydrogen atom surrounded by
six point charges (crude model for a crystal
lattice); Problem 7.48.
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(7.115)

Problem 7.49 A hydrogen atom is placed in a
uniform magnetic field  (the
Hamiltonian can be written as in
Equation 4.230). Use the Feynman–
Hellman theorem (Problem 7.38) to show
that

where the electron’s magnetic dipole
moment40 (orbital plus spin) is

The mechanical angular momentum is
defined in Equation 4.231.

Note: From Equation 7.114 it follows
that the magnetic susceptibility of N atoms
in a volume V and at 0 K (when they’re all
in the ground state) is41 

where  is the ground-state energy.
Although we derived Equation 7.114 for a
hydrogen atom, the expression applies to
multi-electron atoms as well—even when
electron–electron interactions are included.

Problem 7.50 For an atom in a uniform
magnetic field , Equation 4.230
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gives

where  and  refer to the total orbital
and spin angular momentum of all the
electrons.
(a)   Treating the terms involving  as a

perturbation, compute the shift of the
ground state energy of a helium atom
to second order in . Assume that the
helium ground state is given by

where  refers to the hydrogenic
ground state (with .

(b)   Use the results of Problem 7.49 to
calculate the magnetic susceptibility
of helium. Given a density of 

, obtain a numerical value
for the susceptibility. Note: The
experimental result is 
(the negative sign means that helium
is a diamagnet). The results can be
brought closer by taking account of
screening, which increases the orbital
radius (see Section 8.2).
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∗∗∗ Problem 7.51 Sometimes it is possible to solve
Equation 7.10 directly, without having to
expand  in terms of the unperturbed
wave functions (Equation 7.11). Here are
two particularly nice examples.
(a)   Stark effect in the ground state of

hydrogen.
(i)   Find the first-order correction

to the ground state of
hydrogen in the presence of a
uniform external electric field 

 (see Problem 7.45). Hint:
Try a solution of the form

your problem is to find the
constants A, B, and C that
solve Equation 7.10.

(ii)   Use Equation 7.14 to
determine the second-order
correction to the ground state
energy (the first-order
correction is zero, as you
found in Problem 7.45(a)).
Answer: .

(b)   If the proton had an electric dipole
moment p, the potential energy of the
electron in hydrogen would be
perturbed in the amount
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(i)   Solve Equation 7.10 for the
first-order correction to the
ground state wave function.

(ii)   Show that the total electric
dipole moment of the atom is
(surprisingly) zero, to this
order.

(iii)    Use Equation 7.14 to
determine the second-order
correction to the ground state
energy. What is the first-
order correction?

Problem 7.52 Consider a spinless particle of
charge q and mass m constrained to move
in the xy plane under the influence of the
two-dimensional harmonic oscillator
potential

(a)   Construct the ground state wave
function, , and write down its
energy. Do the same for the
(degenerate) first excited states.

(b)   Now imagine that we turn on a weak
magnetic field of magnitude 
pointing in the z-direction, so that (to
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first order in ) the Hamiltonian
acquires an extra term

Treating this as a perturbation, find the
first-order corrections to the energies of the
ground state and first excited states.

Problem 7.53 Imagine an infinite square well
(Equation 2.22) into which we introduce a
delta-function perturbation,

where  is a positive constant, and 
 (to simplify matters, let 

, where .42 
(a)   Find the first-order correction to the

nth allowed energy (Equation 2.30),
assuming  is small. (What does
“small” mean, in this context?)

(b)   Find the second-order correction to
the allowed energies. (Leave your
answer as a sum.)

(c)   Now solve the Schrödinger equation
exactly, treating separately the regions 

 and , and
imposing the boundary conditions at 

. Derive the transcendental equation
for the energies:
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(7.117)

Here , 
, and . Check

that Equation 7.116 reproduces your
result from part (a), in the appropriate
limit.

(d)   Everything so far holds just as well if 
 is negative, but in that case there

may be an additional solution with
negative energy. Derive the
transcendental equation for a negative-
energy state:

where  and 
. Specialize to the

symmetrical case , and show
that you recover the energy of the
delta-function well (Equation 2.132),
in the appropriate regime.

(e)   There is in fact exactly one negative-
energy solution, provided that 

. First, prove this
(graphically), for the case .
(Below that critical value there is no
negative-energy solution.) Next, by
computer, plot the solution v, as a
function of p, for , and 
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(7.118)

. Verify that the solution only
exists within the predicted range of p.

(f)   For  plot the ground state
wave function, , for 

, , and 
, to show how the sinusoidal shape

(Figure 2.2) evolves into the
exponential shape (Figure 2.13), as the
delta function well “deepens.”43 

Problem 7.54 Suppose you want to calculate
the expectation value of some observable
Ω, in the nth energy eigenstate of a system
that is perturbed by :

Replacing  by its perturbation expansion,
Equation 7.5,44 

The first-order correction to  is therefore

or, using Equation 7.13,

(assuming the unperturbed
energies are nondegenerate, or that we are
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using the “good” basis states).
(a)   Suppose  (the perturbation

itself). What does Equation 7.118 tell
us in this case? Explain (carefully)
why this is consistent with Equation
7.15.

(b)   Consider a particle of charge q
(maybe an electron in a hydrogen
atom, or a pith ball connected to a
spring), that is placed in a weak
electric field  pointing in the x
direction, so that

The field will induce an electric dipole
moment, , in the “atom.” The
expectation value of  is proportional
to the applied field, and the
proportionality factor is called the
polarizability, α. Show that

Find the polarizability of the ground
state of a one-dimensional harmonic
oscillator. Compare the classical
answer.

(c)   Now imagine a particle of mass m in a
one-dimensional harmonic oscillator
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with a small anharmonic
perturbation45 

Find  (to first order), in the nth
energy eigenstate. Answer: 

. Comment: As

the temperature increases, higher-
energy states are populated, and the
particles move farther (on average)
from their equilibrium positions; that’s
why most solids expand with rising
temperature.

Problem 7.55 Crandall’s Puzzle.46 Stationary
states of the one-dimensional Schrödinger
equation ordinarily respect three “rules of
thumb”: (1) the energies are
nondegenerate, (2)   the ground state has no
nodes, the first excited state has one node,
the second has two, and so on, and (3) if
the potential is an even function of x, the
ground state is even, the first excited state
is odd, the second is even, and so on. We
have already seen that the “bead-on-a-ring”
(Problem 2.46) violates the first of these;
now suppose we introduce a “nick” in at
the origin:
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(If you don’t like the delta function, make
it a gaussian, as in Problem 7.9.) This lifts
the degeneracy, but what is the sequence of
even and odd wave functions, and what is
the sequence of node numbers? Hint: You
don’t really need to do any calculations,
here, and you’re welcome to assume that α
is small, but by all means solve the
Schrödinger equation exactly if you prefer.

Problem 7.56 In this problem we treat the
electron–electron repulsion term in the
helium Hamiltonian (Equation 5.38) as a
perturbation,

(This will not be very accurate, because the
perturbation is not small, in comparison to
the Coulomb attraction of the nucleus …
but it’s a start.)
(a)   Find the first-order correction to the

ground state,

(You have already done this
calculation, if you worked Problem
5.15—only we didn’t call it
perturbation theory back then.)
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(b)   Now treat the first excited state, in
which one electron is in the
hydrogenic ground state, , and the
other is in the state . Actually,
there are two such states, depending
on whether the electron spins occupy
the singlet configuration (parahelium)
or the triplet (orthohelium):47 

Show that

where

Evaluate these two integrals, put in the
actual numbers, and compare your
results with Figure 5.2 (the measured
energies are  eV and 
eV).48 

Problem 7.57 The Hamiltonian for the Bloch
functions (Equation 6.12) can be analyzed
with perturbation theory by defining 
and  such that
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In this problem, don’t assume anything
about the form of .
(a)   Determine the operators  and 

(express them in terms of ).
(b)   Find  to second order in q. That is,

find expressions for , , and  (in
terms of the  and matrix elements
of  in the “unperturbed” states 

(c)   Show that the constants  are all
zero. Hint: See Problem 2.1(b) to get
started. Remember that  is
periodic.

Comment: It is conventional to write 
 where  is the effective

mass of particles in the  band since
then, as you’ve just shown,

just like the free particle (Equation 2.92)
with .

1   As always (footnote 34, page 49) the uniqueness of power series expansions
guarantees that the coefficients of like powers are equal.
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2   In this context it doesn’t matter whether we write  or  (with
the extra vertical bar), because we are using the wave function itself to label the
state. But the latter notation is preferable, because it frees us from this
convention. For instance, if we used  to denote the nth state of the harmonic
oscillator (Equation 2.86),  makes sense, but  is unintelligible
(operators act on vectors/functions, not on numbers).

3   Incidentally, nothing here depends on the specific nature of the infinite square
well—the same holds for any potential, when the perturbation is a constant.

4   Alternatively, a glance at Equation 7.5 reveals that any  component in 
might as well be pulled out and combined with the first term. In fact, the choice

 ensures that —with 1 as the coefficient of  in Equation 7.5—is
normalized (to first order in : 

 but the orthonormality
of the unperturbed states means that the first term is 1 and 
, as long as  has no  component.

5   In the short-hand notation , , the first three
corrections to the  energy are

The third-order correction is given in Landau and Lifschitz, Quantum
Mechanics: Non-Relativistic Theory, 3rd edn, Pergamon, Oxford (1977), page
136; the fourth and fifth orders (together with a powerful general technique for
obtaining the higher orders) are developed by Nicholas Wheeler, Higher-Order
Spectral Perturbation (unpublished Reed College report, 2000). Illuminating
alternative formulations of time-independent perturbation theory include the
Dalgarno–Lewis method and the closely related “logarithmic” perturbation
theory (see, for example, T. Imbo and U. Sukhatme, Am. J. Phys. 52, 140
(1984), for LPT, and H. Mavromatis, Am. J. Phys. 59, 738 (1991), for
Delgarno–Lewis).

6   This assumes that the eigenvalues of  are distinct so that the degeneracy lifts
at first order. If not, any choice of α and β satisfies Equation 7.30; you still
don’t know what the good states are. The first-order energies are correctly
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given by Equation 7.33 when this happens, and in many cases that’s all you
require. But if you need to know the “good” states—for example to calculate
higher-order corrections—you will have to use second-order degenerate
perturbation theory (see Problems 7.39, 7.40, and 7.41) or employ the theorem
of Section 7.2.2.

7   Note that the theorem is more general than Equation 7.30. In order to identify
the good states from Equation 7.30, the energies  need to be different. In
some cases they are the same and the energies of the degenerate states split at
second, third, or higher order in perturbation theory. But the theorem allows
you to identify the good states in every case.

8   If the eigenvalues are degenerate, see footnote 6.
9   Degenerate perturbation theory amounts to diagonalization of the degenerate

part of the Hamiltonian; see Problems 7.34 and 7.35.
10   The kinetic energy of the electron in hydrogen is on the order of 10 eV, which

is minuscule compared to its rest energy (511,000 eV), so the hydrogen atom is
basically nonrelativistic, and we can afford to keep only the lowest-order
correction. In Equation 7.50, p is the relativistic momentum (Equation 7.48),
not the classical momentum mv. It is the former that we now associate with the
quantum operator , in Equation 7.51.

11   An earlier edition of this book claimed that  is not hermitian for states with 
 (calling into question the maneuver leading to Equation 7.54). That was

incorrect—  is hermitian, for all  (see Problem 7.18).
12   The general formula for the expectation value of any power of r is given in

Hans A. Bethe and Edwin E. Salpeter, Quantum Mechanics of One- and Two-
Electron Atoms, Plenum, New York (1977), p. 17.

13   Thanks to Edward Ross and Li Yi-ding for fixing this problem.
14   We have already noted that it can be dangerous to picture the electron as a

spinning sphere (see Problem 4.28), and it is not too surprising that the naive
classical model gets the gyromagnetic ratio wrong. The deviation from the
classical expectation is known as the g-factor: . Thus the g-factor
of the electron, in Dirac’s theory, is exactly 2. But quantum electrodynamics
reveals tiny corrections to this:  is actually . The
calculation and measurement (which agree to exquisite precision) of the so-
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called anomalous magnetic moment of the electron were among the greatest
achievements of twentieth-century physics.

15   One way of thinking of it is that the electron is continually stepping from one
inertial system to another; Thomas precession amounts to the cumulative effect
of all these Lorentz transformations. We could avoid the whole problem, of
course, by staying in the lab frame, in which the nucleus is at rest. In that case
the field of the proton is purely electric, and you might wonder why it exerts
any torque on the electron. Well, the fact is that a moving magnetic dipole
acquires an electric dipole moment, and in the lab frame the spin-orbit coupling
is due to the interaction of the electric field of the nucleus with the electric
dipole moment of the electron. Because this analysis requires more
sophisticated electrodynamics, it seems best to adopt the electron’s perspective,
where the physical mechanism is more transparent.

16   More precisely, Thomas precession subtracts 1 from the gyromagnetic ratio
(see R. R. Haar and L. J. Curtis, Am. J. Phys., 55, 1044 (1987)).

17   In Problem 7.43 the expectation values are calculated using the hydrogen
wave functions —that is, eigenstates of —whereas we now want
eigenstates of —which are linear combinations of  and .
But since  is independent of m, it doesn’t matter.

18   The case  looks problematic, since we are ostensibly dividing by zero. On
the other hand, the numerator is also zero, since in this case ; so Equation
7.67 is indeterminate. On physical grounds there shouldn’t be any spin-orbit
coupling when . In any event, the problem disappears when the spin-orbit
coupling is added to the relativistic correction, and their sum (Equation 7.68) is
correct for all . If you’re feeling uneasy about this whole calculation, I don’t
blame you; take comfort in the fact that the exact solution can be obtained by
using the (relativistic) Dirac equation in place of the (nonrelativistic)
Schrödinger equation, and it confirms the results we obtain here by less
rigorous means (see Problem 7.22.)

19   To write  (for given  and  as a linear combination of  we would
use the appropriate Clebsch–Gordan coefficients (Equation 4.183).

20   Bethe and Salpeter (footnote 12, page 298), page 238.
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21   This is correct to first order in B. We are ignoring a term of order  in the
Hamiltonian (the exact result was calculated in Problem 4.72). In addition, the
orbital magnetic moment (Equation 7.72) is proportional to the mechanical
angular momentum, not the canonical angular momentum (see Problem 7.49).
These neglected terms give corrections of order , comparable to the second-
order corrections from . Since we’re working to first order, they are safe to
ignore in this context.

22   The gyromagnetic ratio for orbital motion is just the classical value —it
is only for spin that there is an “extra” factor of 2.

23   While Equation 7.78 was derived by replacing S by its average value, the result
is not an approximation;  and J are both vector operators and the states
are angular-momentum eigenstates. Therefore, the matrix elements can be
evaluated by use of the Wigner–Eckart theorem (Equations 6.59–6.61). It
follows (Problem 7.25) that the matrix elements are proportional:

and the constant of proportionality  is the ratio of reduced matrix elements.
All that remains is to evaluate : see Claude Cohen-Tannoudji, Bernard Diu,
and Franck Laloë, Quantum Mechanics, Wiley, New York (1977), Vol. 2,
Chapter X.

24   In the case of a single electron, where , .
25   That example specifically treated orbital angular momentum, but the same

argument holds for the total angular momentum.
26   In this regime the Zeeman effect is also known as the Paschen–Back effect.
27   You can use , ,  states if you prefer—this makes the matrix elements of 

 easier, but those of  more difficult; the W matrix will be more
complicated, but its eigenvalues (which are independent of basis) are the same
either way.

28   Don’t confuse the notation  in the Clebsch–Gordan tables with 
(in Section 7.4.1) or  (in Section 7.4.2); here n is always 2, and s (of
course) is always .

29   If you are unfamiliar with the delta function term in Equation 7.90, you can
derive it by treating the dipole as a spinning charged spherical shell, in the limit
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as the radius goes to zero and the charge goes to infinity (with  held constant).
See D. J. Griffiths, Am. J. Phys., 50, 698 (1982).

30   For details see Griffiths, footnote 29, page 311.
31   See page 118 for a discussion of projection operators.
32   See Problem 7.4 for a discussion of what close means in this context.
33   See, for example, Steven H. Simon, The Oxford Solid State Basics (Oxford

University Press, 2013), Section 15.1.
34   There is an interesting fraud in this well-known problem. If you expand  to

order , the extra term has a nonzero expectation value in the ground state of
, so there is a nonzero first-order perturbation, and the dominant contribution

goes like , not . The model gets the power “right” in three dimensions
(where the expectation value is zero), but not in one. See A. C. Ipsen and
K. Splittorff, Am. J. Phys. 83, 150 (2015).

35   Feynman obtained Equation 7.110 while working on his undergraduate thesis
at MIT (R. P. Feynman, Phys. Rev. 56, 340, 1939); Hellmann’s work was
published four years earlier in an obscure Russian journal.

36   See D. Kiang, Am. J. Phys. 46 (11), 1978 and L.-K. Chen, Am. J. Phys. 72 (7),
2004 for further discussion of this problem. It is shown that each degenerate
energy level, , splits at order 2n in perturbation theory. The exact solution to
the problem can also be obtained as the time-independent Schrödinger equation
for  reduces to the Mathieu equation.

37   C. Sánchez del Rio, Am. J. Phys., 50, 556 (1982); H. S. Valk, Am. J. Phys., 54,
921 (1986).

38   In part (b) we treat  as a continuous variable; n becomes a function of ,
according to Equation 4.67, because N, which must be an integer, is fixed. To
avoid confusion, I have eliminated n, to reveal the dependence on  explicitly.

39   This is also known as the (second) Pasternack relation. See H. Beker,
Am. J. Phys. 65, 1118 (1997). For a proof based on the Feynman–Hellmann
theorem (Problem 7.38) see S. Balasubramanian, Am. J. Phys. 68, 959 (2000).

40   For most purposes we can take this to be the magnetic moment of the atom as
well. The proton’s larger mass means that its contribution to the dipole moment
is orders of magnitude smaller than the electron’s contribution.
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41   See Problem 5.33 for the definition of magnetic susceptibility. This formula
does not apply when the ground state is degenerate (see Neil W. Ashcroft and
N. David Mermin, Solid State Physics (Belmont: Cengage, 1976), p. 655);
atoms with non-degenerate ground states have  (see Table 5.1).

42   We adopt the notation of Y. N. Joglekar, Am. J. Phys. 77, 734 (2009), from
which this problem is drawn.

43   For the corresponding analysis of the delta function barrier (positive  see
Problem 11.34.

44   In general, Equation 7.5 does not deliver a normalized wave function, but the
choice  in Equation 7.11 guarantees normalization to first order in ,
which is all we require here (see footnote 4, page 282).

45   This is just a generic tweak to the simple harmonic oscillator potential, ; κ
is some constant, and the factor of –1/6 is for convenience.

46   Richard Crandall introduced me to this problem.
47   It seems strange, at first glance, that spin has anything to do with it, since the

perturbation itself doesn’t involve spin (and I’m not even bothering to include
the spin state explicitly). The point, of course, is that an antisymmetric spin
state forces a symmetric (position) wave function, and vice versa, and this does
affect the result.

48   If you want to pursue this problem further, see R. C. Massé and T. G. Walker,
Am. J. Phys. 83, 730 (2015).
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(8.1)

8
The Variational Principle

◈

8.1 Theory

Suppose you want to calculate the ground state energy, , for a system
described by the Hamiltonian H, but you are unable to solve the (time-
independent) Schrödinger equation. The variational principle will get
you an upper bound for , which is sometimes all you need, and often, if
you’re clever about it, very close to the exact value. Here’s how it works:
Pick any normalized function  whatsoever; I claim that

That is, the expectation value of H, in the (presumably incorrect) state  is
certain to overestimate the ground state energy. Of course, if  just
happens to be one of the excited states, then obviously  exceeds ; the
point is that the same holds for any  whatsoever.

Proof:   Since the (unknown) eigenfunctions of H form a complete
set, we can express  as a linear combination of them:1

Since  is normalized,
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(8.2)

(assuming the eigenfunctions themselves have been orthonormalized:
). Meanwhile,

But the ground state energy is, by definition, the smallest eigenvalue,
, and hence

which is what we were trying to prove.

This is hardly surprising. After all,  might be the actual wave
function (at, say, ). If you measured the particle’s energy you’d be
certain to get one of the eigenvalues of H, the smallest of which is , so
the average of multiple measurements  cannot be lower than .

Example 8.1
Suppose we want to find the ground state energy for the one-
dimensional harmonic oscillator:

Of course, we already know the exact answer in this case
(Equation 2.62): ; but this makes it a good test of the
method. We might pick as our “trial” wave function the gaussian,
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(8.5)

(8.6)

(8.7)

(8.3)

(8.4)

where b is a constant, and A is determined by normalization:

Now

where, in this case,

and

so

According to Equation 8.1, this exceeds  for any b; to get
the tightest bound, let’s minimize :

Putting this back into , we find

In this case we hit the ground state energy right on the nose—
because (obviously) I “just happened” to pick a trial function with
precisely the form of the actual ground state (Equation 2.60). But

621



(8.8)

(8.9)

the gaussian is very easy to work with, so it’s a popular trial
function, even when it bears little resemblance to the true ground
state.

Example 8.2
Suppose we’re looking for the ground state energy of the delta
function potential:

Again, we already know the exact answer (Equation 2.132): 
. As before, we’ll use a gaussian trial function

(Equation 8.2). We’ve already determined the normalization, and
calculated ; all we need is

Evidently

and we know that this exceeds  for all b. Minimizing it,

So

which is indeed somewhat higher than , since .
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(8.10)

(8.12)

(8.11)

I said you can use any (normalized) trial function  whatsoever, and
this is true in a sense. However, for discontinuous functions it takes some
fancy footwork to assign a sensible meaning to the second derivative
(which you need, in order to calculate ). Continuous functions with
kinks in them are fair game, however, as long as you are careful; the next
example shows how to handle them.2

Example 8.3
Find an upper bound on the ground state energy of the one-
dimensional infinite square well (Equation 2.22), using the
“triangular” trial wave function (Figure 8.1):3

where A is determined by normalization:

In this case

as indicated in Figure 8.2. Now, the derivative of a step function is
a delta function (see Problem 2.23(b)):
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(8.13)

(8.14)

and hence

The exact ground state energy is 
(Equation 2.30), so the theorem works .
Alternatively, you can exploit the hermiticity of :

 

Figure 8.1:  Triangular trial wave function for the infinite square well
(Equation 8.10).
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Figure 8.2:  Derivative of the wave function in Figure 8.1.

The variational principle is extraordinarily powerful, and
embarrassingly easy to use. What a physical chemist does, to find the
ground state energy of some complicated molecule, is write down a trial
wave function with a large number of adjustable parameters, calculate ,
and tweak the parameters to get the lowest possible value. Even if  has
little resemblance to the true wave function, you often get miraculously
accurate values for . Naturally, if you have some way of guessing a
realistic , so much the better. The only trouble with the method is that
you never know for sure how close you are to the target—all you can be
certain of is that you’ve got an upper bound.4 Moreover, as it stands the
technique applies only to the ground state (see, however, Problem 8.4).5

Problem 8.1 Use a gaussian trial function
(Equation 8.2) to obtain the lowest upper
bound you can on the ground state energy of
(a) the linear potential: ; (b) the
quartic potential: .
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∗∗ Problem 8.2 Find the best bound on  for the
one-dimensional harmonic oscillator using a
trial wave function of the form

where A is determined by normalization and b
is an adjustable parameter.

Problem 8.3 Find the best bound on  for the
delta function potential , using a
triangular trial function (Equation 8.10, only
centered at the origin). This time a is an
adjustable parameter.

Problem 8.4
(a)   Prove the following corollary to the

variational principle: If ,
then , where  is the energy
of the first excited state. Comment: If
we can find a trial function that is
orthogonal to the exact ground state,
we can get an upper bound on the first
excited state. In general, it’s difficult
to be sure that  is orthogonal to ,
since (presumably) we don’t know the
latter. However, if the potential  is
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an even function of x, then the ground
state is likewise even, and hence any
odd trial function will automatically
meet the condition for the corollary.6

(b)   Find the best bound on the first
excited state of the one-dimensional
harmonic oscillator using the trial
function

Problem 8.5 Using a trial function of your
own devising, obtain an upper bound on the
ground state energy for the “bouncing ball”
potential (Equation 2.185), and compare it with
the exact answer (Problem 2.59): 

Problem 8.6
(a)   Use the variational principle to prove

that first-order non-degenerate
perturbation theory always
overestimates (or at any rate never
underestimates) the ground state
energy.

(b)   In view of (a), you would expect that
the second-order correction to the
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(8.15)

(8.16)

ground state is always negative.
Confirm that this is indeed the case,
by examining Equation 7.15.

8.2 The Ground State of Helium

The helium atom (Figure 8.3) consists of two electrons in orbit around a
nucleus containing two protons (also some neutrons, which are irrelevant
to our purpose). The Hamiltonian for this system (ignoring fine structure
and smaller corrections) is:

Our problem is to calculate the ground state energy, . Physically, this
represents the amount of energy it would take to strip off both electrons.
(Given  it is easy to figure out the “ionization energy” required to
remove a single electron—see Problem 8.7.) The ground state energy of
helium has been measured to great precision in the laboratory:

This is the number we would like to reproduce theoretically.

 

Figure 8.3: The helium atom.
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(8.17)

(8.18)

(8.21)

(8.22)

(8.19)

(8.20)

It is curious that such a simple and important problem has no known
exact solution.7 The trouble comes from the electron–electron repulsion,

If we ignore this term altogether, H splits into two independent hydrogen
Hamiltonians (only with a nuclear charge of , instead of e); the exact
solution is just the product of hydrogenic wave functions:

and the energy is  eV (Equation 5.42).8 This is a long way
from  eV, but it’s a start.

To get a better approximation for  we’ll apply the variational
principle, using  as the trial wave function. This is a particularly
convenient choice because it’s an eigenfunction of most of the
Hamiltonian:

Thus

where9

I’ll do the  integral first; for this purpose  is fixed, and we may as well
orient the  coordinate system so that the polar axis lies along  (see
Figure 8.4). By the law of cosines,
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(8.24)

(8.25)

(8.23)

and hence

The  integral is trivial ; the  integral is

Thus

 

Figure 8.4: Choice of coordinates for the -integral (Equation 8.21).
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(8.26)

(8.28)

(8.27)

It follows that  is equal to

The angular integrals are easy , and the  integral becomes

Finally, then,

and therefore

Not bad (remember, the experimental value is  eV). But we can do
better.

We need to think up a more realistic trial function than  (which
treats the two electrons as though they did not interact at all). Rather than
completely ignoring the influence of the other electron, let us say that, on
the average, each electron represents a cloud of negative charge which
partially shields the nucleus, so that the other electron actually sees an
effective nuclear charge  that is somewhat less than 2. This suggests that
we use a trial function of the form

We’ll treat Z as a variational parameter, picking the value that minimizes 
. (Please note that in the variational method we never touch the

Hamiltonian itself —the Hamiltonian for helium is, and remains, Equation
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(8.29)

(8.30)

(8.31)

(8.32)

(8.33)

8.15. But it’s fine to think about approximating the Hamiltonian as a way
of motivating the choice of the trial wave function.)

This wave function is an eigenstate of the “unperturbed” Hamiltonian
(neglecting electron repulsion), only with Z, instead of 2, in the Coulomb
terms. With this in mind, we rewrite H (Equation 8.15) as follows:

The expectation value of H is evidently

Here  is the expectation value of  in the (one-particle) hydrogenic
ground state  (with nuclear charge Z); according to Equation 7.56,

The expectation value of  is the same as before (Equation 8.26), except
that instead of  we now want arbitrary Z—so we multiply a by :

Putting all this together, we find

According to the variational principle, this quantity
exceeds  for any value of Z. The lowest upper bound occurs when  is
minimized:
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(8.34)

(8.35)

∗

from which it follows that

This seems reasonable; it tells us that the other electron partially screens
the nucleus, reducing its effective charge from 2 down to about 1.69.
Putting in this value for Z, we find

The ground state of helium has been calculated with great precision in
this way, using increasingly complicated trial wave functions, with more
and more adjustable parameters.10 But we’re within 2% of the correct
answer, and, frankly, at this point my own interest in the problem begins to
wane.11

Problem 8.7 Using  eV for the
ground state energy of helium, calculate the
ionization energy (the energy required to
remove just one electron). Hint: First calculate
the ground state energy of the helium ion, He+,
with a single electron orbiting the nucleus;
then subtract the two energies.

Problem 8.8 Apply the techniques of this
Section to the H − and Li+ ions (each has two
electrons, like helium, but nuclear charges 
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 and , respectively). Find the
effective (partially shielded) nuclear charge,
and determine the best upper bound on , for
each case. Comment: In the case of H − you
should find that  eV, which would
appear to indicate that there is no bound state
at all, since it would be energetically favorable
for one electron to fly off, leaving behind a
neutral hydrogen atom. This is not entirely
surprising, since the electrons are less strongly
attracted to the nucleus than they are in helium,
and the electron repulsion tends to break the
atom apart. However, it turns out to be
incorrect. With a more sophisticated trial wave
function (see Problem 8.25) it can be shown
that  eV, and hence that a bound
state does exist. It’s only barely bound,
however, and there are no excited bound
states,12 so H − has no discrete spectrum (all
transitions are to and from the continuum). As
a result, it is difficult to study in the laboratory,
although it exists in great abundance on the
surface of the sun.13

8.3 The Hydrogen Molecule Ion

Another classic application of the variational principle is to the hydrogen
molecule ion, H , consisting of a single electron in the Coulomb field of
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(8.36)

(8.37)

two protons (Figure 8.5). I shall assume for the moment that the protons
are fixed in position, a specified distance R apart, although one of the most
interesting byproducts of the calculation is going to be the actual value of
R. The Hamiltonian is

where r and  are the distances to the electron from the respective protons.
As always, our strategy will be to guess a reasonable trial wave function,
and invoke the variational principle to get a bound on the ground state
energy. (Actually, our main interest is in finding out whether this system
bonds at all—that is, whether its energy is less than that of a neutral
hydrogen atom plus a free proton. If our trial wave function indicates that
there is a bound state, a better trial function can only make the bonding
even stronger.)

 

Figure 8.5: The hydrogen molecule ion, .

To construct the trial wave function, imagine that the ion is formed by
taking a hydrogen atom in its ground state (Equation 4.80),

bringing the second proton in from “infinity,” and nailing it down a
distance R away. If R is substantially greater than the Bohr radius, the
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(8.39)

(8.40)

(8.42)

(8.38)

(8.41)

electron’s wave function probably isn’t changed very much. But we would

like to treat the two protons on an equal footing, so that the electron has
the same probability of being associated with either one. This suggests that
we consider a trial function of the form

(Quantum chemists call this the LCAO technique, because we are
expressing the molecular wave function as a linear combination of atomic
orbitals.)

Our first task is to normalize the trial function:

The first two integrals are 1 (since  itself is normalized); the third is
more tricky. Let

Picking coordinates so that proton 1 is at the origin and proton 2 is on the z
axis at the point R (Figure 8.6), we have

and therefore

The ϕ integral is trivial . To do the θ integral, let 
, so that  Then
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(8.43)

(8.44)

The r integral is now straightforward:

Evaluating the integrals, we find (after some algebraic simplification),

I is called an overlap integral; it measures the amount by which 
overlaps  (notice that it goes to 1 as , and to 0 as ). In
terms of I, the normalization factor (Equation 8.39) is
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(8.46)

(8.47)

(8.48)

(8.45)

Figure 8.6: Coordinates for the calculation of I (Equation 8.40).

Next we must calculate the expectation value of H in the trial state .
Noting that

(where  eV is the ground state energy of atomic hydrogen)—
and the same with  in place of r—we have

It follows that

I’ll let you calculate the two remaining quantities, the so-
called direct integral,

and the exchange integral,

The results (see Problem 8.9) are

and
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(8.49)

(8.50)

(8.51)

(8.52)

Putting all this together, and recalling (Equations 4.70 and 4.72) that 
 , we conclude:

According to the variational principle, the ground state energy is less than 
. Of course, this is only the electron’s energy—there is also potential

energy associated with the proton–proton repulsion:

Thus the total energy of the system, in units of , and expressed as a
function of , is less than

This function is plotted in Figure 8.7. Evidently bonding does occur, for
there exists a region in which the graph goes below , indicating that the
energy is less than that of a neutral atom plus a free proton  eV). It’s
a covalent bond, with the electron shared equally by the two protons. The
equilibrium separation of the protons is about 2.4 Bohr radii, or 1.3 Å (the
experimental value is 1.06 Å). The calculated binding energy is 1.8 eV,
whereas the experimental value is 2.8 eV (the variational principle, as
always, over estimates the ground state energy—and hence under
estimates the strength of the bond—but never mind: The essential point
was to see whether binding occurs at all; a better variational function can
only make the potential well even deeper.
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(8.53)

 

Figure 8.7: Plot of the function , Equation 8.52, showing existence of a
bound state.

Problem 8.9 Evaluate D and X (Equations
8.46 and 8.47). Check your answers against
Equations 8.48 and 8.49.

Problem 8.10 Suppose we used a minus sign
in our trial wave function (Equation 8.38):

Without doing any new integrals, find 
(the analog to Equation 8.52) for this case, and
construct the graph. Show that there is no
evidence of bonding.14 (Since the variational
principle only gives an upper bound, this
doesn’t prove that bonding cannot occur for
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(8.54)

such a state, but it certainly doesn’t look
promising.)

Problem 8.11 The second derivative of ,
at the equilibrium point, can be used to
estimate the natural frequency of vibration 
of the two protons in the hydrogen molecule
ion (see Section 2.3). If the ground state energy

 of this oscillator exceeds the binding
energy of the system, it will fly apart. Show
that in fact the oscillator energy is small
enough that this will not happen, and estimate
how many bound vibrational levels there are.
Note: You’re not going to be able to obtain the
position of the minimum—still less the second
derivative at that point—analytically. Do it
numerically, on a computer.

8.4 The Hydrogen Molecule

Now consider the hydrogen molecule itself, adding a second electron to
the hydrogen molecule ion we studied in Section 8.3. Taking the two
protons to be at rest, the Hamiltonian is

where  and  are the distances of electron 1 from each
proton and  and  are the distances of electron 2 from each proton; as
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(8.55)

(8.56)

shown in Figure 8.8. The six potential energy terms describe the repulsion
between the two electrons, the repulsion between the two protons, and the
attraction of each electron to each proton.

 

Figure 8.8: Diagram of H  showing the distances on which the potential
energy depends.

For the variational wave function, associate one electron with each
proton, and symmetrize:

We’ll calculate the normalization  in a moment. Since this spatial wave
function is symmetric under interchange, the electrons must occupy the
antisymmetric (singlet) spin state. Of course, we could also choose the trial
wave function

in which case the electrons would be in a symmetric (triplet) spin state.
These two variational wave functions constitute the Heitler–London
approximation.15 It is not obvious which of Equations 8.55 or 8.56 would
be energetically favored, so let’s calculate the energy of each one, and find
out.16

First we need to normalize the wave functions. Note that
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(8.58)

(8.60)

(8.59)

Normalization requires

The individual orbitals are normalized and the overlap
integral was given the symbol I and calculated in Equation 8.43. Thus

To calculate the expectation value of the energy, we will start with
the kinetic energy of particle 1. Since  is the ground state of the
hydrogen Hamiltonian, the same trick that brought us to Equation 8.45
gives

Taking the inner product with  then gives
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(8.62)

(8.63)

(8.61)

(8.64)

These inner products were calculated in Section 8.3 and
the kinetic energy of particle 1 is

The kinetic energy of particle 2 is of course the same, so the total kinetic
energy is simply twice Equation 8.62. The calculation of the electron–
proton potential energy is similar; you will show in Problem 8.13 that

and the total electron–proton potential energy is four times this amount.
The electron–electron potential energy is given by

The first two integrals in Equation 8.64 are equal, as you
can see by interchanging the labels 1 and 2. We will give the two
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(8.65)

(8.66)

(8.67)

(8.68)

remaining integrals the names

so that

The evaluation of these integrals is discussed in Problem 8.14. Note that
the integral  is just the electrostatic potential energy of two charge
distributions  and . The exchange term  has
no such classical counterpart.

When we add all of the contributions to the energy—the kinetic
energy, the electron–proton potential energy, the electron–electron
potential energy, and the proton–proton potential energy (which is a
constant, )—we get

A plot of  and  is shown in Figure 8.9. Recall that the state 
requires placing the two electrons in the singlet spin configuration,
whereas  means putting them in a triplet spin configuration. According
to the figure, bonding only occurs if the two electrons are in a singlet
configuration—something that is confirmed experimentally. Again, it’s a
covalent bond.
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Figure 8.9: The total energy of the singlet (solid curve) and triplet (dashed
curve) states for H , as a function of the separation R between the protons. The
singlet state has a minimum at around 1.6 Bohr radii, representing a stable
bond. The triplet state is unstable and will dissociate, as the energy is
minimized for .

Locating the minimum on the plot, our calculation predicts a bond
length of 1.64 Bohr radii (the experimental value is 1.40 Bohr radii), and
suggests a binding energy of 3.15 eV (whereas the experimental value is
4.75 eV). The trends here follow those of the Hydrogen molecule ion: the
calculation overestimates the bond length and underestimates the binding
energy, but the agreement is surprisingly good for a variational calculation
with no adjustable parameters.

The difference between the singlet and triplet energies is called the
exchange splitting J. In the Heitler–London approximation it is
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which is roughly  (negative because the singlet is lower in energy)
at the equilibrium separation. This means a strong preference for having
the electron spins anti-aligned. But in this treatment of H2 we’ve left out
completely the (magnetic) spin–spin interaction between the electrons—
remember that the spin–spin interaction between the proton and the
electron is what leads to hyperfine splitting (Section 7.5). Were we right to
ignore it here? Absolutely: applying Equation 7.92 to two electrons a
distance R apart, the energy of the spin–spin interaction is something like 

 in this system, five orders of magnitude smaller than the exchange
splitting.

This calculation shows us that different spin configurations can have
very different energies, even when the interaction between the spins is
negligible. And that helps us understand ferromagnetism (where the spins
in a material align) and anti-ferromagnetism (where the spins alternate).
As we’ve just seen, the spin–spin interaction is way too weak to account
for this—but the exchange splitting isn’t. Counterintuitively, it’s not a
magnetic interaction that accounts for ferromagnetism, but an electrostatic
one! H2 is a sort of inchoate anti-ferromagnet where the Hamiltonian,
which is independent of the spin, selects a certain spatial ground state and
the spin state comes along for the ride, to satisfy the Fermi statistics.

Problem 8.12 Show that the antisymmetric
state (Equation 8.56) can be expressed in terms
of the molecular orbitals of Section 8.3—
specifically, by placing one electron in the
bonding orbital (Equation 8.38) and one in the
anti-bonding orbital (Equation 8.53).
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Problem 8.13 Verify Equation 8.63 for the
electron–proton potential energy.

Problem 8.14 The two-body integrals  and 
 are defined in Equations 8.65 and 8.66. To

evaluate  we write

where  is the angle between  and 
(Figure 8.8), and

(a)   Consider first the integral over .
Align the z axis with  (which is a
constant vector for the purposes of this
first integral) so that

Do the angular integration first and
show that

(b)   Plug your result from part (a) back
into the relation for , and show that
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(8.70)

(8.72)

(8.71)

∗ 

Again, do the angular
integration first.

Comment: The integral  can also be
evaluated in closed form, but the procedure is
rather involved.17 We will simply quote the
result,

where  is Euler’s
constant,  is the exponential integral

and  is obtained from I by switching the sign
of R:

Problem 8.15 Make a plot of the kinetic
energy for both the singlet and triplet states of
H2, as a function of . Do the same for the
electron-proton potential energy and for the
electron–electron potential energy. You should
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find that the triplet state has lower potential
energy than the singlet state for all values of R.
However, the singlet state’s kinetic energy is
so much smaller that its total energy comes out
lower. Comment: In situations where there is
not a large kinetic energy cost to aligning the
spins, such as two electrons in a partially filled
orbital in an atom, the triplet state can come
out lower in energy. This is the physics behind
Hund’s first rule.

Further Problems on Chapter 8

Problem 8.16
(a)   Use the function 

(for , otherwise 0) to get an
upper bound on the ground state of the
infinite square well.

(b)   Generalize to a function of the form 
, for some real

number p. What is the optimal value
of p, and what is the best bound on the
ground state energy? Compare the
exact value. Answer: 

.

Problem 8.17
(a)   Use a trial wave function of the form

650



∗∗

to obtain a bound on the ground state
energy of the one-dimensional
harmonic oscillator. What is the “best”
value of a? Compare  with the
exact energy. Note: This trial function
has a “kink” in it (a discontinuous
derivative) at ; do you need to
take account of this, as I did in
Example 8.3?

(b)   Use  on the
interval  to obtain a bound on
the first excited state. Compare the
exact answer.

Problem 8.18
(a)   Generalize Problem 8.2, using the trial

wave function18

for arbitrary n. Partial answer: The
best value of b is given by

(b)   Find the least upper bound on the first
excited state of the harmonic oscillator
using a trial function of the form
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Partial answer: The best value of b is
given by

(c)   Notice that the bounds approach the
exact energies as . Why is that?
Hint: Plot the trial wave functions for 

, , and , and compare
them with the true wave functions
(Equations 2.60 and 2.63). To do it
analytically, start with the identity

Problem 8.19 Find the lowest bound on the
ground state of hydrogen you can get using
a gaussian trial wave function

where A is determined by normalization
and b is an adjustable parameter. Answer: 

 eV.

Problem 8.20 Find an upper bound on the
energy of the first excited state of the
hydrogen atom. A trial function with 
will automatically be orthogonal to the
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(8.74)

ground state (see footnote 6); for the radial
part of  you can use the same function as
in Problem 8.19.

Problem 8.21 If the photon had a nonzero
mass , the Coulomb potential
would be replaced by the Yukawa
potential,

where . With a trial wave
function of your own devising, estimate the
binding energy of a “hydrogen” atom with
this potential. Assume , and give
your answer correct to order .

Problem 8.22 Suppose you’re given a two-
level quantum system whose (time-
independent) Hamiltonian  admits just
two eigenstates,  (with energy ), and 

 (with energy ). They are orthogonal,
normalized, and nondegenerate (assume 
is the smaller of the two energies). Now we
turn on a perturbation , with the
following matrix elements:

where h is some specified
constant.
(a)   Find the exact eigenvalues of the
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(8.76)

perturbed Hamiltonian.
(b)   Estimate the energies of the perturbed

system using second-order
perturbation theory.

(c)   Estimate the ground state energy of
the perturbed system using the
variational principle, with a trial
function of the form

where ϕ is an adjustable parameter.
Note: Writing the linear combination
in this way is just a neat way to
guarantee that  is normalized.

(d)   Compare your answers to (a), (b), and
(c). Why is the variational principle so
accurate, in this case?

Problem 8.23 As an explicit example of the
method developed in Problem 8.22,
consider an electron at rest in a uniform
magnetic field , for which the
Hamiltonian is (Equation 4.158):

The eigenspinors,  and , and the
corresponding energies,  and , are
given in Equation 4.161. Now we turn on a
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(8.79)

(8.78)

perturbation, in the form of a uniform field
in the x direction:

(a)   Find the matrix elements of , and
confirm that they have the structure of
Equation 8.74. What is h?

(b)   Using your result in Problem 8.22(b),
find the new ground state energy, in
second-order perturbation theory.

(c)   Using your result in Problem 8.22(c),
find the variational principle bound on
the ground state energy.

Problem 8.24 Although the Schrödinger
equation for helium itself cannot be solved
exactly, there exist “helium-like” systems
that do admit exact solutions. A simple
example19 is “rubber-band helium,” in
which the Coulomb forces are replaced by
Hooke’s law forces:

(a)   Show that the change
of variables from , , to
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(8.81)

(8.82)

turns the Hamiltonian into two
independent three-dimensional
harmonic oscillators:

(b)   What is the exact
ground state energy for this system?

(c)   If we didn’t know the exact solution,
we might be inclined to apply the
method of Section 8.2 to the
Hamiltonian in its original form
(Equation 8.78). Do so (but don’t
bother with shielding). How does your
result compare with the exact answer?
Answer: .

Problem 8.25 In Problem 8.8 we found that
the trial wave function with shielding
(Equation 8.28), which worked well for
helium, is inadequate to confirm the
existence of a bound state for the negative
hydrogen ion. Chandrasekhar20 used a trial
wave function of the form

where
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In effect, he allowed two different
shielding factors, suggesting that one
electron is relatively close to the nucleus,
and the other is farther out. (Because
electrons are identical particles, the spatial
wave function must be symmetrized with
respect to interchange. The spin state—
which is irrelevant to the calculation—is
evidently antisymmetric.) Show that by
astute choice of the adjustable parameters 

 and  you can get  less than 
eV. Answer:

where  and .
Chandrasekhar used  (since this
is larger than 1, the motivating
interpretation as an effective nuclear
charge cannot be sustained, but never mind
—it’s still an acceptable trial wave
function) and .

Problem 8.26 The fundamental problem in
harnessing nuclear fusion is getting the two
particles (say, two deuterons) close enough
together for the attractive (but short-range)
nuclear force to overcome the Coulomb
repulsion. The “bulldozer” method is to
heat the particles up to fantastic

657



∗∗∗

temperatures, and allow the random
collisions to bring them together. A more
exotic proposal is muon catalysis, in
which we construct a “hydrogen molecule
ion,” only with deuterons in place of
protons, and a muon in place of the
electron. Predict the equilibrium separation
distance between the deuterons in such a
structure, and explain why muons are
superior to electrons for this purpose.21

Problem 8.27 Quantum dots. Consider a
particle constrained to move in two
dimensions in the cross-shaped region
shown in Figure 8.10. The “arms” of the
cross continue out to infinity. The potential
is zero within the cross, and infinite in the
shaded areas outside. Surprisingly, this
configuration admits a positive-energy
bound state.22
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Figure 8.10:  The cross-shaped region for
Problem 8.27.

(a)   Show that the lowest energy that can
propagate off to infinity is

any solution with energy less than that
has to be a bound state. Hint: Go way
out one arm (say, ), and solve
the Schrödinger equation by
separation of variables; if the wave
function propagates out to infinity, the
dependence on x must take the form 

 with .
(b)   Now use the variational principle to

show that the ground state has energy
less than . Use the following
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trial wave function (suggested by Jim
McTavish):

Normalize it to determine A, and
calculate the expectation value of H.
Answer:

Now minimize with respect to α, and
show that the result is less than 

. Hint: Take full advantage of
the symmetry of the problem—you
only need to integrate over 1/8 of the
open region, since the other seven
integrals will be the same. Note
however that whereas the trial wave
function is continuous, its derivatives
are not—there are “roof-lines” at the
joins, and you will need to exploit the
technique of Example 8.3.23

Problem 8.28 In Yukawa’s original theory
(1934), which remains a useful
approximation in nuclear physics, the
“strong” force between protons and
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(8.85)

(8.84)

neutrons is mediated by the exchange of π-
mesons. The potential energy is

where r is the distance between the
nucleons, and the range  is related to the
mass of the meson: . Question:
Does this theory account for the existence
of the deuteron (a bound state of the
proton and the neutron)?

The Schrödinger equation for the
proton/neutron system is (see Problem 5.1):

where μ is the reduced mass
(the proton and neutron have almost
identical masses, so call them both m), and
r is the position of the neutron (say)
relative to the proton: . Your
task is to show that there exists a solution
with negative energy (a bound state), using
a variational trial wave function of the
form

(a)   Determine A, by normalizing .
(b)   Find the expectation value of the

Hamiltonian  in the
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(8.87)

(8.86)

state . Answer:

(c)   Optimize your trial
wave function, by setting 

. This tells you β as a
function of γ (and hence—everything
else being constant—of ), but let’s
use it instead to eliminate γ in favor of
β:

(d)   Setting , plot  as a
function of β, for . What
does this tell you about the binding of
the deuteron? What is the minimum
value of  for which you can be
confident there is a bound state (look
up the necessary masses)? The
experimental value is 52 MeV.

Problem 8.29 Existence of Bound States. A
potential “well” (in one dimension) is a
function  that is never positive 

 for all , and goes to zero at
infinity  as .24

(a)   Prove the following Theorem: If a
potential well  supports at least
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(8.88)

one bound state, then any deeper/wider
well  for all  will also
support at least one bound state. Hint:
Use the ground state of , , as a
variational test function.

(b)   Prove the following Corollary: Every
potential well in one dimension has a
bound state.25 Hint: Use a finite
square well (Section 2.6) for .

(c)   Does the Theorem generalize to two
and three dimensions? How about the
Corollary? Hint: You might want to
review Problems 4.11 and 4.51.

Problem 8.30 Performing a variational
calculation requires finding the minimum
of the energy, as a function of the
variational parameters. This is, in general,
a very hard problem. However, if we
choose the form of our trial wave function
judiciously, we can develop an efficient
algorithm. In particular, suppose we use a
linear combination of functions :

where the  are the variational parameters.
If the  are an orthonormal set 

, but  is not necessarily
normalized, then  is
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(8.90)

(8.89)

(8.91)

where .
Taking the derivative with respect to 
(and setting the result equal to 0) gives26

recognizable as the jth row in an
eigenvalue problem:

The smallest eigenvalue of
this matrix  gives a bound on the ground
state energy and the corresponding
eigenvector determines the best variational
wave function of the form 8.88.
(a)   Verify Equation 8.90.
(b)   Now take the derivative of

Equation 8.89 with respect to  and
show that you get a result redundant
with Equation 8.90.

(c)   Consider a particle in an infinite
square well of width a, with a sloping
floor:
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Using a linear combination of the first
ten stationary states of the infinite
square well as the basis functions,

determine a bound for the ground state
energy in the case .
Make a plot of the optimized
variational wave function. [Note: The
exact result is .]

1   If the Hamiltonian admits scattering states, as well as bound states, then we’ll
need an integral as well as a sum, but the argument is unchanged.

2   For a collection of interesting examples see W. N. Mei,
Int. J. Math. Educ. Sci. Tech. 30, 513 (1999).

3   There is no point in trying a function (such as the gaussian) that extends outside
the well, because you’ll get , and Equation 8.1 tells you nothing.

4   In practice this isn’t much of a limitation, and there are sometimes ways of
estimating the accuracy. The binding energy of helium has been calculated to
many significant digits in this way (see for example G. W. Drake et al.,
Phys. Rev. A 65, 054501 (2002), or Vladimir I. Korobov, Phys. Rev. A 66,
024501 (2002).

5   For a systematic extension of the variational principle to the calculation of
excited state energies see, for example, Linus Pauling and E. Bright Wilson,
Introduction to Quantum Mechanics, With Applications to Chemistry, McGraw-
Hill, New York (1935, paperback edition 1985), Section 26.

6   You can extend this trick to other symmetries. Suppose there is a Hermitian
operator A such that . The ground state (assuming it is nondegenerate)
must be an eigenstate of A; call the eigenvalue : . If you choose a
variational function  that is an eigenstate of A with a different eigenvalue: 
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 with , you can be certain that  and  are orthogonal (see
Section 3.3). For an application see Problem 8.20.

7   There do exist exactly soluble three-body problems with many of the
qualitative features of helium, but using non-Coulombic potentials (see
Problem 8.24).

8   Here a is the ordinary Bohr radius and  eV is the nth Bohr energy;
recall that for a nucleus with atomic number Z,  and 
(Problem 4.19). The spin configuration associated with Equation 8.18 will be
antisymmetric (the singlet).

9   You can, if you like, interpret Equation 8.21 as first-order perturbation theory,
with  (Problem 7.56(a)). However, I regard this as a misuse of the
method, since the perturbation is comparable in size to the unperturbed
potential. I prefer, therefore, to think of it as a variational calculation, in which
we are looking for a rigorous upper bound on .

10   The classic studies are E. A. Hylleraas, Z. Phys. 65, 209 (1930); C. L. Pekeris,
Phys. Rev. 115, 1216 (1959). For more recent work, see footnote 4.

11   The first excited state of helium can be calculated in much the same way, using
a trial wave function orthogonal to the ground state. See Phillip J. E. Peebles,
Quantum Mechanics, Princeton U.P., Princeton, NJ (1992), Section 40.

12   Robert N. Hill, J. Math. Phys. 18, 2316 (1977).
13   For further discussion see Hans A. Bethe and Edwin E. Salpeter, Quantum

Mechanics of One- and Two-Electron Atoms, Plenum, New York (1977),
Section 34.

14   The wave function with the plus sign (Equation 8.38) is called the bonding
orbital. Bonding is associated with a buildup of electron probability in between
the two nuclei. The odd linear combination (Equation 8.53) has a node at the
center, so it’s not surprising that this configuration doesn’t lead to bonding; it is
called the anti-bonding orbital.

15   W. Heitler and F. London, Z. Phys. 44, 455 (1928). For an English translation
see Hinne Hettema, Quantum Chemistry: Classic Scientific Papers, World
Scientific, New Jersey, PA, 2000.

16   Another natural variational wave function consists of placing both electrons in
the bonding orbital studied in Section 8.3:
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(8.57)

also paired with a singlet spin state. If you expand this function you’ll see that
half the terms—such as —involve attaching two electrons to the
same proton, which is energetically costly because of the electron–electron
repulsion in Equation 8.54. The Heitler–London approximation, Equation 8.55,
amounts to dropping the offending terms from Equation 8.57.

17   The calculation was done by Y. Sugiura, Z. Phys. 44, 455 (1927).
18   W. N. Mei, Int. J. Educ. Sci. Tech. 27, 285 (1996).
19   For a more sophisticated model, see R. Crandall, R. Whitnell, and R. Bettega,

Am. J. Phys 52, 438 (1984).
20   S. Chandrasekhar, Astrophys. J. 100, 176 (1944).
21   The classic paper on muon-catalyzed fusion is J. D. Jackson, Phys. Rev. 106,

330 (1957); for a more recent popular review, see J. Rafelski and S. Jones,
Scientific American, November 1987, page 84.

22   This model is taken from R. L. Schult et al., Phys. Rev. B 39, 5476 (1989). For
further discussion see J. T. Londergan and D. P. Murdock, Am. J. Phys. 80,
1085 (2012). In the presence of quantum tunneling a classically bound state can
become unbound; this is the reverse: A classically unbound state is quantum
mechanically bound.

23   W.-N. Mei gets a somewhat better bound (and avoids the roof-lines) using

but the integrals have to be done numerically.
24   To exclude trivial cases, we also assume it has nonzero area .

Notice that for the purposes of this problem neither the infinite square well nor
the harmonic oscillator is a “potential well,” though both of them, of course,
have bound states.

25   K. R. Brownstein, Am. J. Phys. 68, 160 (2000) proves that any one-dimensional
potential satisfying  admits a bound state (as long as  is not
identically zero)—even if it runs positive in some places.
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26   Each , being complex, stands for two independent parameters (its real and
imaginary parts). One could take derivatives with respect to the real and
imaginary parts,

but it is also legitimate (and simpler) to treat  and  as the independent
parameters:

You get the same result either way.
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9
The WKB Approximation

◈

The WKB (Wentzel, Kramers, Brillouin)1 method is a technique for
obtaining approximate solutions to the time-independent Schrödinger
equation in one dimension (the same basic idea can be applied to many
other differential equations, and to the radial part of the Schrödinger
equation in three dimensions). It is particularly useful in calculating bound
state energies and tunneling rates through potential barriers.

The essential idea is as follows: Imagine a particle of energy E
moving through a region where the potential  is constant. If ,
the wave function is of the form

The plus sign indicates that the particle is traveling to the right, and the
minus sign means it is going to the left (the general solution, of course, is a
linear combination of the two). The wave function is oscillatory, with
fixed wavelength  and unchanging amplitude . Now suppose
that  is not constant, but varies rather slowly in comparison to , so
that over a region containing many full wavelengths the potential is
essentially constant. Then it is reasonable to suppose that  remains
practically sinusoidal, except that the wavelength and the amplitude
change slowly with x. This is the inspiration behind the WKB
approximation. In effect, it identifies two different levels of x-dependence:
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(9.1)

(9.2)

rapid oscillations, modulated by gradual variation in amplitude and
wavelength.

By the same token, if  (and V is constant), then  is
exponential:

And if  is not constant, but varies slowly in comparison with , the
solution remains practically exponential, except that A and κ are now
slowly-varying functions of x.

Now, there is one place where this whole program is bound to fail,
and that is in the immediate vicinity of a classical turning point, where 

. For here  (or  goes to infinity, and  can hardly be said to
vary “slowly” in comparison. As we shall see, a proper handling of the
turning points is the most difficult aspect of the WKB approximation,
though the final results are simple to state and easy to implement.

9.1 The “Classical” Region

The Schrödinger equation,

can be rewritten in the following way:

where
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(9.4)

(9.5)

(9.6)

(9.7)

(9.3)

is the classical formula for the (magnitude of the) momentum of a particle
with total energy E and potential energy . For the moment, I’ll assume
that , so that  is real; we call this the “classical” region, for
obvious reasons—classically the particle is confined to this range of x (see
Figure 9.1). In general,  is some complex function; we can express it in
terms of its amplitude, , and its phase, —both of which are real:

Using a prime to denote the derivative with respect to x,

and

Putting this into Equation 9.1:

This is equivalent to two real equations, one for the real part and one for
the imaginary part:

and
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(9.8)

(9.9)

Figure 9.1: Classically, the particle is confined to the region where .

Equations 9.6 and 9.7 are entirely equivalent to the original
Schrödinger equation. The second one is easily solved:

where C is a (real) constant. The first one (Equation 9.6) cannot be solved
in general—so here comes the approximation: We assume that the
amplitude A varies slowly, so the  term is negligible. (More precisely,
we assume that  is much less than both  and .) In that case
we can drop the left side of Equation 9.6, and we are left with

and therefore

(I’ll write this as an indefinite integral, for now—any constant of
integration can be absorbed into C, which thereby becomes complex. I’ll
also absorb a factor of .) Then
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(9.10)

(9.11)

(9.12)

(9.13)

Notice that

which says that the probability of finding the particle at point x is inversely
proportional to its (classical) momentum (and hence its velocity) at that
point. This is exactly what you would expect—the particle doesn’t spend
long in the places where it is moving rapidly, so the probability of getting
caught there is small. In fact, the WKB approximation is sometimes
derived by starting with this “semi-classical” observation, instead of by
dropping the  term in the differential equation. The latter approach is
cleaner mathematically, but the former offers a more illuminating physical
rationale. The general (approximate) solution, of course, will be a linear
combination the two solutions in Equation 9.10, one with each sign.

Example 9.1
Potential well with two vertical walls. Suppose we have an
infinite square well with a bumpy bottom (Figure 9.2):

Inside the well (assuming  throughout) we have

or, more conveniently,
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(9.14)

(9.15)

(9.17)

(9.16)

where (exploiting the freedom noted earlier to impose a convenient
lower limit on the integral)2 

Now,  must go to zero at , and therefore (since  
. Also,  goes to zero at , so

Conclusion:

This quantization condition determines the (approximate) allowed
energies.

 

Figure 9.2:  Infinite square well with a bumpy bottom.

For instance, if the well has a flat bottom , then 
 (a constant), and Equation 9.17 says , or
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which is the old formula for the energy levels of the infinite square
well (Equation 2.30). In this case the WKB approximation yields
the exact answer (the amplitude of the true wave function is
constant, so dropping  cost us nothing).

Problem 9.1 Use the WKB approximation to
find the allowed energies  of an infinite
square well with a “shelf,” of height ,
extending half-way across (Figure 7.3):

Express your answer in terms of  and 
 (the nth allowed energy for

the infinite square well with no shelf). Assume
that , but do not assume that .
Compare your result with what we got in
Section 7.1.2, using first-order perturbation
theory. Note that they are in agreement if
either  is very small (the perturbation theory
regime) or n is very large (the WKB—semi-
classical—regime).

Problem 9.2 An alternative derivation of the
WKB formula (Equation 9.10) is based on an
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expansion in powers of . Motivated by the
free-particle wave function, 

, we write

where  is some complex function. (Note
that there is no loss of generality here—any
nonzero function can be written in this way.)

(a)   Put this into Schrödinger’s equation
(in the form of Equation 9.1), and
show that

(b)   Write  as a power series in :

and, collecting like powers of , show
that

(c)   Solve for  and , and show
that—to first order in —you recover
Equation 9.10.

Note: The logarithm of a negative number is
defined by , where n is an
odd integer. If this formula is new to you, try
exponentiating both sides, and you’ll see
where it comes from.
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(9.18)

(9.21)

(9.19)

(9.20)

(9.22)

9.2 Tunneling

So far, I have assumed that , so  is real. But we can easily write
down the corresponding result in the non-classical region —it’s
the same as before (Equation 9.10), only now  is imaginary:3

Consider, for example, the problem of scattering from a rectangular
barrier with a bumpy top (Figure 9.3). To the left of the barrier ,

where A is the incident amplitude, B is the reflected amplitude, and 
 (see Section 2.5). To the right of the barrier ,

where F is the transmitted amplitude. The transmission probability is

In the tunneling region , the WKB approximation gives
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(9.23)

Figure 9.3: Scattering from a rectangular barrier with a bumpy top.

If the barrier is very high and/or very wide (which is to say, if the
probability of tunneling is small), then the coefficient of the exponentially
increasing term  must be small (in fact, it would be zero if the barrier
were infinitely broad), and the wave function looks something like4

Figure 9.4. The relative amplitudes of the incident and transmitted waves
are determined essentially by the total decrease of the exponential over the
nonclassical region:

so

 

Figure 9.4: Qualitative structure of the wave function, for scattering from a
high, broad barrier.

678



Example 9.2
Gamow’s theory of alpha decay.5 In 1928, George Gamow (and,
independently, Condon and Gurney) used Equation 9.23 to provide
the first successful explanation of alpha decay (the spontaneous
emission of an alpha particle—two protons and two neutrons—by
certain radioactive nuclei).6 Since the alpha particle carries a
positive charge , it will be electrically repelled by the leftover
nucleus (charge , as soon as it gets far enough away to escape
the nuclear binding force. But first it has to negotiate a potential
barrier that was already known (in the case of uranium) to be more
than twice the energy of the emitted alpha particle. Gamow
approximated the potential energy by a finite square well
(representing the attractive nuclear force), extending out to  (the
radius of the nucleus), joined to a repulsive Coulombic tail
(Figure 9.5), and identified the escape mechanism as quantum
tunneling (this was, by the way, the first time that quantum
mechanics had been applied to nuclear physics).

 

Figure 9.5:  Gamow’s model for the potential energy of an alpha
particle in a radioactive nucleus.
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(9.24)

(9.25)

(9.26)

(9.27)

(9.28)

If E is the energy of the emitted alpha particle, the outer turning
point  is determined by

The exponent γ (Equation 9.23) is evidently7 

The integral can be done by substitution , and the
result is

Typically, , and we can simplify this result using the small
angle approximation :

where

and

(One fermi (fm) is  m, which is about the size of a typical
nucleus.)
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(9.29)

If we imagine the alpha particle rattling around inside the
nucleus, with an average velocity v, the time between “collisions”
with the “wall” is about , and hence the frequency of
collisions is . The probability of escape at each collision is 

, so the probability of emission, per unit time, is ,
and hence the lifetime of the parent nucleus is about

Unfortunately, we don’t know v—but it hardly matters, for the
exponential factor varies over a fantastic range (twenty-five orders
of magnitude), as we go from one radioactive nucleus to another;
relative to this the variation in v is pretty insignificant. In
particular, if you plot the logarithm of the experimentally
measured lifetime against , the result is a beautiful straight
line (Figure 9.6),8 just as you would expect from Equations 9.26
and 9.29.

 

Figure 9.6:  Graph of the logarithm of the half-life 
versus  (where E is the energy of the emitted alpha particle), for
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(9.31)

(9.30)

isotopes of uranium and thorium.

Problem 9.3 Use Equation 9.23 to calculate
the approximate transmission probability for a
particle of energy E that encounters a finite
square barrier of height  and width .
Compare your answer with the exact result
(Problem 2.33), to which it should reduce in
the WKB regime .

Problem 9.4 Calculate the lifetimes of U238

and Po212, using Equations 9.26 and 9.29.
Hint: The density of nuclear matter is
relatively constant (i.e. the same for all nuclei),
so  is proportional to A (the number of
neutrons plus protons). Empirically,

The energy of the emitted alpha particle can be
deduced by using Einstein’s formula 

:

where  is the mass of the parent nucleus, 
is the mass of the daughter nucleus, and  is
the mass of the alpha particle (which is to say,
the He4 nucleus). To figure out what the
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daughter nucleus is, note that the alpha particle

carries off two protons and two neutrons, so Z
decreases by 2 and A by 4. Look up the
relevant nuclear masses. To estimate v, use 

; this ignores the (negative)

potential energy inside the nucleus, and surely
underestimates v, but it’s about the best we can
do at this stage. Incidentally, the experimental
lifetimes are  yrs and 0.5 μs,

respectively.

Problem 9.5 Zener Tunneling. In a
semiconductor, an electric field (if it’s large
enough) can produce transitions between
energy bands—a phenomenon known as Zener
tunneling. A uniform electric field ,
for which

makes the energy bands position dependent, as
shown in Figure 9.7. It is then possible for an
electron to tunnel from the valence (lower)
band to the conduction (upper) band; this
phenomenon is the basis for the Zener diode.
Treating the gap as a potential barrier through
which the electron may tunnel, find the
tunneling probability in terms of  and  (as
well as m, , .
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Figure 9.7:  (a) The energy bands in the absence
of an electric field. (b) In the presence of an
electric field an electron can tunnel between the
energy bands.

9.3 The Connection Formulas

In the discussion so far I have assumed that the “walls” of the potential
well (or the barrier) are vertical, so that the “exterior” solution is simple,
and the boundary conditions trivial. As it turns out, our main results
(Equations 9.17 and 9.23) are reasonably accurate even when the edges are
not so abrupt (indeed, in Gamow’s theory they were applied to just such a
case). Nevertheless, it is of some interest to study more closely what
happens to the wave function at a turning point , where the
“classical” region joins the “nonclassical” region, and the WKB
approximation itself breaks down. In this section I’ll treat the bound state
problem (Figure 9.1); you get to do the scattering problem for yourself
(Problem 9.11).9

For simplicity, let’s shift the axes over so that the right hand turning
point occurs at  (Figure 9.8). In the WKB approximation, we have
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(9.32)

(9.33)

(Assuming  remains greater than E for all , we
can exclude the positive exponent in this region, because it blows up as 

.) Our task is to join the two solutions at the boundary. But there is
a serious difficulty here: In the WKB approximation,  goes to infinity at
the turning point (where . The true wave function, of course, has
no such wild behavior—as anticipated, the WKB method simply fails in
the vicinity of a turning point. And yet, it is precisely the boundary
conditions at the turning points that determine the allowed energies. What
we need to do, then, is splice the two WKB solutions together, using a
“patching” wave function that straddles the turning point.

 

Figure 9.8: Enlarged view of the right-hand turning point.

Since we only need the patching wave function  in the
neighborhood of the origin, we’ll approximate the potential by a straight
line:

685



(9.34)

(9.35)

(9.37)

(9.36)

(9.38)

and solve the Schrödinger equation for this linearized V:

or

where

The αs can be absorbed into the independent variable by defining

so that

This is Airy’s equation, and the solutions are called Airy functions.10

Since the Airy equation is a second-order differential equation, there are
two linearly independent Airy functions, Ai  and Bi . They are related
to Bessel functions of order 1/3; some of their properties are listed in
Table 9.1 and they are plotted in Figure 9.9. Evidently the patching wave
function is a linear combination of Ai  and Bi :

for appropriate constants a and b.

Table 9.1: Some properties of the Airy functions.
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Figure 9.9: Graph of the Airy functions.

Now,  is the (approximate) wave function in the neighborhood of
the origin; our job is to match it to the WKB solutions in the overlap
regions on either side (see Figure 9.10). These overlap zones are close
enough to the turning point that the linearized potential is reasonably
accurate (so that  is a good approximation to the true wave function),
and yet far enough away from the turning point that the WKB
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(9.40)

(9.41)

(9.39)

approximation is reliable.11 In the overlap regions Equation 9.33 holds,
and therefore (in the notation of Equation 9.35)

 

Figure 9.10: Patching region and the two overlap zones.

In particular, in overlap region 2,

and therefore the WKB wave function (Equation 9.32) can be written as

Meanwhile, using the large-z asymptotic forms12 of the Airy functions
(from Table 9.1), the patching wave function (Equation 9.38) in overlap
region 2 becomes

Comparing the two solutions, we see that
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(9.42)

(9.43)

(9.44)

(9.45)

(9.46)

Now we go back and repeat the procedure for overlap region 1. Once
again,  is given by Equation 9.39, but this time x is negative, so

and the WKB wave function (Equation 9.32) is

Meanwhile, using the asymptotic form of the Airy function for large
negative z (Table 9.1), the patching function (Equation 9.38, with 
reads

Comparing the WKB and patching wave functions
in overlap region 1, we find

or, putting in Equation 9.42 for a:

These are the so-called connection formulas, joining the WKB solutions
at either side of the turning point. We’re done with the patching wave
function now—its only purpose was to bridge the gap. Expressing
everything in terms of the one normalization constant D, and shifting the
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(9.47)

(9.48)

(9.49)

turning point back from the origin to an arbitrary point , the WKB wave
function (Equation 9.32) becomes

Example 9.3
Potential well with one vertical wall. Imagine a potential well
that has one vertical side (at  and one sloping side
(Figure 9.11). In this case , so Equation 9.47 says

or

For instance, consider the “half-harmonic oscillator”,

In this case

where

is the turning point. So
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(9.50)

and the quantization condition (Equation 9.48) yields

In this particular case the WKB approximation actually delivers
the exact allowed energies (which are precisely the odd energies of
the full harmonic oscillator—see Problem 2.41).

 

Figure 9.11:  Potential well with one vertical wall.

Example 9.4
Potential well with no vertical walls. Equation 9.47 connects the
WKB wave functions at a turning point where the potential slopes
upward (Figure 9.12(a)); the same reasoning, applied to a
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(9.51)

(9.52)

downward-sloping turning point (Figure 9.12(b)), yields (Problem
9.10)

In particular, if we’re talking about a potential well (Figure
9.12(c)), the wave function in the “interior” region 
can be written either as

(Equation 9.47), or as

(Equation 9.51). Evidently the arguments of the sine functions
must be equal, modulo π:13 , from which it follows
that

This quantization condition determines the allowed energies for the
“typical” case of a potential well with two sloping sides. Notice
that it differs from the formulas for two vertical walls (Equation
9.17) or one vertical wall (Equation 9.48) only in the number that
is subtracted from n (0, 1/4, or 1/2). Since the WKB approximation
works best in the semi-classical (large  regime, the distinction is
more in appearance than in substance. In any event, the result is
extraordinarily powerful, for it enables us to calculate
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(approximate) allowed energies without ever solving the
Schrödinger equation, by simply evaluating one integral. The wave
function itself has dropped out of sight.

 

Figure 9.12:  Upward-sloping and downward-sloping turning points.

Problem 9.6 The “bouncing ball” revisited.
Consider the quantum mechanical analog to
the classical problem of a ball (mass 
bouncing elastically on the floor.14 

(a)   What is the potential energy, as a
function of height x above the floor?
(For negative x, the potential is infinite
—the ball can’t get there at all.)

(b)   Solve the Schrödinger equation for
this potential, expressing your answer
in terms of the appropriate Airy
function (note that Bi  blows up for
large z, and must therefore be
rejected). Don’t bother to normalize 

.
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(c)   Using  m/s2 and  kg,
find the first four allowed energies, in
joules, correct to three significant
digits. Hint: See Milton Abramowitz
and Irene A. Stegun, Handbook of
Mathematical Functions, Dover, New
York (1970), page 478; the notation is
defined on page 450.

(d)   What is the ground state energy, in
eV, of an electron in this gravitational
field? How high off the ground is this
electron, on the average? Hint: Use
the virial theorem to determine .

Problem 9.7 Analyze the bouncing ball
(Problem 9.6) using the WKB approximation.

(a)   Find the allowed energies, , in terms
of m, g, and .

(b)   Now put in the particular values given
in Problem 9.6(c), and compare the
WKB approximation to the first four
energies with the “exact” results.

(c)   About how large would the quantum
number n have to be to give the ball an
average height of, say, 1 meter above
the ground?
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Problem 9.8 Use the WKB approximation to
find the allowed energies of the harmonic
oscillator.

Problem 9.9 Consider a particle of mass m in
the nth stationary state of the harmonic
oscillator (angular frequency .

(a)   Find the turning point, .
(b)   How far  could you go above the

turning point before the error in the
linearized potential (Equation 9.33,
but with the turning point at 
reaches 1%? That is, if

what is d?
(c)   The asymptotic form of Ai  is

accurate to 1% as long as . For
the d in part (b), determine the
smallest n such that . (For any n
larger than this there exists an overlap
region in which the linearized potential
is good to 1% and the large-z form of
the Airy function is good to 1%.)

Problem 9.10 Derive the connection formulas
at a downward-sloping turning point, and
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(9.53)

∗∗ 

confirm Equation 9.51.

Problem 9.11 Use appropriate connection
formulas to analyze the problem of scattering
from a barrier with sloping walls (Figure 9.13).
Hint: Begin by writing the WKB wave
function in the form

Do not assume . Calculate
the tunneling probability, , and
show that your result reduces to Equation 9.23
in the case of a broad, high barrier.

Figure 9.13:  Barrier with sloping walls.

Problem 9.12 For the “half-harmonic
oscillator” (Example 9.3), make a plot
comparing the normalized WKB wave

696



∗∗

∗∗
(9.54)

function for  to the exact solution. You’ll
have to experiment to determine how wide to
make the patching region. Note: You can do

the integrals of  by hand, but feel free to
do them numerically. You’ll need to do the

integral of  numerically to normalize
the wave function.

Further Problems on Chapter 9

Problem 9.13 Use the WKB approximation to
find the allowed energies of the general
power-law potential:

where ν is a positive number. Check your
result for the case . Answer:15

Problem 9.14 Use the WKB
approximation to find the bound state
energy for the potential in Problem 2.52.
Compare the exact answer: 
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∗∗

(9.56)

Problem 9.15 For spherically symmetrical
potentials we can apply the WKB
approximation to the radial part (Equation
4.37). In the case  it is reasonable16 to
use Equation 9.48 in the form

where  is the turning point (in effect, we
treat  as an infinite wall). Exploit this
formula to estimate the allowed energies of
a particle in the logarithmic potential

(for constants  and . Treat only the case
. Show that the spacing between the

levels is independent of mass. Partial
answer:

Problem 9.16 Use the WKB approximation in
the form of Equation 9.52,

to estimate the bound state energies for
hydrogen. Don’t forget the centrifugal term
in the effective potential (Equation 4.38).
The following integral may help:
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(9.57)

(9.58)

∗∗∗

Answer:

I put a prime on , because
there is no reason to suppose it corresponds
to the n in the Bohr formula. Rather, it
orders the states for a given , counting the
number of nodes in the radial wave
function.17 In the notation of Chapter 4, 

 (Equation 4.67). Put this in,
expand the square root 

, and

compare your result to the Bohr formula.

Problem 9.17 Consider the case of a
symmetrical double well, such as the one
pictured in Figure 9.14. We are interested
in bound states with .

Figure 9.14:  Symmetric double well; Problem
9.17.
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(9.61)

(9.60)

(a)   Write down the WKB wave functions
in regions (i) , (ii) ,
and (iii) . Impose the
appropriate connection formulas at 
and  (this has already been done, in
Equation 9.47, for ; you will have to
work out  for yourself), to show that

where

(b)   Because  is symmetric, we need
only consider even (+) and odd 
wave functions. In the former case 

, and in the latter case 
. Show that this leads to the

following quantization condition:

where

Equation 9.60 determines the
(approximate) allowed energies (note
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(9.62)

(9.63)

(9.64)

that E comes into  and , so θ and ϕ
are both functions of .

(c)   We are particularly interested in a high
and/or broad central barrier, in which
case ϕ is large, and  is huge.
Equation 9.60 then tells us that θ must
be very close to a half-integer multiple
of π. With this in mind, write 

, where , and
show that the quantization condition
becomes

(d)   Suppose each well is a parabola:18 

Sketch this potential,
find θ (Equation 9.59), and show that

Comment: If the central
barrier were impenetrable ,
we would simply have two detached
harmonic oscillators, and the energies,

, would be doubly
degenerate, since the particle could be
in the left well or in the right one.
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(9.65)

When the barrier becomes finite
(putting the two wells into
“communication”), the degeneracy is
lifted. The even states  have
slightly lower energy, and the odd
ones  have slightly higher energy.

(e)   Suppose the particle starts out in the
right well—or, more precisely, in a
state of the form

which, assuming the phases are picked
in the “natural” way, will be
concentrated in the right well. Show
that it oscillates back and forth
between the wells, with a period

(f)   Calculate ϕ, for the specific potential
in part (d), and show that for 
, .

Problem 9.18 Tunneling in the Stark Effect.
When you turn on an external electric field,
the electron in an atom can, in principle,
tunnel out, ionizing the atom. Question: Is
this likely to happen in a typical Stark
effect experiment? We can estimate the
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probability using a crude one-dimensional
model, as follows. Imagine a particle in a
very deep finite square well (Section 2.6).
(a)   What is the energy of the ground state,

measured up from the bottom of the
well? Assume . Hint:
This is just the ground state energy of
the infinite square well (of width .

(b)   Now introduce a perturbation 
 (for an electron in an

electric field  we would
have . Assume it is
relatively weak .
Sketch the total potential, and note
that the particle can now tunnel out, in
the direction of positive x.

(c)   Calculate the tunneling factor γ
(Equation 9.23), and estimate the time
it would take for the particle to escape
(Equation 9.29). Answer: 

, .

(d)   Put in some reasonable numbers: 
 eV (typical binding energy for

an outer electron),  m
(typical atomic radius), 
V/m (strong laboratory field), e and m
the charge and mass of the electron.
Calculate τ, and compare it to the age
of the universe.

703



Problem 9.19 About how long would it take
for a (full) can of beer at room temperature
to topple over spontaneously, as a result of
quantum tunneling? Hint: Treat it as a
uniform cylinder of mass m, radius R, and
height h. As the can tips, let x be the height
of the center above its equilibrium position 

. The potential energy is mgx, and it
topples when x reaches the critical value 

. Calculate the

tunneling probability (Equation 9.23), for 
. Use Equation 9.29, with the thermal

energy  to estimate
the velocity. Put in reasonable numbers,
and give your final answer in years.19 

Problem 9.20 Equation 9.23 tells us the
(approximate) transmission probability for
tunneling through a barrier, when 
—a classically forbidden process. In this
problem we explore the complementary
phenomenon: reflection from a barrier
when  (again, a classically
forbidden process). We’ll assume that 
is an even analytic function, that goes to
zero as  (Figure 9.15). Question:
What is the analog to Equation 9.23?
(a)   Try the obvious approach: assume the

potential vanishes for , and use
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the WKB approximation (Equation
9.13) in the scattering region:

Impose the usual
boundary conditions at , and solve
for the reflection probability, 

.

 

Figure 9.15:  Reflection from a barrier
(Problem 9.20).

Unfortunately, the result  is
uninformative. It’s true that the R is
exponentially small (just as the
transmission coefficient is, for 

, but we’ve thrown the baby
out with the bath water—this
approximation is simply too drastic.
The correct formula is
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(9.67)
and  is defined by 

. Notice that  (like γ in
Equation 9.23) goes like ; it is in
fact the leading term in an expansion
in powers of : 

. In
the classical limit ,  and γ go
to infinity, so R and T go to zero, as
expected. It is not easy to derive
Equation 9.67,20 but let’s look at some
examples.

(b)   Suppose , for
some positive constants  and a. Plot 

, plot  for , and
show that 

. Plot R

as a function of E, for fixed .
(c)   Suppose . Plot 

, and express  in terms of an
elliptic integral. Plot R as a function of
E.

1   In Holland it’s KWB, in France it’s BWK, and in England it’s JWKB (for
Jeffreys).

2   We might as well take the positive sign, since both are covered by Equation
9.13.
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3   In this case the wave function is real, and the analogs to Equations 9.6 and 9.7
do not follow necessarily from Equation 9.5, although they are still sufficient. If
this bothers you, study the alternative derivation in Problem 9.2.

4   This heuristic argument can be made more rigorous—see Problem 9.11.
5   For a more complete discussion, and alternative formulations, see

B. R. Holstein, Am. J. Phys. 64, 1061 (1996).
6   For an interesting brief history see E. Merzbacher, “The Early History of

Quantum Tunneling,” Physics Today, August 2002, p. 44.
7   In this case the potential does not drop to zero on the left side of the barrier

(moreover, this is really a three-dimensional problem), but the essential idea,
contained in Equation 9.23, is all we really need.

8   This figure is reprinted by permission from David Park, Introduction to the
Quantum Theory, 3rd edn, Dover Publications, New York (2005); it was
adapted from I. Perlman and J. O. Rasmussen, “Alpha Radioactivity,”
Encyclopedia of Physics, Vol. 42, Springer (1957).

9   Warning: The following argument is quite technical, and you may wish to skip
it on a first reading.

10   Classically, a linear potential means a constant force, and hence a constant
acceleration—the simplest nontrivial motion possible, and the starting point for
elementary mechanics. It is ironic that the same potential in quantum mechanics
yields stationary states that are unfamiliar transcendental functions, and plays
only a peripheral role in the theory. Still, wave packets can be reasonably
simple—see Problem 2.51 and especially footnote 61, page 81.

11   This is a delicate double constraint, and it is possible to concoct potentials so
pathological that no such overlap region exists. However, in practical
applications this seldom occurs. See Problem 9.9.

12   At first glance it seems absurd to use a large-z approximation in this region,
which after all is supposed to be reasonably close to the turning point at 
(so that the linear approximation to the potential is valid). But notice that the
argument here is , and if you study the matter carefully (see Problem 9.9) you
will find that there is (typically) a region in which  is large, but at the same
time it is reasonable to approximate  by a straight line. Indeed, the
asymptotic forms of the Airy functions are precisely the WKB solutions to
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Airy’s equation, and since we are already using  in the overlap region
(Figure 9.10) it is not really a new approximation to do the same for .

13   Not —an overall minus sign can be absorbed into the normalization factors D
and .

14   For more on the quantum bouncing ball see Problem 2.59, J. Gea-Banacloche,
Am. J. Phys. 67, 776 (1999), and N. Wheeler, “Classical/quantum dynamics in
a uniform gravitational field”, unpublished Reed College report (2002). This
may sound like an awfully artificial problem, but the experiment has actually
been done, using neutrons (V. V. Nesvizhevsky et al., Nature 415, 297 (2002)).

15   As always, the WKB result is most accurate in the semi-classical (large 
regime. In particular, Equation 9.54 is not very good for the ground state 
. See W. N. Mei, Am. J. Phys. 66, 541 (1998).

16   Application of the WKB approximation to the radial equation raises some
delicate and subtle problems, which I will not go into here. The classic paper on
the subject is R. Langer, Phys. Rev. 51, 669 (1937).

17   I thank Ian Gatland and Owen Vajk for pointing this out.
18   Even if  is not strictly parabolic in each well, this calculation of θ, and

hence the result (Equation 9.64) will be approximately correct, in the sense
discussed in Section 2.3, with , where  is the position of the
minimum.

19   R. E. Crandall, Scientific American, February, 1997, p. 74.
20   L. D. Landau and E. M. Lifshitz, Quantum Mechanics: Non-Relativistic

Theory, Pergamon Press, Oxford (1958), pages 190–191. R. L. Jaffe,
Am. J. Phys. 78, 620 (2010) shows that reflection (for  can be
regarded as tunneling in momentum space, and obtains Equation 9.67 by a
clever analog to the argument yielding Equation 9.23.

708



10
Scattering

◈

10.1 Introduction

10.1.1 Classical Scattering Theory

Imagine a particle incident on some scattering center (say, a marble
bouncing off a bowling ball, or a proton fired at a heavy nucleus). It comes
in with energy E and impact parameter b, and it emerges at some
scattering angle θ—see Figure 10.1. (I’ll assume for simplicity that the
target is symmetrical about the z axis, so the trajectory remains in one
plane, and that the target is very heavy, so its recoil is negligible.) The
essential problem of classical scattering theory is this: Given the impact
parameter, calculate the scattering angle. Ordinarily, of course, the
smaller the impact parameter, the greater the scattering angle.
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(10.1)

(10.2)

Figure 10.1: The classical scattering problem, showing the impact parameter b
and the scattering angle θ.

Example 10.1
Hard-sphere scattering. Suppose the target is a billiard ball, of
radius R, and the incident particle is a BB, which bounces off
elastically (Figure 10.2). In terms of the angle α, the impact
parameter is , and the scattering angle is , so

Evidently

 

Figure 10.2:  Elastic hard-sphere scattering.
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(10.3)

(10.4)

More generally, particles incident within an infinitesimal patch of
cross-sectional area  will scatter into a corresponding infinitesimal solid
angle  (Figure 10.3). The larger  is, the bigger  will be; the
proportionality factor, , is called the differential
(scattering) cross-section:1

In terms of the impact parameter and the azimuthal angle ϕ, 
and , so

(Since θ is typically a decreasing function of b, the derivative is actually
negative—hence the absolute value sign.)

 

Figure 10.3: Particles incident in the area  scatter into the solid angle .

Example 10.2
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(10.5)

(10.6)

(10.7)

(10.8)

(10.9)

Hard-sphere scattering (continued). In the case of hard-sphere
scattering (Example 10.1)

so

This example is unusual, in that the differential cross-section is
independent of θ.

The total cross-section is the integral of , over all solid angles:

roughly speaking, it is the total area of incident beam that is scattered by
the target. For example, in the case of hard-sphere scattering,

which is just what we would expect: It’s the cross-sectional area of the
sphere; BB’s incident within this area will hit the target, and those farther
out will miss it completely. But the virtue of the formalism developed here
is that it applies just as well to “soft” targets (such as the Coulomb field of
a nucleus) that are not simply “hit-or-miss”.

Finally, suppose we have a beam of incident particles, with uniform
intensity (or luminosity, as particle physicists call it)
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(10.10)

∗∗∗

(10.11)

The number of particles entering area  (and hence scattering into solid
angle ), per unit time, is , so

This is sometimes taken as the definition of the differential cross-section,
because it makes reference only to quantities easily measured in the
laboratory: If the detector subtends a solid angle , we simply count the
number recorded per unit time (the event rate, dN), divide by , and
normalize to the luminosity of the incident beam.

Problem 10.1 Rutherford scattering. An
incident particle of charge  and kinetic
energy E scatters off a heavy stationary
particle of charge .

(a)   Derive the formula relating the impact
parameter to the scattering
angle.2 Answer: 

.
(b)   Determine the differential scattering

cross-section. Answer:

(c)   Show that the total
cross-section for Rutherford scattering
is infinite.

10.1.2 Quantum Scattering Theory
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(10.12)

(10.13)

In the quantum theory of scattering, we imagine an incident plane wave, 
, traveling in the z direction, which encounters a scattering

potential, producing an outgoing spherical wave (Figure 10.4).3 That is,
we look for solutions to the Schrödinger equation of the generic form

(The spherical wave carries a factor of , because this portion of 
must go like  to conserve probability.) The wave number k is related
to the energy of the incident particles in the usual way:

(As before, I assume the target is azimuthally symmetrical; in the more
general case f would depend on ϕ as well as θ.)

 

Figure 10.4: Scattering of waves; an incoming plane wave generates an
outgoing spherical wave.
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(10.14)

The whole problem is to determine the scattering amplitude ; it
tells you the probability of scattering in a given direction θ, and hence is
related to the differential cross-section. Indeed, the probability that the
incident particle, traveling at speed v, passes through the infinitesimal area 

, in time dt, is (see Figure 10.5)

But this is equal to the probability that the particle scatters into the
corresponding solid angle :

from which it follows that , and hence

Evidently the differential cross-section (which is the quantity of interest to
the experimentalist) is equal to the absolute square of the scattering
amplitude (which is obtained by solving the Schrödinger equation). In the
following sections we will study two techniques for calculating the
scattering amplitude: partial wave analysis and the Born approximation.

 

Figure 10.5: The volume dV of incident beam that passes through area  in
time dt.
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(10.16)

(10.15)

Problem 10.2 Construct the analogs to
Equation 10.12 for one-dimensional and two-
dimensional scattering.

10.2 Partial Wave Analysis

10.2.1 Formalism

As we found in Chapter 4, the Schrödinger equation for a spherically
symmetrical potential  admits the separable solutions

where  is a spherical harmonic (Equation 4.32), and 
satisfies the radial equation (Equation 4.37):

At very large r the potential goes to zero, and the centrifugal contribution
is negligible, so

The general solution is

the first term represents an outgoing spherical wave, and the second an
incoming one—for the scattered wave we want . At very large r,
then,
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(10.17)

(10.19)

(10.20)

(10.18)

as we already deduced (on physical grounds) in the previous section
(Equation 10.12).

That’s for very large r (more precisely, for ; in optics it would
be called the radiation zone). As in one-dimensional scattering theory, we
assume that the potential is “localized,” in the sense that exterior to some
finite scattering region it is essentially zero (Figure 10.6). In the
intermediate region (where V can be ignored but the centrifugal term
cannot),4 the radial equation becomes

and the general solution (Equation 4.45) is a linear combination of
spherical Bessel functions:

However, neither  (which is somewhat like a sine function) nor  (which
is a sort of generalized cosine function) represents an outgoing (or an
incoming) wave. What we need are the linear combinations analogous to 

 and ; these are known as spherical Hankel functions:

The first few spherical Hankel functions are listed in Table 10.1. At large
r,  (the Hankel function of the first kind) goes like ,
whereas  (the Hankel function of the second kind) goes like 

; for outgoing waves, then, we need spherical Hankel functions of
the first kind:
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(10.21)

 

Figure 10.6: Scattering from a localized potential: the scattering region (dark),
the intermediate region, where  (shaded), and the radiation zone (where 

).

Table 10.1: Spherical Hankel functions,  and .

The exact wave function, in the exterior region (where ), is

The first term is the incident plane wave, and the sum (with expansion
coefficients ) is the scattered wave. But since we are assuming the
potential is spherically symmetric, the wave function cannot depend on ϕ.5

So only terms with  survive (remember, ). Now (from
Equations 4.27 and 4.32)
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(10.22)

(10.24)

(10.25)

(10.27)

(10.23)

(10.26)

where  is the th Legendre polynomial. It is customary to redefine the
expansion coefficients :

You’ll see in a moment why this peculiar notation is
convenient;  is called the th partial wave amplitude.

For very large r, the Hankel function goes like  (Table
10.1), so

where

This confirms more rigorously the general structure postulated in Equation
10.12, and tells us how to compute the scattering amplitude, , in terms
of the partial wave amplitudes . The differential cross-section is

and the total cross-section is
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(10.28)

(I used the orthogonality of the Legendre polynomials, Equation 4.34, to
do the angular integration.)

10.2.2 Strategy

All that remains is to determine the partial wave amplitudes, , for the
potential in question. This is accomplished by solving the Schrödinger
equation in the interior region (where  is not zero), and matching it to
the exterior solution (Equation 10.23), using the appropriate boundary
conditions. The only problem is that as it stands my notation is hybrid: I
used spherical coordinates for the scattered wave, but cartesian
coordinates for the incident wave. We need to rewrite the wave function in
a more consistent notation.

Of course,  satisfies the Schrödinger equation with . On the
other hand, I just argued that the general solution to the Schrödinger
equation with  can be written in the form

In particular, then, it must be possible to express  in this way. But 
is finite at the origin, so no Neumann functions are allowed in the sum 

 blows up at ), and since  has no ϕ dependence, only 
 terms occur. The resulting expansion of a plane wave in terms of

spherical waves is known as Rayleigh’s formula:6

Using this, the wave function in the exterior region (Equation 10.23) can
be expressed entirely in terms of r and θ:
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(10.30)

(10.32)

(10.33)

(10.34)

(10.31)

(10.29)

Example 10.3
Quantum hard-sphere scattering. Suppose

The boundary condition, then, is

so

for all θ, from which it follows (Problem 10.3) that

In particular, the total cross-section (Equation 10.27) is

That’s the exact answer, but it’s not terribly illuminating, so
let’s consider the limiting case of low-energy scattering: .
(Since , this amounts to saying that the wavelength is
much greater than the radius of the sphere.) Referring to Table 4.4,
we note that  is much larger than , for small z, so
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(10.35)

(10.36)

and hence

But we’re assuming , so the higher powers are negligible—
in the low-energy approximation the scattering is dominated by the

 term. (This means that the differential cross-section is
independent of θ, just as it was in the classical case.) Evidently

for low energy hard-sphere scattering. Surprisingly, the scattering
cross-section is four times the geometrical cross-section—in fact, σ
is the total surface area of the sphere. This “larger effective size”
is characteristic of long-wavelength scattering (it would be true in
optics, as well); in a sense, these waves “feel” their way around the
whole sphere, whereas classical particles only see the head-on
cross-section (Equation 10.8).

Problem 10.3 Prove Equation 10.33, starting
with Equation 10.32. Hint: Exploit the
orthogonality of the Legendre polynomials to
show that the coefficients with different values
of  must separately vanish.
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(10.37)

(10.38)

Problem 10.4 Consider the case of low-energy
scattering from a spherical delta-function shell:

where α and a are constants. Calculate the
scattering amplitude, , the differential
cross-section, , and the total cross-section,
σ. Assume , so that only the  term
contributes significantly. (To simplify matters,
throw out all  terms right from the start.)
The main problem, of course, is to determine 

. Express your answer in terms of the
dimensionless quantity . Answer: 

.

10.3 Phase Shifts

Consider first the problem of one-dimensional scattering from a localized
potential  on the half-line  (Figure 10.7). I’ll put a “brick wall” at

, so a wave incident from the left,

is entirely reflected

Whatever happens in the interaction region , the amplitude of
the reflected wave has got to be the same as that of the incident wave 

, by conservation of probability. But it need not have the same
phase. If there were no potential at all (just the wall at ), then 
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(10.39)

(10.40)

, since the total wave function (incident plus reflected) must
vanish at the origin:

If the potential is not zero, the wave function (for ) takes the form

 

Figure 10.7: One-dimensional scattering from a localized potential bounded
on the right by an infinite wall.

The whole theory of scattering reduces to the problem of calculating
the phase shift7 δ (as a function of k, and hence of the energy 

), for a specified potential. We do this, of course, by solving
the Schrödinger equation in the scattering region , and
imposing appropriate boundary conditions (see Problem 10.5). The
advantage of working with the phase shift (as opposed to the complex
number B) is that it exploits the physics to simplify the mathematics
(trading a complex quantity—two real numbers—for a single real
quantity).

Now let’s return to the three-dimensional case. The incident plane
wave  carries no angular momentum in the z direction (Rayleigh’s
formula contains no terms with ), but it includes all values of the
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(10.41)

(10.42)

(10.43)

(10.44)

total angular momentum . Because angular momentum is

conserved (by a spherically symmetric potential), each partial wave
(labelled by a particular ) scatters independently, with (again) no change
in amplitude8 —only in phase.

If there is no potential at all, then , and the th partial wave
is (Equation 10.28)

But (from Equation 10.19 and Table 10.1)

So for large r

The second term inside the square brackets represents an
incoming spherical wave; it comes from the incident plane wave, and is
unchanged when we now introduce a potential. The first term is the
outgoing wave; it picks up a phase shift (due to the scattering potential):

Think of it as a converging spherical wave (the 
term, due exclusively to the  component in ), which is phase shifted
an amount  on the way in, and again  on the way out (hence the 2),
emerging as an outgoing spherical wave (the  term, due to the  part
of  plus the scattered wave).

In Section 10.2.1 the whole theory was expressed in terms of the
partial wave amplitudes ; now we have formulated it in terms of the
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(10.46)

(10.47)

(10.48)

(10.45)

phase shifts . There must be a connection between the two. Indeed,
comparing the asymptotic (large r) form of Equation 10.23

with the generic expression in terms of  (Equation
10.44), we find9

It follows in particular (Equation 10.25) that

and (Equation 10.27)

Again, the advantage of working with phase shifts (as opposed to partial
wave amplitudes) is that they are easier to interpret physically, and simpler
mathematically—the phase shift formalism exploits conservation of
angular momentum to reduce a complex quantity  (two real numbers) to
a single real one .

Problem 10.5 A particle of mass m and energy
E is incident from the left on the potential
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(a)   If the incoming wave is  (where 
), find the reflected wave.

Answer:

(b)   Confirm that the reflected wave has
the same amplitude as the incident
wave.

(c)   Find the phase shift δ (Equation 10.40)
for a very deep well .
Answer: .

Problem 10.6 What are the partial wave phase
shifts  for hard-sphere scattering
(Example 10.3)?

Problem 10.7 Find the S-wave  partial
wave phase shift  for scattering from a
delta-function shell (Problem 10.4). Assume
that the radial wave function  goes to 0 as 

. Answer:

10.4 The Born Approximation

727



(10.49)

(10.50)

(10.51)

(10.52)

(10.53)

10.4.1 Integral Form of the Schrödinger Equation

The time-independent Schrödinger equation,

can be written more succinctly as

where

This has the superficial appearance of the Helmholtz equation; note,
however, that the “inhomogeneous” term  itself depends on . Suppose
we could find a function  that solves the Helmholtz equation with a
delta function “source”:

Then we could express  as an integral:

For it is easy to show that this satisfies Schrödinger’s equation, in the form
of Equation 10.50:

 is called the Green’s function for the Helmholtz equation. (In
general, the Green’s function for a linear differential equation represents
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(10.54)

(10.56)

(10.57)

(10.58)

(10.55)

the “response” to a delta-function source.)
Our first task10 is to solve Equation 10.52 for . This is most

easily accomplished by taking the Fourier transform, which turns the
differential equation into an algebraic equation. Let

Then

But

and (see Equation 2.147)

so Equation 10.52 says

It follows11 that

Putting this back into Equation 10.54, we find:
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(10.59)

(10.60)

(10.61)

Now, r is fixed, as far as the s integration is concerned, so we may as well
choose spherical coordinates  with the polar axis along r
(Figure 10.8). Then , the ϕ integral is trivial , and the θ
integral is

Thus

 

Figure 10.8: Convenient coordinates for the integral in Equation 10.58.

The remaining integral is not so simple. It pays to revert to
exponential notation, and factor the denominator:

These two integrals can be evaluated using Cauchy’s
integral formula:
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(10.62)

(10.63)

(10.64)

if  lies within the contour (otherwise the integral is zero). In the present
case the integration is along the real axis, and it passes right over the pole
singularities at . We have to decide how to skirt the poles—I’ll go over
the one at  and under the one at  (Figure 10.9). (You’re welcome to
choose some other convention if you like—even winding seven times
around each pole—you’ll get a different Green’s function, but, as I’ll show
you in a minute, they’re all equally acceptable.)12

Figure 10.9: Skirting the poles in the contour integral (Equation 10.61).

For each integral in Equation 10.61 I must “close the contour” in such
a way that the semicircle at infinity contributes nothing. In the case of ,
the factor  goes to zero when s has a large positive imaginary part; for
this one I close above (Figure 10.10(a)). The contour encloses only the
singularity at , so

In the case of , the factor  goes to zero when s has a large negative
imaginary part, so we close below (Figure 10.10(b)); this time the contour
encloses the singularity at  (and it goes around in the clockwise
direction, so we pick up a minus sign):
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(10.65)

(10.66)

(10.67)

Conclusion:

Figure 10.10: Closing the contour in Equations 10.63 and 10.64.

This, finally, is the Green’s function for the Helmholtz equation—the
solution to Equation 10.52. (If you got lost in all that analysis, you might
want to check the result by direct differentiation—see Problem 10.8.) Or
rather, it is a Green’s function for the Helmholtz equation, for we can add
to  any function  that satisfies the homogeneous Helmholtz
equation:

clearly, the result  still satisfies Equation 10.52. This ambiguity
corresponds precisely to the ambiguity in how to skirt the poles—a
different choice amounts to picking a different function .

Returning to Equation 10.53, the general solution to the Schrödinger
equation takes the form

where  satisfies the free-particle Schrödinger equation,
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(10.68)

∗∗

(10.69)

Equation 10.67 is the integral form of the Schrödinger equation; it is
entirely equivalent to the more familiar differential form. At first glance it
looks like an explicit solution to the Schrödinger equation (for any
potential)—which is too good to be true. Don’t be deceived: There’s a 
under the integral sign on the right hand side, so you can’t do the integral
unless you already know the solution! Nevertheless, the integral form can
be very powerful, and it is particularly well suited to scattering problems,
as we’ll see in the following section.

Problem 10.8 Check that Equation 10.65
satisfies Equation 10.52, by direct substitution.
Hint: .13

Problem 10.9 Show that the ground state of
hydrogen (Equation 4.80) satisfies the integral
form of the Schrödinger equation, for the
appropriate V and E (note that E is negative, so

, where ).

10.4.2 The First Born Approximation

Suppose  is localized about —that is, the potential drops to zero
outside some finite region (as is typical for a scattering problem), and we
want to calculate  at points far away from the scattering center. Then 

 for all points that contribute to the integral in Equation 10.67, so
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(10.73)

(10.75)

(10.76)

(10.70)

(10.71)

(10.72)

(10.74)

and hence

Let

then

and therefore

(In the denominator we can afford to make the more radical approximation
; in the exponent we need to keep the next term. If this puzzles

you, try including the next term in the expansion of the denominator. What
we are doing is expanding in powers of the small quantity , and
dropping all but the lowest order.)

In the case of scattering, we want

representing an incident plane wave. For large r, then,

This is in the standard form (Equation 10.12), and we can read off the
scattering amplitude:
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(10.79)

(10.77)

(10.78)

This is exact.14 Now we invoke the Born approximation: Suppose the
incoming plane wave is not substantially altered by the potential; then it
makes sense to use

where

inside the integral. (This would be the exact wave function, if V were zero;
it is essentially a weak potential approximation.15 ) In the Born
approximation, then,

(In case you have lost track of the definitions of  and k, they both have
magnitude k, but the former points in the direction of the incident beam,
while the latter points toward the detector—see Figure 10.11;  is
the momentum transfer in the process.)

 

Figure 10.11: Two wave vectors in the Born approximation:  points in the
incident direction, k in the scattered direction.

In particular, for low energy (long wavelength) scattering, the
exponential factor is essentially constant over the scattering region, and the
Born approximation simplifies to
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(10.80)

(10.81)

(10.82)

(10.83)

(10.84)

(10.85)

(I dropped the subscript on r, since there is no likelihood of confusion at
this point.)

Example 10.4
Low-energy soft-sphere scattering. 16 Suppose

In this case the low-energy scattering amplitude is

(independent of θ and ϕ), the differential cross-section is

and the total cross-section is

For a spherically symmetrical potential, —but not
necessarily at low energy—the Born approximation again reduces to a
simpler form. Define

and let the polar axis for the  integral lie along , so that
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(10.87)

(10.90)

(10.91)

(10.86)

(10.88)

(10.89)

Then

The  integral is trivial , and the  integral is one we have
encountered before (see Equation 10.59). Dropping the subscript on r, we
are left with

The angular dependence of f is carried by κ; in
Figure 10.11 we see that

Example 10.5
Yukawa scattering. The Yukawa potential (which is a crude
model for the binding force in an atomic nucleus) has the form

where β and μ are constants. The Born approximation gives

(You get to work out the integral for yourself, in Problem 10.11.)

Example 10.6
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(10.92)

(10.93)

(10.94)

∗

Rutherford scattering. If we put in , , the
Yukawa potential reduces to the Coulomb potential, describing the
electrical interaction of two point charges. Evidently the scattering
amplitude is

or (using Equations 10.89 and 10.51):

The differential cross-section is the square of this:

which is precisely the Rutherford formula (Equation 10.11). It
happens that for the Coulomb potential classical mechanics, the
Born approximation, and quantum field theory all yield the same
result. As they say in the computer business, the Rutherford
formula is amazingly “robust.”

Problem 10.10 Find the scattering amplitude,
in the Born approximation, for soft-sphere
scattering at arbitrary energy. Show that your
formula reduces to Equation 10.82 in the low-
energy limit.
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∗

Problem 10.11 Evaluate the integral in
Equation 10.91, to confirm the expression on
the right.

Problem 10.12 Calculate the total cross-
section for scattering from a Yukawa potential,
in the Born approximation. Express your
answer as a function of E.

Problem 10.13 For the potential in Problem
10.4,

(a)   calculate , , and σ, in the low-
energy Born approximation;

(b)   calculate  for arbitrary energies, in
the Born approximation;

(c)   show that your results are consistent
with the answer to Problem 10.4, in
the appropriate regime.

10.4.3 The Born Series

The Born approximation is similar in spirit to the impulse approximation
in classical scattering theory. In the impulse approximation we begin by
pretending that the particle keeps going in a straight line (Figure 10.12),
and compute the transverse impulse that would be delivered to it in that
case:
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(10.95)

(10.96)

(10.97)

(10.98)

If the deflection is relatively small, this should be a good approximation to
the transverse momentum imparted to the particle, and hence the scattering
angle is

where p is the incident momentum. This is, if you like, the “first-order”
impulse approximation (the zeroth-order is what we started with: no
deflection at all). Likewise, in the zeroth-order Born approximation the
incident plane wave passes by with no modification, and what we explored
in the previous section is really the first-order correction to this. But the
same idea can be iterated to generate a series of higher-order corrections,
which presumably converge to the exact answer.

 

Figure 10.12: The impulse approximation assumes that the particle continues
undeflected, and calculates the transverse momentum delivered.

The integral form of the Schrödinger equation reads

where  is the incident wave,
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(10.99)

(10.100)

(10.101)

is the Green’s function (into which I have now incorporated the factor 
, for convenience), and V is the scattering potential. Schematically,

Suppose we take this expression for , and plug it in under the integral
sign:

Iterating this procedure, we obtain a formal series for :

In each integrand only the incident wave function 
appears, together with more and more powers of gV. The first Born
approximation truncates the series after the second term, but it is pretty
clear how one generates the higher-order corrections.

The Born series can be represented diagrammatically as shown in
Figure 10.13. In zeroth order  is untouched by the potential; in first order
it is “kicked” once, and then “propagates” out in some new direction; in
second order it is kicked, propagates to a new location, is kicked again,
and then propagates out; and so on. In this context the Green’s function is
sometimes called the propagator—it tells you how the disturbance
propagates between one interaction and the next. The Born series was the
inspiration for Feynman’s formulation of relativistic quantum mechanics,
which is expressed entirely in terms of vertex factors  and propagators 

, connected together in Feynman diagrams.
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∗∗∗

Figure 10.13: Diagrammatic interpretation of the Born series (Equation
10.101).

Problem 10.14 Calculate θ (as a function of
the impact parameter) for Rutherford
scattering, in the impulse approximation. Show
that your result is consistent with the exact
expression (Problem 10.1(a)), in the
appropriate limit.

Problem 10.15 Find the scattering amplitude
for low-energy soft-sphere scattering in the
second Born approximation. Answer:

Further Problems on Chapter 10

Problem 10.16 Find the Green’s function for
the one-dimensional Schrödinger equation,
and use it to construct the integral form
(analogous to Equation 10.66). Answer:
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(10.104)

(10.102)

(10.103)

Problem 10.17 Use your result
in Problem 10.16 to develop the Born
approximation for one-dimensional
scattering (on the interval ,
with no “brick wall” at the origin). That is,
choose , and assume 

 to evaluate the integral.
Show that the reflection coefficient takes
the form:

Problem 10.18 Use the one-
dimensional Born approximation (Problem
10.17) to compute the transmission
coefficient  for scattering from
a delta function (Equation 2.117) and from
a finite square well (Equation 2.148).
Compare your results with the exact
answers (Equations 2.144 and 2.172).

Problem 10.19 Prove the optical theorem,
which relates the total cross-section to the
imaginary part of the forward scattering
amplitude:
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Hint: Use Equations 10.47 and 10.48.

Problem 10.20 Use the Born approximation to
determine the total cross-section for
scattering from a gaussian potential

Express your answer in terms of the
constants , a, and m (the mass of the
incident particle), and , where
E is the incident energy.

Problem 10.21 Neutron diffraction. Consider
a beam of neutrons scattering from a
crystal (Figure 10.14). The interaction
between neutrons and the nuclei in the
crystal is short ranged, and can be
approximated as

where the  are the locations of the nuclei
and the strength of the potential is
expressed in terms of the nuclear
scattering length b.
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Figure 10.14:  Neutron scattering from a
crystal.

(a)   In the first Born approximation, show
that

where .
(b)   Now consider the case where the

nuclei are arranged on a cubic lattice
with spacing a. Take the positions to
be

where l, m, and n all range from 0 to 
, so there are a total of 

nuclei.17 Show that

(c)   Plot
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as a function of  for several values
of N  to show that the
function describes a series of peaks
that become progressively sharper as
N increases.

(d)   In light of (c), in the limit of large N
the differential scattering cross section
is negligibly small except at one of
these peaks:

for integer l, m, and n. The vectors 
 are called reciprocal lattice

vectors. Find the scattering angles 
at which peaks occur. If the neutron’s
wavelength is equal to the crystal
spacing a, what are the three smallest
(nonzero) angles?

 Comment: Neutron diffraction is one
method used, to determine crystal
structures (electrons and x-rays can also be
used and the same expression for the
locations of the peaks holds). In this
problem we looked at a cubic arrangement
of atoms, but a different arrangement
(hexagonal for example) would produce
peaks at a different set of angles. Thus
from the scattering data one can infer the
underlying crystal structure.
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(10.108)

(10.105)

(10.106)

(10.107)

Problem 10.22 Two-dimensional scattering
theory. By analogy with Section 10.2,
develop partial wave analysis for two
dimensions.
(a)   In polar coordinates  the

Laplacian is

Find the separable
solutions to the (time-independent)
Schrödinger equation, for a potential
with azimuthal symmetry 

. Answer:

where j is an integer, and 
satisfies the radial equation

(b)   By solving the radial
equation for very large r (where both 

 and the centrifugal term go to
zero), show that an outgoing radial
wave has the asymptotic form
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(10.109)

(10.110)

(10.111)

where . Check that an
incident wave of the form 
satisfies the Schrödinger equation, for 

 (this is trivial, if you use
cartesian coordinates). Write down the
two-dimensional analog to Equation
10.12, and compare your result to
Problem 10.2. Answer:

(c)   Construct the analog to
Equation 10.21 (the wave function in
the region where  but the
centrifugal term cannot be ignored).
Answer:

where  is the

Hankel function (not the spherical
Hankel function!) of  order j.18

(d)   For large z,

Use this to show that
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(10.113)

(10.114)

(10.116)

(10.112)

(10.115)

(e)   Adapt the argument of
Section 10.1.2 to this two-dimensional
geometry. Instead of the area , we
have a length, db, and in place of the
solid angle  we have the increment
of scattering angle ; the role of the
differential cross-section is played by

and the effective “width” of the target
(analogous to the total cross-section)
is

Show that

(f)   Consider the case of
scattering from a hard disk (or, in three
dimensions, an infinite cylinder19) of
radius a:

By imposing appropriate boundary
conditions at , determine B.
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(10.117)

(10.118)

You’ll need the analog to Rayleigh’s
formula:

(where  is the Bessel function of
order J). Plot B as a function of ka, for

.

Problem 10.23 Scattering of identical
particles. The results for scattering of a
particle from a fixed target also apply to
the scattering of two particles in the center
of mass frame. With 

,  satisfies

(see Problem 5.1) where 
 is the interaction between the particles

(assumed here to depend only on their
separation distance). This is the one-
particle Schrödinger equation (with the
reduced mass μ in place of m).
(a)   Show that if the two particles are

identical (spinless) bosons, then 
must be an even function of 
(Figure 10.15).

(b)   By symmetrizing Equation 10.12
(why is this allowed?), show that the
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scattering amplitude in this case is

where  is the scattering amplitude
of a single particle of mass μ from a
fixed target .

(c)   Show that the partial wave amplitudes
of  vanish for all odd powers of .

(d)   How are the results of (a)–(c) different
if the particles are identical fermions
(in a triplet spin state).

(e)   Show that the scattering amplitude for
identical fermions vanishes at .

(f)   Plot the logarithm of the differential
scattering cross section for fermions
and for bosons in Rutherford scattering
(Equation 10.93).20

Figure 10.15:  Scattering of identical
particles.

1   This is terrible language: D isn’t a differential, and it isn’t a cross-section. To
my ear, the words “differential cross-section” would attach more naturally to 
. But I’m afraid we’re stuck with this terminology. I should also warn you that
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the notation  is nonstandard—most people just call it  (which makes
Equation 10.3 look like a tautology). I think it will be less confusing if we give
the differential cross-section its own symbol.

2   This isn’t easy, and you might want to refer to a book on classical mechanics,
such as Jerry B. Marion and Stephen T. Thornton, Classical Dynamics of
Particles and Systems, 4th edn, Saunders, Fort Worth, TX (1995), Section 9.10.

3   For the moment, there’s not much quantum mechanics in this; what we’re
really talking about is the scattering of waves, as opposed to particles, and you
could even think of Figure 10.4 as a picture of water waves encountering a
rock, or (better, since we’re interested in three-dimensional scattering) sound
waves bouncing off a basketball.

4   What follows does not apply to the Coulomb potential, since  goes to zero
more slowly than , as , and the centrifugal term does not dominate in
this region. In this sense the Coulomb potential is not localized, and partial
wave analysis is inapplicable.

5   There’s nothing wrong with θ dependence, of course, because the incoming
plane wave defines a z direction, breaking the spherical symmetry. But the
azimuthal symmetry remains; the incident plane wave has no ϕ dependence,
and there is nothing in the scattering process that could introduce any ϕ
dependence in the outgoing wave.

6   For a guide to the proof, see George Arfken and Hans-Jurgen Weber,
Mathematical Methods for Physicists, 7th edn, Academic Press, Orlando
(2013), Exercises 15.2.24 and 15.2.25.

7   The 2 in front of δ is conventional. We think of the incident wave as being
phase shifted once on the way in, and again on the way out; δ is the “one way”
phase shift, and the total is .

8   One reason this subject can be so confusing is that practically everything is
called an “amplitude”:  is the “scattering amplitude”,  is the “partial wave
amplitude”, but the first is a function of θ, and both are complex numbers. I’m
now talking about “amplitude” in the original sense: the (real, of course) height
of a sinusoidal wave.

9   Although I used the asymptotic form of the wave function to draw the
connection between  and , there is nothing approximate about the result
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(Equation 10.46). Both of them are constants (independent of r), and  means
the phase shift in the asymptotic region (where the Hankel functions have
settled down to ).

10   Warning: You are approaching two pages of heavy analysis, including contour
integration; if you wish, skip straight to the answer, Equation 10.65.

11   This is clearly sufficient, but it is also necessary, as you can easily show by
combining the two terms into a single integral, and using Plancherel’s theorem,
Equation 2.103.

12   If you are unfamiliar with this technique you have every right to be suspicious.
In truth, the integral in Equation 10.60 is simply ill-defined—it does not
converge, and it’s something of a miracle that we can make sense of it at all.
The root of the problem is that  doesn’t really have a legitimate Fourier
transform; we’re exceeding the speed limit, here, and just hoping we won’t get
caught.

13   See, for example, D. Griffiths, Introduction to Electrodynamics, 4th edn
(Cambridge University Press, Cambridge, UK, 2017), Section 1.5.3.

14   Remember,  is by definition the coefficient of  at large r.
15   Typically, partial wave analysis is useful when the incident particle has low

energy, for then only the first few terms in the series contribute significantly;
the Born approximation is more useful at high energy, when the deflection is
relatively small.

16   You can’t apply the Born approximation to hard-sphere scattering —
the integral blows up. The point is that we assumed the potential is weak, and
doesn’t change the wave function much in the scattering region. But a hard
sphere changes it radically—from  to zero.

17   It makes no difference that this crystal isn’t “centered” at the origin: shifting
the crystal by R amounts to adding R to each of the , and that doesn’t affect 

 After all, we’re assuming an incident plane wave, which extends to 
in the x and y directions.

18   See Mary Boas, Mathematical Methods in the Physical Sciences, 3rd edn
(Wiley, New York, 2006), Section 12.17.

19   S. McAlinden and J. Shertzer, Am. J. Phys. 84, 764 (2016).
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20   Equation 10.93 was derived by taking the limit of Yukawa scattering
(Example 10.5) and the result for  is missing a phase factor (see Albert
Messiah, Quantum Mechanics, Dover, New York, NY (1999), Section XI.7).
That factor drops out of the cross-section for scattering from a fixed potential—
giving the correct answer in Example 10.6—but would show up in the cross-
section for scattering of identical particles.
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(11.1)

(11.4)

(11.2)

(11.3)

11
Quantum Dynamics

◈

So far, practically everything we have done belongs to the subject that
might properly be called quantum statics, in which the potential energy
function is independent of time: . In that case the (time-
dependent) Schrödinger equation,

can be solved by separation of variables:

where  satisfies the time-independent Schrödinger equation,

Because the time dependence of separable solutions is carried by the
exponential factor , which cancels out when we construct the
physically relevant quantity , all probabilities and expectation values
(for such states) are constant in time. By forming linear combinations of
these stationary states we obtain wave functions with more interesting time
dependence,
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but even then the possible values of the energy , and their respective
probabilities , are constant.

If we want to allow for transitions (quantum jumps, as they are
sometimes called) between one energy level and another, we must
introduce a time-dependent potential (quantum dynamics). There are
precious few exactly solvable problems in quantum dynamics. However, if
the time-dependent part of the Hamiltonian is small (compared to the time-
independent part), it can be treated as a perturbation. The main purpose of
this chapter is to develop time-dependent perturbation theory, and study
its most important application: the emission or absorption of radiation by
an atom.

Problem 11.1 Why isn’t it trivial to solve the
time-dependent Schrödinger equation (11.1), in
its dependence on t ? After all, it’s a first-order
differential equation.

(a)   How would you solve the equation

(for , if k were a constant?
(b)   What if k is itself a function of t?

(Here  and  might also depend
on other variables, such as r—it
doesn’t matter.)

(c)   Why not do the same thing for the
Schrödinger equation (with a time-
dependent Hamiltonian)? To see that
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(11.6)

(11.5)

this doesn’t work, consider the simple
case

where  and  are themselves time-
independent. If the solution in part (b)
held for the Schrödinger equation, the
wave function at time  would be

but of course we could also write

Why are these generally not the same?
[This is a subtle matter; if you want to
pursue it further, see Problem 11.23.]

11.1 Two-Level Systems

To begin with, let us suppose that there are just two states of the
(unperturbed) system,  and . They are eigenstates of the unperturbed
Hamiltonian, :

and they are orthonormal:
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(11.10)

(11.7)

(11.8)

(11.9)

Any state can be expressed as a linear combination of them; in particular,

The states  and  might be position-space wave functions, or
spinors, or something more exotic—it doesn’t matter. It is the time
dependence that concerns us here, so when I write , I simply mean the
state of the system at time t. In the absence of any perturbation, each
component evolves with its characteristic wiggle factor:

Informally, we say that  is the “probability that the particle is in state 
”—by which we really mean the probability that a measurement of the

energy would yield the value . Normalization of  requires, of course,
that

11.1.1 The Perturbed System

Now suppose we turn on a time-dependent perturbation, . Since 
and  constitute a complete set, the wave function  can still be
expressed as a linear combination of them. The only difference is that 
and  are now functions of t:

(I could absorb the exponential factors into  and , and some
people prefer to do it this way, but I think it is nicer to keep visible the part
of the time dependence that would be present even without the
perturbation.) The whole problem is to determine  and , as functions of
time. If, for example, the particle started out in the state , 
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(11.11)

(11.13)

(11.12)

, and at some later time  we find that , , we
shall report that the system underwent a transition from  to .

We solve for  and  by demanding that  satisfy the time-
dependent Schrödinger equation,

From Equations 11.10 and 11.11, we find:

In view of Equation 11.5, the first two terms on the left cancel the last two
terms on the right, and hence

To isolate , we use the standard trick: Take the
inner product with , and exploit the orthogonality of  and  (Equation
11.6):

For short, we define

note that the hermiticity of  entails . Multiplying through

by , we conclude that:
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(11.14)

(11.15)

(11.17)

(11.18)

∗

(11.16)

Similarly, the inner product with  picks out :

and hence

Equations 11.14 and 11.15 determine  and ; taken together,
they are completely equivalent to the (time-dependent) Schrödinger
equation, for a two-level system. Typically, the diagonal matrix elements
of  vanish (see Problem 11.5 for the general case):

If so, the equations simplify:

where

(I’ll assume that , so .)

Problem 11.2 A hydrogen atom is placed in a
(time-dependent) electric field .
Calculate all four matrix elements  of the
perturbation  between the ground
state  and the (quadruply degenerate)
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first excited states . Also show that 
 for all five states. Note: There is only

one integral to be done here, if you exploit
oddness with respect to z; only one of the 
states is “accessible” from the ground state by
a perturbation of this form, and therefore the
system functions as a two-state configuration
—assuming transitions to higher excited states
can be ignored.

Problem 11.3 Solve Equation 11.17 for the
case of a time-independent perturbation,
assuming that  and . Check
that . Comment:
Ostensibly, this system oscillates between
“pure ” and “some .” Doesn’t this
contradict my general assertion that no
transitions occur for time-independent
perturbations? No, but the reason is rather
subtle: In this case  and  are not, and never
were, eigenstates of the Hamiltonian—a
measurement of the energy never yields  or 

. In time-dependent perturbation theory we
typically contemplate turning on the
perturbation for a while, and then turning it off
again, in order to examine the system. At the
beginning, and at the end,  and  are
eigenstates of the exact Hamiltonian, and only
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in this context does it make sense to say that
the system underwent a transition from one to
the other. For the present problem, then,
assume that the perturbation was turned on at
time , and off again at time T—this
doesn’t affect the calculations, but it allows for
a more sensible interpretation of the result.

Problem 11.4 Suppose the perturbation takes
the form of a delta function (in time):

assume that , and let 
. If  and 

, find  and , and check
that . What is the net
probability  for  that a transition
occurs? Hint: You might want to treat the delta
function as the limit of a sequence of
rectangles. Answer: .

11.1.2 Time-Dependent Perturbation Theory

So far, everything is exact: We have made no assumption about the size of
the perturbation. But if  is “small,” we can solve Equation 11.17 by a
process of successive approximations, as follows. Suppose the particle
starts out in the lower state:
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(11.21)

(11.22)

If there were no perturbation at all, they would stay this way forever:
Zeroth Order:

(I’ll use a superscript in parentheses to indicate the order of the
approximation.)

To calculate the first-order approximation, we insert the zeroth-order
values on the right side of Equation 11.17:
First Order:

Now we insert these expressions on the right side of Equation 11.17 to
obtain the second-order approximation:
Second Order:

while  is unchanged . (Notice that 
 includes the zeroth-order term; the second-order correction would

be the integral part alone.)
In principle, we could continue this ritual indefinitely, always

inserting the nth-order approximation into the right side of Equation 11.17,
and solving for the th order. The zeroth order contains no factors of 

, the first-order correction contains one factor of , the second-order
correction has two factors of , and so on.1 The error in the first-order
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approximation is evident in the fact that  (the exact

coefficients must, of course, obey Equation 11.9). However, 

 is equal to 1 to first order in , which is all we can

expect from a first-order approximation. And the same goes for the higher
orders.

Equation 11.21 can be written in the form

(where I’ve restored the exponential we factored out in
Equation 11.10). This suggests a nice pictorial interpretation: reading from
right to left, the system remains in state a from time 0 to time  (picking
up the “wiggle factor” , makes a transition from state a to state b
at time , and then remains in state b until time t (picking up the “wiggle
factor” . This process is represented in Figure 11.1. (Don’t
take the picture too literally: there is no sharp transition between these
states; in fact, you integrate over all the times  at which this transition can
occur.)

 

Figure 11.1: Pictorial representation of Equation 11.23.

This interpretation of the perturbation series is especially illuminating
at higher orders and for multi-level systems, where the expressions
become complicated. Consider Equation 11.22, which can be written
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(11.25)

The two terms here describe a process where the system
remains in state a for the entire time, and a second process where the
system transitions from a to b at time  and then back to a at time .
Graphically, this is shown in Figure 11.2.

 

Figure 11.2: Pictorial representation of Equation 11.24.

With the insight provided by these pictures, it is easy to write down
the general result for a multi-level system:2

For , this is represented by the diagram in
Figure 11.3. The first-order term describes a direct transition from i to n,
and the second-order term describes a process where the transition occurs
via an intermediate (or “virtual”) state m.

 

765



∗∗

(11.26)

(11.27)

(11.28)

Figure 11.3: Pictorial representation of Equation 11.25 for .

Problem 11.5 Suppose you don’t assume 
.

(a)   Find  and  in first-order
perturbation theory, for the case 

 . Show that 

, to first order

in .
(b)   There is a nicer way to handle this

problem. Let

Show that

where

So the equations for 
and  are identical in structure to
Equation 11.17 (with an extra factor 

 tacked onto .
(c)   Use the method in part (b) to obtain 

 and  in first-order
perturbation theory, and compare your
answer to (a). Comment on any
discrepancies.
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Problem 11.6 Solve Equation 11.17 to second
order in perturbation theory, for the general
case .

Problem 11.7 Calculate  and , to
second order, for the perturbation in Problem
11.3. Compare your answer with the exact
result.

Problem 11.8 Consider a perturbation to a
two-level system with matrix elements

where τ and α are positive constants with the
appropriate units.

(a)   According to first-order perturbation
theory, if the system starts off in the
state ,  at , what is
the probability that it will be found in
the state b at ?

(b)   In the limit that , .
Compute the  limit of your
expression from part (a) and compare
the result of Problem 11.4.
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(11.30)

(11.31)

(11.32)

(c)   Now consider the opposite extreme: 
. What is the limit of your

expression from part (a)? Comment:
This is an example of the adiabatic
theorem (Section 11.5.2).

11.1.3 Sinusoidal Perturbations

Suppose the perturbation has sinusoidal time dependence:

so that

where

(As before, I’ll assume the diagonal matrix elements vanish, since this is
almost always the case in practice.) To first order (from now on we’ll work
exclusively in first order, and I’ll dispense with the superscripts) we have
(Equation 11.21):
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(11.35)

(11.33)

assume:

This is not much of a limitation, since perturbations at other frequencies
have a negligible probability of causing a transition anyway. Dropping the
first term, we have

The transition probability—the probability that a particle which started
out in the state  will be found, at time t, in the state —is

The most remarkable feature of this result is that, as a function of time,
the transition probability oscillates sinusoidally (Figure 11.4). After rising
to a maximum of —necessarily much less than 1, else
the assumption that the perturbation is “small” would be invalid—it drops
back down to zero! At times , where , the
particle is certain to be back in the lower state. If you want to maximize
your chances of provoking a transition, you should not keep the
perturbation on for a long period; you do better to turn it off after a time 

, and hope to “catch” the system in the upper state. In Problem
11.9 it is shown that this “flopping” is not an artifact of perturbation theory
—it occurs also in the exact solution, though the flopping frequency is
modified somewhat.
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—it occurs also in the exact solution, though the flopping frequency is
modified somewhat.

 

Figure 11.4: Transition probability as a function of time, for a sinusoidal
perturbation (Equation 11.35).

As I noted earlier, the probability of a transition is greatest when the
driving frequency is close to the “natural” frequency, .3 This is
illustrated in Figure 11.5, where  is plotted as a function of ω. The
peak has a height of  and a width ; evidently it gets higher
and narrower as time goes on. (Ostensibly, the maximum increases without
limit. However, the perturbation assumption breaks down before it gets
close to 1, so we can believe the result only for relatively small t. In
Problem 11.9 you will see that the exact result never exceeds 1.)

 

Figure 11.5: Transition probability as a function of driving frequency
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Problem 11.9 The first term in Equation 11.32
comes from the  part of , and the
second from . Thus dropping the first
term is formally equivalent to writing 

, which is to say,

(The latter is required to make
the Hamiltonian matrix hermitian—or, if you
prefer, to pick out the dominant term in the
formula analogous to Equation 11.32 for .)
Rabi noticed that if you make this so-called
rotating wave approximation at the
beginning of the calculation, Equation 11.17
can be solved exactly, with no need for
perturbation theory, and no assumption about
the strength of the field.

(a)   Solve Equation 11.17 in the rotating
wave approximation (Equation 11.36),
for the usual initial conditions: 

. Express your
results  and  in terms of the
Rabi flopping frequency,

(b)   Determine the
transition probability, , and
show that it never exceeds 1. Confirm
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(b)   Determine the transition probability, 
, and show that it never

exceeds 1. Confirm that 
.

(c)   Check that  reduces to the
perturbation theory result (Equation
11.35) when the perturbation is
“small,” and state precisely what small
means in this context, as a constraint
on V.

(d)   At what time does the system first
return to its initial state?

11.2 Emission and Absorption of Radiation

11.2.1 Electromagnetic Waves

An electromagnetic wave (I’ll refer to it as “light”, though it could be
infrared, ultraviolet, microwave, x-ray, etc.; these differ only in their
frequencies) consists of transverse (and mutually perpendicular) oscillating
electric and magnetic fields (Figure 11.6). An atom, in the presence of a
passing light wave, responds primarily to the electric component. If the
wavelength is long (compared to the size of the atom), we can ignore the
spatial variation in the field;4 the atom, then, is exposed to a sinusoidally
oscillating electric field

(for the moment I’ll assume the light is monochromatic, and polarized
along the z direction). The perturbing Hamiltonian is5
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(11.41)

(11.42)

Typically,  is an even or odd function of z; in either case  is odd,
and integrates to zero (this is Laporte’s rule, Section 6.4.3; for some
examples see Problem 11.2). This licenses our usual assumption that the
diagonal matrix elements of  vanish. Thus the interaction of light with
matter is governed by precisely the kind of oscillatory perturbation we
studied in Section 11.1.3, with

 

Figure 11.6: An electromagnetic wave.

11.2.2 Absorption, Stimulated Emission, and Spontaneous
Emission

If an atom starts out in the “lower” state , and you shine a polarized
monochromatic beam of light on it, the probability of a transition to the
“upper” state  is given by Equation 11.35, which (in view of Equation
11.41) takes the form

In this process, the atom absorbs energy  from the
electromagnetic field, so it’s called absorption. (Informally, we say that
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In this process, the atom absorbs energy  from the
electromagnetic field, so it’s called absorption. (Informally, we say that
the atom has “absorbed a photon” (Figure 11.7(a).) Technically, the word
“photon” belongs to quantum electrodynamics—the quantum theory of
the electromagnetic field—whereas we are treating the field itself
classically. But this language is convenient, as long as you don’t read too
much into it.)

 

Figure 11.7: Three ways in which light interacts with atoms: (a) absorption,
(b) stimulated emission, (c) spontaneous emission.

I could, of course, go back and run the whole derivation for a system
that starts off in the upper state . Do it for yourself, if
you like; it comes out exactly the same—except that this time we’re
calculating , the probability of a transition down to the
lower level:

(It has to come out this way—all we’re doing is switching a  b, which
substitutes  for . When we get to Equation 11.32 we now keep the
first term, with  in the denominator, and the rest is the same as
before.) But when you stop to think of it, this is an absolutely astonishing
result: If the particle is in the upper state, and you shine light on it, it can
make a transition to the lower state, and in fact the probability of such a
transition is exactly the same as for a transition upward from the lower
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In the case of stimulated emission the electromagnetic field gains
energy  from the atom; we say that one photon went in and two photons
came out—the original one that caused the transition plus another one
from the transition itself (Figure 11.7(b)). This raises the possibility of
amplification, for if I had a bottle of atoms, all in the upper state, and
triggered it with a single incident photon, a chain reaction would occur,
with the first photon producing two, these two producing four, and so on.
We’d have an enormous number of photons coming out, all with the same
frequency and at virtually the same instant. This is the principle behind the
laser ight mplification by timulated mission of adiation). Note that it
is essential (for laser action) to get a majority of the atoms into the upper
state (a so-called population inversion), because absorption (which costs
one photon) competes with stimulated emission (which creates one); if
you started with an even mixture of the two states, you’d get no
amplification at all.

There is a third mechanism (in addition to absorption and stimulated
emission) by which radiation interacts with matter; it is called
spontaneous emission. Here an atom in the excited state makes a
transition downward, with the release of a photon, but without any applied
electromagnetic field to initiate the process (Figure 11.7(c)). This is the
mechanism that accounts for the normal decay of an atomic excited state.
At first sight it is far from clear why spontaneous emission should occur at
all. If the atom is in a stationary state (albeit an excited one), and there is
no external perturbation, it should just sit there forever. And so it would, if
it were really free of all external perturbations. However, in quantum
electrodynamics the fields are nonzero even in the ground state—just as
the harmonic oscillator (for example) has nonzero energy (to wit:  in
its ground state. You can turn out all the lights, and cool the room down to
absolute zero, but there is still some electromagnetic radiation present, and
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its ground state. You can turn out all the lights, and cool the room down to
absolute zero, but there is still some electromagnetic radiation present, and
it is this “zero point” radiation that serves to catalyze spontaneous
emission. When you come right down to it, there is really no such thing as
truly spontaneous emission; it’s all stimulated emission. The only
distinction to be made is whether the field that does the stimulating is one
that you put there, or one that God put there. In this sense it is exactly the
reverse of the classical radiative process, in which it’s all spontaneous, and
there is no such thing as stimulated emission.

Quantum electrodynamics is beyond the scope of this book,8 but there
is a lovely argument, due to Einstein,9 which interrelates the three
processes (absorption, stimulated emission, and spontaneous emission).
Einstein did not identify the mechanism responsible for spontaneous
emission (perturbation by the ground-state electromagnetic field), but his
results nevertheless enable us to calculate the spontaneous emission rate,
and from that the natural lifetime of an excited atomic state.10 Before we
turn to that, however, we need to consider the response of an atom to non-
monochromatic, unpolarized, incoherent electromagnetic waves coming in
from all directions—such as it would encounter, for instance, if it were
immersed in thermal radiation.

11.2.3 Incoherent Perturbations

The energy density in an electromagnetic wave is11

where  is (as before) the amplitude of the electric field. So the transition
probability (Equation 11.43) is (not surprisingly) proportional to the
energy density of the fields:

776



(11.47)

(11.48)
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But this is for a monochromatic wave, at a single frequency ω. In many
applications the system is exposed to electromagnetic waves at a whole
range of frequencies; in that case , where  is the
energy density in the frequency range , and the net transition probability
takes the form of an integral:12

The term in curly brackets is sharply peaked about 
 (Figure 11.5), whereas  is ordinarily quite broad, so we may as well

replace  by , and take it outside the integral:

Changing variables to , extending the limits of integration
to  (since the integrand is essentially zero out there anyway), and
looking up the definite integral

we find

This time the transition probability is proportional to t. The bizarre
“flopping” phenomenon characteristic of a monochromatic perturbation
gets “washed out” when we hit the system with an incoherent spread of
frequencies. In particular, the transition rate  is now a
constant:
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(11.53)

(11.51)

(11.52)

frequencies. In particular, the transition rate  is now a
constant:

Up to now, we have assumed that the perturbing wave is coming in
along the y direction (Figure 11.6), and polarized in the z direction. But we
are interested in the case of an atom bathed in radiation coming from all
directions, and with all possible polarizations; the energy in the fields 

 is shared equally among these different modes. What we need, in
place of , is the average of , where

(generalizing Equation 11.40), and the average is over all polarizations and
all incident directions.

The averaging can be carried out as follows: Choose spherical
coordinates such that the direction of propagation  is along x, the

polarization  is along z, and the vector  defines the spherical angles θ
and ϕ (Figure 11.8).13 (Actually,  is fixed, here, and we’re averaging over
all  and  consistent with —which is to say, over all θ and ϕ. But we
might as well integrate over all directions of , keeping  and  fixed—it
amounts to the same thing.) Then

and
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Figure 11.8: Axes for the averaging of .

Conclusion: The transition rate for stimulated emission from state b
to state a, under the influence of incoherent, unpolarized light incident
from all directions, is

where  is the matrix element of the electric dipole moment between the
two states (Equation 11.51), and  is the energy density in the fields,
per unit frequency, evaluated at .

11.3 Spontaneous Emission

11.3.1 Einstein’s A and B Coefficients

Picture a container of atoms,  of them in the lower state , and  of
them in the upper state . Let A be the spontaneous emission rate,14 so
that the number of particles leaving the upper state by this process, per unit
time, is .15 The transition rate for stimulated emission, as we have seen
(Equation 11.54), is proportional to the energy density of the
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(11.56)

(11.57)

(11.58)

(11.59)

(11.60)

electromagnetic field: , where ; the number of

particles leaving the upper state by this mechanism, per unit time, is 
. The absorption rate is likewise proportional to —call it 

; the number of particles per unit time joining the upper level is
therefore . All told, then,

Suppose these atoms are in thermal equilibrium with the ambient
field, so that the number of particles in each level is constant. In that case 

, and it follows that

On the other hand, we know from statistical mechanics16 that the number
of particles with energy E, in thermal equilibrium at temperature T, is
proportional to the Boltzmann factor, , so

and hence

But Planck’s blackbody formula17 tells us the energy density of
thermal radiation:

comparing the two expressions, we conclude that
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(11.62)

(11.63)

and

Equation 11.60 confirms what we already knew: the transition rate for
stimulated emission is the same as for absorption. But it was an
astonishing result in 1917—indeed, Einstein was forced to “invent”
stimulated emission in order to reproduce Planck’s formula. Our present
attention, however, focuses on Equation 11.61, for this tells us the
spontaneous emission rate —which is what we are looking for—in
terms of the stimulated emission rate —which we already know.
From Equation 11.54 we read off

and it follows that the spontaneous emission rate is

Problem 11.10 As a mechanism for downward
transitions, spontaneous emission competes
with thermally stimulated emission (stimulated
emission for which blackbody radiation is the
source). Show that at room temperature (

 K) thermal stimulation dominates for
frequencies well below  Hz, whereas
spontaneous emission dominates for
frequencies well above  Hz. Which
mechanism dominates for visible light?
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Problem 11.11 You could derive the
spontaneous emission rate (Equation 11.63)
without the detour through Einstein’s A and B
coefficients if you knew the ground state
energy density of the electromagnetic field, 

, for then it would simply be a case of
stimulated emission (Equation 11.54). To do
this honestly would require quantum
electrodynamics, but if you are prepared to
believe that the ground state consists of one
photon in each classical mode, then the
derivation is fairly simple:

(a)   To obtain the classical modes,
consider an empty cubical box, of side
l, with one corner at the origin.
Electromagnetic fields (in vacuum)
satisfy the classical wave equation18

where f stands for any component of E
or of B. Show that separation of
variables, and the imposition of the
boundary condition  on all six
surfaces yields the standing wave
patterns

with
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There are two modes for each triplet
of positive integers 

, corresponding
to the two polarization states.

(b)   The energy of a photon is 
 (Equation 4.92), so the

energy in the mode  is

What, then, is the total energy per unit
volume in the frequency range , if
each mode gets one photon? Express
your answer in the form

and read off . Hint: refer to
Figure 5.3.

(c)   Use your result, together with
Equation 11.54, to obtain the
spontaneous emission rate. Compare
Equation 11.63.

11.3.2 The Lifetime of an Excited State

Equation 11.63 is our fundamental result; it gives the transition rate for
spontaneous emission. Suppose, now, that you have somehow pumped a
large number of atoms into the excited state. As a result of spontaneous
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(11.65)

emission, this number will decrease as time goes on; specifically, in a time
interval dt you will lose a fraction A dt of them:

(assuming there is no mechanism to replenish the supply).19 Solving for 
, we find:

evidently the number remaining in the excited state decreases
exponentially, with a time constant

We call this the lifetime of the state—technically, it is the time it takes for 
 to reach  of its initial value.
I have assumed all along that there are only two states for the system,

but this was just for notational simplicity—the spontaneous emission
formula (Equation 11.63) gives the transition rate for  regardless
of what other states may be accessible (see Problem 11.24). Typically, an
excited atom has many different decay modes (that is:  can decay to a
large number of different lower-energy states, , , , …). In that
case the transition rates add, and the net lifetime is

Example 11.1
Suppose a charge q is attached to a spring and constrained to
oscillate along the x axis. Say it starts out in the state  (Equation
2.68), and decays by spontaneous emission to state . From
Equation 11.51 we have
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(11.70)

(11.71)

(11.69)

You calculated the matrix elements of x back in Problem 3.39:

where ω is the natural frequency of the oscillator (I no longer need
this letter for the frequency of the stimulating radiation). But we’re
talking about emission, so  must be lower than n; for our
purposes, then,

Evidently transitions occur only to states one step lower on the
“ladder”, and the frequency of the photon emitted is

Not surprisingly, the system radiates at the
classical oscillator frequency. The transition rate (Equation 11.63)
is

and the lifetime of the nth stationary state is

Meanwhile, each radiated photon carries an energy , so the
power radiated is :
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or, since the energy of an oscillator in the nth state is 
,

This is the average power radiated by a quantum oscillator with
(initial) energy E.

For comparison, let’s determine the average power radiated by
a classical oscillator with the same energy. According to classical
electrodynamics, the power radiated by an accelerating charge q is
given by the Larmor formula:20

For a harmonic oscillator with amplitude , , and
the acceleration is . Averaging over a full cycle,
then,

But the energy of the oscillator is , so 
, and hence

This is the average power radiated by a classical oscillator with
energy E. In the classical limit  the classical and quantum
formulas agree;21 however, the quantum formula (Equation 11.72)
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protects the ground state: If  the oscillator does not
radiate.

Problem 11.12 The half-life  of an
excited state is the time it would take for half
the atoms in a large sample to make a
transition. Find the relation between  and τ
(the “lifetime” of the state).

Problem 11.13 Calculate the lifetime (in
seconds) for each of the four  states of
hydrogen. Hint: You’ll need to evaluate matrix
elements of the form , 

, and so on. Remember that 
, , and 

. Most of these integrals are zero, so
inspect them closely before you start
calculating. Answer:  seconds for
all except , which is infinite.

11.3.3 Selection Rules

The calculation of spontaneous emission rates has been reduced to a matter
of evaluating matrix elements of the form

As you will have discovered if you worked Problem 11.13, (if you didn’t,
go back right now and do so!) these quantities are very often zero, and it
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would be helpful to know in advance when this is going to happen, so we
don’t waste a lot of time evaluating unnecessary integrals. Suppose we are
interested in systems like hydrogen, for which the Hamiltonian is
spherically symmetrical. In that case we can specify the states with the
usual quantum numbers n, , and m, and the matrix elements are

Now, r is a vector operator, and we can invoke the results of
Chapter 6 to obtain the selection rules22

These conditions follow from symmetry alone. If they are not met, then the
matrix element is zero, and the transition is said to be forbidden.
Moreover, it follows from Equations 6.56–6.58 that

So it is never necessary to compute the matrix elements
of both x and y; you can always get one from the other.

Evidently not all transitions to lower-energy states can proceed by
electric dipole radiation; most are forbidden by the selection rules. The
scheme of allowed transitions for the first four Bohr levels in hydrogen is
shown in Figure 11.9. Notice that the  state  is “stuck”: it cannot
decay, because there is no lower-energy state with . It is called a
metastable state, and its lifetime is indeed much longer than that of, for
example, the  states , , and . Metastable states do
eventually decay, by collisions, or by “forbidden” transitions (Problem
11.31), or by multiphoton emission.
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Figure 11.9: Allowed decays for the first four Bohr levels in hydrogen.

Problem 11.14 From the commutators of 
with x, y, and z (Equation 4.122):

obtain the selection rule for 
and Equation 11.76. Hint: Sandwich each
commutator between  and .

Problem 11.15 Obtain the selection rule for 
as follows:

(a)   Derive the commutation relation

Hint: First show that
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Use this, and (in the final step) the fact
that , to
demonstrate that

The generalization from z to r is
trivial.

(b)   Sandwich this commutator between 
 and , and work out the

implications.

Problem 11.16 An electron in the , ,
 state of hydrogen decays by a sequence

of (electric dipole) transitions to the ground
state.

(a)   What decay routes are open to it?
Specify them in the following way:

(b)   If you had a bottle full of atoms in this
state, what fraction of them would
decay via each route?

(c)   What is the lifetime of this state? Hint:
Once it’s made the first transition, it’s
no longer in the state , so only the
first step in each sequence is relevant
in computing the lifetime.
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11.4 Fermi’s Golden Rule

In the previous sections we considered transitions between two discrete
energy states, such as two bound states of an atom. We saw that such a
transition was most likely when the final energy satisfied the resonance
condition: , where ω is the frequency associated with the
perturbation. I now want to look at the case where  falls in a continuum
of states (Figure 11.10). To stick close to the example of Section 11.2, if
the radiation is energetic enough it can ionize the atom—the photoelectric
effect—exciting the electron from a bound state into the continuum of
scattering states.

 

Figure 11.10: A transition (a) between two discrete states and (b) between a
discrete state and a continuum of states.

We can’t talk about a transition to a precise state in that continuum
(any more than we can talk about someone being precisely 16 years old),
but we can compute the probability that the system makes a transition to a
state with an energy in some finite range  about . That is given by
the integral of Equation 11.35 over all the final states:
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(11.80)

(11.81)

where . The quantity  is the number of states
with energy between E and ;  is called the density of states,
and I’ll show you how it’s calculated in Example 11.2.

At short times, Equation 11.79 leads to a transition probability
proportional to , just as for a transition between discrete states. On the
other hand, at long times the quantity in curly brackets in Equation 11.79
is sharply peaked: as a function of  its maximum occurs at 
and the central peak has a width of . For sufficiently large t, we can
therefore approximate Equation 11.79 as23

The remaining integral was already evaluated in Section 11.2.3:

The oscillatory behavior of P has again been “washed out,” giving a
constant transition rate:24

Equation 11.81 is known as Fermi’s Golden Rule.25 Apart from the factor
of , it says that the transition rate is the square of the matrix element
(this encapsulates all the relevant information about the dynamics of the
process) times the density of states (how many final states are accessible,
given the energy supplied by the perturbation—the more roads are open,
the faster the traffic will flow). It makes sense.
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(11.83)

Example 11.2
Use Fermi’s Golden Rule to obtain the differential scattering cross-
section for a particle of mass m and incident wave vector 
scattering from a potential  (Figure 11.11).

 

Figure 11.11:  A particle with incident wave vector  is scattered into
a state with wave vector k.

Solution:
We take our initial and final states to be plane waves:

Here I’ve used a technique called box normalization; I place the
whole setup inside a box of length l on a side. This makes the free-
particle states normalizable and countable. Formally, we want the
limit ; in practice l will drop out of our final expression.
Using periodic boundary conditions,26 the allowed values of  are

for integers , , and . Our perturbation is the scattering
potential, , and the relevant matrix element is
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(11.85)

(11.86)

(11.84)
We need to determine the density of states. In a

scattering experiment we measure the number of particles
scatterred into a solid angle . We want to count the number of
states with energies between E and , with wave vectors 
lying inside . In k space these states occupy a section of a
spherical shell of radius k and thickness dk that subtends a solid
angle ; it has a volume

and contains a number of states27

Since  this gives

From Fermi’s Golden Rule, the rate at which particles are
scattered into the solid angle  is28

This is closely related to the differential scattering cross section:

where  is the flux (or probability current) of incident particles.
For an incident wave of the form , the probability
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(11.87)

(11.88)

∗∗∗

current is (Equation 4.220).

and

This is exactly what we got from the first Born approximation
(Equation 10.79).

Problem 11.17 In the photoelectric effect,
light can ionize an atom if its energy 
exceeds the binding energy of the electron.
Consider the photoelectric effect for the
ground state of hydrogen, where the electron is
kicked out with momentum . The initial state
of the electron is  (Equation 4.80) and its
final state is29

as in Example 11.2.
(a)   For light polarized along the z

direction, use Fermi’s Golden Rule to
compute the rate at which electrons are
ejected into the solid angle  in the
dipole approximation.30

795



Hint:To evaluate the matrix element,
use the following trick. Write

pull  outside the integral, and
what remains is straightforward to
compute.

(b)   The photoelectric cross section is
defined as

where the quantity in the numerator is
the rate at which energy is absorbed 

 per photoelectron)
and the quantity in the denominator is
the intensity of the incident light.
Integrate your result from (a) over all
angles to obtain , and compute
the photoelectric cross section.

(c)   Obtain a numerical value for the
photoelectric cross section for
ultraviolet light of wavelength 
(n.b. this is the wavelength of the
incident light, not the scattered
electron). Express your answer in
mega-barns .
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11.5 The Adiabatic Approximation

11.5.1 Adiabatic Processes

Imagine a perfect pendulum, with no friction or air resistance, oscillating
back and forth in a vertical plane. If you grab the support and shake it in a
jerky manner the bob will swing around chaotically. But if you very gently
move the support (Figure 11.12), the pendulum will continue to swing in a
nice smooth way, in the same plane (or one parallel to it), with the same
amplitude. This gradual change of the external conditions defines an
adiabatic process. Notice that there are two characteristic times involved: 

, the “internal” time, representing the motion of the system itself (in this
case the period of the pendulum’s oscillations), and , the “external” time,
over which the parameters of the system change appreciably (if the
pendulum were mounted on a rotating platform, for example,  would be
the period of the platform’s motion). An adiabatic process is one for which

 (the pendulum executes many oscillations before the platform has
moved appreciably).31
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Figure 11.12: Adiabatic motion: If the case is transported very gradually, the
pendulum inside keeps swinging with the same amplitude, in a plane parallel
to the original one.

What if I took this pendulum up to the North Pole, and set it swinging
—say, in the direction of Portland (Figure 11.13). For the moment, pretend
the earth is not rotating. Very gently (that is, adiabatically), I carry it down
the longitude line passing through Portland, to the equator. At this point it
is swinging north-south. Now I carry it (still swinging north–south) part
way around the equator. And finally, I take it back up to the North Pole,
along the new longitude line. The pendulum will no longer be swinging in
the same plane as it was when I set out—indeed, the new plane makes an
angle Θ with the old one, where Θ is the angle between the southbound
and the northbound longitude lines. More generally, if you transport the
pendulum around a closed loop on the surface of the earth, the angular
deviation (between the initial plane of the swing and the final plane) is
equal to the solid angle subtended by the path with respect to the center of
the sphere, as you can prove for yourself if you are interested.
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(11.89)

Figure 11.13: Itinerary for adiabatic transport of a pendulum on the surface of
the earth.

Incidentally, the Foucault pendulum is an example of precisely this
sort of adiabatic transport around a closed loop on a sphere—only this time
instead of me carrying the pendulum around, I let the rotation of the earth
do the job. The solid angle subtended by a latitude line  (Figure 11.14) is

Relative to the earth (which has meanwhile turned through an angle of ,
the daily precession of the Foucault pendulum is —a result that is
ordinarily obtained by appeal to Coriolis forces in the rotating reference
frame,32 but is seen in this context to admit a purely geometrical
interpretation.
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Figure 11.14: Path of a Foucault pendulum, in the course of one day.

The basic strategy for analyzing an adiabatic process is first to solve
the problem with the external parameters held constant, and only at the
end of the calculation allow them to vary (slowly) with time. For example,
the classical period of a pendulum of (fixed) length L is ; if the
length is now gradually changing, the period will be . A more
subtle subtle example occurred in our discussion of the hydrogen molecule
ion (Section 8.3). We began by assuming that the nuclei were at rest, a
fixed distance R apart, and we solved for the motion of the electron. Once
we had found the ground state energy of the system as a function of R, we
located the equilibrium separation and from the curvature of the graph we
obtained the frequency of vibration of the nuclei (Problem 8.11). In
molecular physics this technique (beginning with nuclei at rest, calculating
electronic wave functions, and using these to obtain information about the
positions and—relatively sluggish—motion of the nuclei) is known as the
Born–Oppenheimer approximation.

11.5.2 The Adiabatic Theorem

In quantum mechanics, the essential content of the adiabatic
approximation can be cast in the form of a theorem. Suppose the
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(11.90)

Hamiltonian changes gradually from some initial form  to some final
form . The adiabatic theorem33 states that if the particle was initially
in the nth eigenstate of , it will be carried (under the Schrödinger
equation) into the nth eigenstate of . (I assume that the spectrum is

discrete and nondegenerate throughout the transition, so there is no
ambiguity about the ordering of the states; these conditions can be relaxed,
given a suitable procedure for “tracking” the eigenfunctions, but I’m not
going to pursue that here.)

Example 11.3
Suppose we prepare a particle in the ground state of the infinite
square well (Figure 11.15(a)):

 

Figure 11.15:  (a) Particle starts out in the ground state of the infinite
square well. (b) If the wall moves slowly, the particle remains in the
ground state. (c) If the wall moves rapidly, the particle is left
(momentarily) in its initial state.

If we now gradually move the right wall out to  , the adiabatic
theorem says that the particle will end up in the ground state of the
expanded well (Figure 11.15(b)):
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(11.91)

(11.92)

(apart from a phase factor, which we’ll discuss in a moment).
Notice that we’re not talking about a small change in the
Hamiltonian (as in perturbation theory)—this one is huge. All we
require is that it happen slowly.

Energy is not conserved here—of course not: Whoever is
moving the wall is extracting energy from the system, just like the
piston on a slowly expanding cylinder of gas. By contrast, if the
well expands suddenly, the resulting state is still 
(Figure 11.15c), which is a complicated linear combination of
eigenstates of the new Hamiltonian (Problem 11.18). In this case
energy is conserved (at least, its expectation value is); as in the free
expansion of a gas (into a vacuum) when the barrier is suddenly
removed; no work is done.

According to the adiabatic theorem, a system that starts out in the nth
eigenstate of the initial Hamiltonian  will evolve as the nth
eigenstate of the instantaneous Hamiltonian , as the Hamiltonian
gradually changes. However, this doesn’t tell us what happens to the phase
of the wave function. For a constant Hamiltonian it would pick up the
standard “wiggle factor”

but the eigenvalue  may now itself be a function of time, so the wiggle
factor naturally generalizes to
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(11.96)

(11.93)

(11.94)

(11.95)

This is called the dynamic phase. But it may not be the end of the story;
for all we know there may be an additional phase factor, , the so-
called geometric phase. In the adiabatic limit, then, the wave function at
time t takes the form34

where  is the nth eigenstate of the instantaneous Hamiltonian,

Equation 11.93 is the formal statement of the adiabatic theorem.
Of course, the phase of  is itself arbitrary (it’s still an

eigenfunction, with the same eigenvalue, whatever phase you choose), so
the geometric phase itself carries no physical significance. But what if we
carry the system around a closed cycle (like the pendulum we hauled down
to the equator, around, and back to the north pole), so that the Hamiltonian
at the end is identical to the Hamiltonian at the beginning? Then the net
phase change is a measurable quantity. The dynamic phase depends on the
elapsed time, but the geometric phase, around an adiabatic closed cycle,
depends only on the path taken.35 It is called Berry’s phase:36

Example 11.4
Imagine an electron (charge , mass  at rest at the origin, in the
presence of a magnetic field whose magnitude  is constant, but
whose direction sweeps out a cone, of opening angle α, at constant
angular velocity ω (Figure 11.16):

The Hamiltonian (Equation 4.158) is
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(11.98)

(11.99)

(11.100)

(11.101)

(11.97)
where

The normalized eigenspinors of  are

and

they represent spin up and spin down, respectively, along the
instantaneous direction of  (see Problem 4.33). The
corresponding eigenvalues are

 

Figure 11.16:  The magnetic field sweeps around in a cone, at angular
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(11.102)

(11.104)

(11.106)

(11.103)

(11.105)

velocity ω (Equation 11.96).

Suppose the electron starts out with spin up, along B(0):

The exact solution to the time-dependent Schrödinger equation is
(Problem 11.20):

where

or, expressing it as a linear combination of  and :

Evidently the (exact) probability of a transition to
spin down (along the current direction of B) is

The adiabatic theorem says that this transition probability
should vanish in the limit , where  is the characteristic
time for changes in the Hamiltonian (in this case,  and  is the
characteristic time for changes in the wave function (in this case, 

. Thus the adiabatic approximation means 
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(11.107)

∗

: the field rotates slowly, in comparison with the phase of
the (unperturbed) wave functions. In the adiabatic regime 

(Equation 11.104), and therefore

as advertised. The magnetic field leads the electron around by its
nose, with the spin always pointing in the direction of B. By
contrast, if  then , and the system bounces back and
forth between spin up and spin down (Figure 11.17).

 

Figure 11.17:  Plot of the transition probability, Equation 11.106, in
the non-adiabatic regime .

Problem 11.18 A particle of mass m is in the
ground state of the infinite square well
(Equation 2.22). Suddenly the well expands to
twice its original size—the right wall moving
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from a to —leaving the wave function
(momentarily) undisturbed. The energy of the
particle is now measured.

(a)   What is the most probable result?
What is the probability of getting that
result?

(b)   What is the next most probable result,
and what is its probability? Suppose
your measurement returned this value;
what would you conclude about
conservation of energy?

(c)   What is the expectation value of the
energy? Hint: If you find yourself
confronted with an infinite series, try
another method.

Problem 11.19 A particle is in the ground state
of the harmonic oscillator with classical
frequency ω, when suddenly the spring
constant quadruples, so , without
initially changing the wave function (of course,

 will now evolve differently, because the
Hamiltonian has changed). What is the
probability that a measurement of the energy
would still return the value ? What is the
probability of getting ? Answer: 0.943.
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∗

∗∗∗

Problem 11.20 Check that Equation 11.103
satisfies the time-dependent Schrödinger
equation for the Hamiltonian in Equation
11.97. Also confirm Equation 11.105, and
show that the sum of the squares of the
coefficients is 1, as required for normalization.

Problem 11.21 Find Berry’s phase for one
cycle of the process in Example 11.4. Hint:
Use Equation 11.105 to determine the total
phase change, and subtract off the dynamical
part. You’ll need to expand  (Equation
11.104) to first order in .

Problem 11.22 The delta function well
(Equation 2.117) supports a single bound state
(Equation 2.132). Calculate the geometric
phase change when α gradually increases from 

 to . If the increase occurs at a constant
rate , what is the dynamic phase
change for this process?37

Further Problems on Chapter 11

Problem 11.23 In Problem 11.1 you showed
that the solution to
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(11.108)

(11.109)

(where  is a function of  is

This suggests that the solution to the
Schrödinger equation (11.1) might be

It doesn’t work, because 
 is an operator, not a function, and 
 does not (in general) commute with 
.

(a)   Try calculating , using
Equation 11.108. Note: as always, the
exponentiated operator is to be
interpreted as a power series:

Show that if , then 

satisfies the Schrödinger equation.
(b)   Check that the correct solution in the

general case  is
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(11.110)

(11.111)

(11.112)

UGLY! Notice that the operators in
each term are “time-ordered,” in the
sense that the latest  appears at the
far left, followed by the next latest,
and so on . Dyson
introduced the time-ordered product
of two operators:

or, more generally,

where 
.

(c)   Show that

and generalize to higher powers of .
In place of , in equation 11.108, we
really want :
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(11.113)

(11.115)

(11.117)

(11.116)

(11.118)

(11.114)

role in quantum field theory.38

Problem 11.24 In this problem we develop
time-dependent perturbation theory for a
multi-level system, starting with the
generalization of Equations 11.5 and 11.6:

At time  we turn on a
perturbation , so that the total
Hamiltonian is

(a)   Generalize Equation 11.10 to read

and show that

where

(b)   If the system starts out in the state ,
show that (in first-order perturbation
theory)

and
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(11.118)

(11.119)

(11.120)

(11.121)

(b)   If the system starts out in the state ,
show that (in first-order perturbation
theory)

and

(c)   For example, suppose 
 is constant (except that it was

turned on at , and switched off
again at some later time . Find the
probability of transition from state N
to state M , as a function of T.
Answer:

(d)   Now suppose  is a
sinusoidal function of time: 

. Making the usual
assumptions, show that transitions
occur only to states with energy 

, and the transition
probability is
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(11.122)

Problem 11.25 For the examples in Problem
11.24 (c) and (d), calculate , to first
order. Check the normalization condition:

and comment on any discrepancy. Suppose
you wanted to calculate the probability of
remaining in the original state ; would
you do better to use , or 

?

Problem 11.26 A particle starts out (at time 
 in the Nth state of the infinite square

well. Now the “floor” of the well rises
temporarily (maybe water leaks in, and
then drains out again), so that the potential
inside is uniform but time dependent: ,
with .
(a)   Solve for the exact , using

Equation 11.116, and show that the
wave function changes phase, but no
transitions occur. Find the phase
change, , in terms of the function 

.
(b)   Analyze the same problem in first-

order perturbation theory, and
compare your answers.

Comment: The same result holds
whenever the perturbation simply adds
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∗

wave function changes phase, but no
transitions occur. Find the phase
change, , in terms of the function 

.
(b)   Analyze the same problem in first-

order perturbation theory, and
compare your answers.

Comment: The same result holds
whenever the perturbation simply adds
a constant (constant in x, that is, not in 

 to the potential; it has nothing to do
with the infinite square well, as such.
Compare Problem 1.8.

Problem 11.27 A particle of mass m is initially
in the ground state of the (one-
dimensional) infinite square well. At time 

 a “brick” is dropped into the well, so
that the potential becomes

where . After a time T, the brick is
removed, and the energy of the particle is
measured. Find the probability (in first-
order perturbation theory) that the result is
now .
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(11.125)

(11.124)

(11.123)

transverse radiofrequency (rf) field, 
, so that the total

field is

(a)   Construct the 
Hamiltonian matrix (Equation 4.158)
for this system.

(b)   If  is the spin state at

time t, show that

where  is
related to the strength of the rf field.

(c)   Check that the general solution for 
and , in terms of their initial values 

 and , is

where

(d)   If the particle starts out with spin up
(i.e. , , find the
probability of a transition to spin
down, as a function of time. Answer: 
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(11.125)

(11.126)

where

(d)   If the particle starts out with spin up
(i.e. , , find the
probability of a transition to spin
down, as a function of time. Answer: 

(e)   Sketch the resonance curve,

as a function of the driving frequency
ω (for fixed  and . Note that the
maximum occurs at . Find the
“full width at half maximum,” .

(f)   Since , we can use the
experimentally observed resonance to
determine the magnetic dipole moment
of the particle. In a nuclear magnetic
resonance (nmr) experiment the g-
factor of the proton is to be measured,
using a static field of 10,000 gauss and
an rf field of amplitude 0.01 gauss.
What will the resonant frequency be?
(See Section 7.5 for the magnetic
moment of the proton.) Find the width
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(11.127)

where in order to satisfy Maxwell’s
equations, the wave must be transverse 

 and of course travel at the
speed of light .
(a)   Find the electric and magnetic fields

for this plane wave.
(b)   The Hamiltonian may be written as 

 where  is the Hamiltonian
in the absence of the electromagnetic
wave and  is the perturbation. Show
that the perturbation is given by

plus a term
proportional to  that we will ignore.
Note: the first term corresponds to
absorption and the second to emission.

(c)   In the dipole approximation we set 
. With the electromagnetic

wave polarized along the z direction,
show that the matrix element for
absorption is then

Compare Equation 11.41. They’re not
exactly the same; would the difference
effect our calculations in
Section 11.2.3 or 11.3? Why or why
not? Hint: To turn the matrix element
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(11.128)

(c)   In the dipole approximation we set 
. With the electromagnetic

wave polarized along the z direction,
show that the matrix element for
absorption is then

Compare Equation 11.41. They’re not
exactly the same; would the difference
effect our calculations in
Section 11.2.3 or 11.3? Why or why
not? Hint: To turn the matrix element
of p into a matrix element of r, you
need to prove the following identity: 

.

Problem 11.31 In Equation 11.38 I assumed
that the atom is so small (in comparison to
the wavelength of the light) that spatial
variations in the field can be ignored. The
true electric field would be

If the atom is centered at the origin, then 
 over the relevant volume 

, so , and that’s
why we could afford to drop this term.
Suppose we keep the first-order correction:
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(11.131)

(11.130)

∗∗∗

should really be done to complete the
calculation). Answer:

(b)   Show that for a one-
dimensional oscillator the forbidden
transitions go from level n to level 

, and the transition rate (suitably
averaged over  and  is

(Note: Here ω is the frequency of the
photon, not the oscillator.) Find the
ratio of the “forbidden” rate to the
“allowed” rate, and comment on the
terminology.

(c)   Show that the  transition in
hydrogen is not possible even by a
“forbidden” transition. (As it turns out,
this is true for all the higher multipoles
as well; the dominant decay is in fact
by two-photon emission, and the
lifetime is about a tenth of a second.40

)

Problem 11.32 Show that the spontaneous
emission rate (Equation 11.63) for a
transition from  to  in hydrogen is
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(11.133)

(11.132)

(c)   Show that the  transition in
hydrogen is not possible even by a
“forbidden” transition. (As it turns out,
this is true for all the higher multipoles
as well; the dominant decay is in fact
by two-photon emission, and the
lifetime is about a tenth of a second.40

)

Problem 11.32 Show that the spontaneous
emission rate (Equation 11.63) for a
transition from  to  in hydrogen is

where

(The atom starts out with a specific value
of m, and it goes to any of the states 
consistent with the selection rules: 

. Notice that the
answer is independent of m.) Hint: First
calculate all the nonzero matrix elements of
x, y, and z between  and  for
the case . From these, determine
the quantity
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Equation 11.63, except that this is a
magnetic dipole transition, not an electric
one:42

where

are the magnetic moments of the electron
and proton (Equation 7.89), and ,  are
the singlet and triplet configurations
(Equations 4.175 and 4.176). Because 

, the proton contribution is
negligible, so

Work out  (use whichever triplet
state you like). Put in the actual numbers,
to determine the transition rate and the
lifetime of the triplet state. Answer: 

 years.

Problem 11.34 A particle starts out in the
ground state of the infinite square well (on
the interval  . Now a wall is
slowly erected, slightly off-center:43
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∗∗∗ 

Work out  (use whichever triplet
state you like). Put in the actual numbers,
to determine the transition rate and the
lifetime of the triplet state. Answer: 

 years.

Problem 11.34 A particle starts out in the
ground state of the infinite square well (on
the interval  . Now a wall is
slowly erected, slightly off-center:43

where  rises gradually from 0 to .
According to the adiabatic theorem, the
particle will remain in the ground state of
the evolving Hamiltonian.
(a)   Find (and sketch) the ground state at 

. Hint: This should be the
ground state of the infinite square well
with an impenetrable barrier at 
. Note that the particle is confined to
the (slightly) larger left “half” of the
well.

(b)   Find the (transcendental) equation for
the ground state energy at time t.
Answer:
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(11.137)

(11.136)

. Evaluate this expression numerically
for the T’s and δ in part (d). Comment
on your results.

(e)   Plot the ground state wave function for
those same values of T and δ. Note
how it gets squeezed into the left half
of the well, as the barrier grows.44

Problem 11.35 The case of an infinite square
well whose right wall expands at a constant
velocity  can be solved exactly.45 A
complete set of solutions is

where  is the
width of the well and  is
the nth allowed energy of the original well
(width . The general solution is a linear
combination of the Φ’s:

whose coefficients  are independent of t.
(a)   Check that Equation 11.136 satisfies

the time-dependent Schrödinger
equation, with the appropriate
boundary conditions.

(b)   Suppose a particle starts out  in
the ground state of the initial well:
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(11.137)

(11.138)

where  is the width of the well
and  is the nth allowed
energy of the original well (width . The
general solution is a linear combination of
the Φ’s:

whose coefficients  are independent of t.
(a)   Check that Equation 11.136 satisfies

the time-dependent Schrödinger
equation, with the appropriate
boundary conditions.

(b)   Suppose a particle starts out  in
the ground state of the initial well:

Show that the expansion coefficients
can be written in the form

where  is
a dimensionless measure of the speed
with which the well expands.
(Unfortunately, this integral cannot be
evaluated in terms of elementary
functions.)
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(11.140)

(11.141)

where  is the nth
instantaneous eigenvalue, at time t.
Comment on this result. What is the
geometric phase? If the well now
contracts back to its original size, what
is Berry’s phase for the cycle?

Problem 11.36 The driven harmonic
oscillator. Suppose the one-dimensional
harmonic oscillator (mass m, frequency 
is subjected to a driving force of the form 

, where  is some
specified function. (I have factored out 
for notational convenience;  has the
dimensions of length.) The Hamiltonian is

Assume that the force was
first turned on at time :  for 

. This system can be solved exactly,
both in classical mechanics and in quantum
mechanics.46

(a)   Determine the classical position of the
oscillator, assuming it started from rest
at the origin .
Answer:
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(11.140)

(11.141)

(11.142)

specified function. (I have factored out 
for notational convenience;  has the
dimensions of length.) The Hamiltonian is

Assume that the force was
first turned on at time :  for 

. This system can be solved exactly,
both in classical mechanics and in quantum
mechanics.46

(a)   Determine the classical position of the
oscillator, assuming it started from rest
at the origin .
Answer:

(b)   Show that the solution
to the (time-dependent) Schrödinger
equation for this oscillator, assuming
it started out in the nth state of the
undriven oscillator (
where  is given by Equation
2.62), can be written as

(c)   Show that the
eigenfunctions and eigenvalues of 
are
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(11.145)

(11.146)

(11.147)

Check that the dynamic phase has the
correct form (Equation 11.92). Is the
geometric phase what you would
expect?

Problem 11.37 Quantum Zeno
Paradox.47 Suppose a system starts out in
an excited state , which has a natural
lifetime τ for transition to the ground state 

. Ordinarily, for times substantially less
than τ, the probability of a transition is
proportional to t (Equation 11.49):

If we make a measurement after a time t,
then, the probability that the system is still
in the upper state is

Suppose we do find it to be in the upper
state. In that case the wave function
collapses back to , and the process starts
all over again. If we make a second
measurement, at , the probability that the
system is still in the upper state is
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(11.146)

(11.147)

(11.148)

If we make a measurement after a time t,
then, the probability that the system is still
in the upper state is

Suppose we do find it to be in the upper
state. In that case the wave function
collapses back to , and the process starts
all over again. If we make a second
measurement, at , the probability that the
system is still in the upper state is

which is the same as it would have been
had we never made the first measurement
at t (as one would naively expect).
However, for extremely short times, the
probability of a transition is not
proportional to t, but rather to  (Equation
11.46):48

(a)   In this case what is the probability that
the system is still in the upper state
after the two measurements? What
would it have been (after the same
elapsed time) if we had never made the
first measurement?
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(11.149)

(11.152)

(11.153)

(11.150)

(11.151)

time-dependent Schrödinger equation.
When we discretize the variable x, we
obtain the matrix equation

The solution to this equation can be written

If  is time independent, the exact
expression for the time-evolution operator
is50

and for  small enough, the time-
evolution operator can be approximated as

While Equation 11.152 is the most obvious
way to approximate , a numerical scheme
based on it is unstable, and it is preferable
to use Cayley’s form for the
approximation:51

Combining Equations 11.153 and 11.150
we have
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(11.152)

(11.153)

(11.154)

and for  small enough, the time-
evolution operator can be approximated as

While Equation 11.152 is the most obvious
way to approximate , a numerical scheme
based on it is unstable, and it is preferable
to use Cayley’s form for the
approximation:51

Combining Equations 11.153 and 11.150
we have

This has the form of a
matrix equation  which can be
solved for the unknown .
Because the matrix  is tri-
diagonal,52 efficient algorithms exist for
doing so.53

(a)   Show that the approximation in
Equation 11.153 is accurate to second
order. That is, show that
Equations 11.151 and 11.153,
expanded as power series in , agree
up through terms of order . Verify
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∗∗∗ 

the lowest two eigenvalues of , and
compare the exact values. Plot the
corresponding eigenfunctions. Are
they normalized? If not, normalize
them before doing part (c).

(c)   Take  (from
part (b)) and use Equation 11.154 to
evolve the wave function from time 

 to . Create a movie
(Animate, in Mathematica) showing
Re , Im , and ,
together with the exact result. Hint:
You need to decide what to use for .
In terms of the number of time steps 
, . In order for the
approximation of the exponential to
hold, we need to have . The
energy of our state is of order , and
therefore . So you will need at
least (say) 100 time steps.

Problem 11.39 We can use the technique of
Problem 11.38 to investigate time
evolution when the Hamiltonian does
depend on time, as long as we choose 
small enough. Evaluating  at the midpoint
of each time step we simply replace
Equation 11.154 with54
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∗∗∗ 

(11.155)

(11.156)

, . In order for the
approximation of the exponential to
hold, we need to have . The
energy of our state is of order , and
therefore . So you will need at
least (say) 100 time steps.

Problem 11.39 We can use the technique of
Problem 11.38 to investigate time
evolution when the Hamiltonian does
depend on time, as long as we choose 
small enough. Evaluating  at the midpoint
of each time step we simply replace
Equation 11.154 with54

Consider the driven
harmonic oscillator of Problem 11.36 with

where A is a constant with the units of
length and Ω is the driving frequency. In
the following we will set 

 and look at the effect
of varying Ω. Use the same parameters for
the spatial discretization as in
Problem 11.38, but set . For a
particle that starts off in the ground state at 

, create a movie showing the
numerical and exact solutions as well as
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1   Notice that  is modified in every even order, and  in every odd order; this
would not be true if the perturbation included diagonal terms, or if the system
started out in a linear combination of the two states.

2   Perturbation theory for multi-level systems is treated in Problem 11.24.
3   For very small t,  is independent of ω; it takes a couple of cycles for the

system to “realize” that the perturbation is periodic.
4   For visible light  Å, while the diameter of an atom is around 1 Å, so this

approximation is reasonable; but it would not be for x-rays. Problem 11.31
explores the effect of spatial variation of the field.

5   The energy of a charge q in a static field E is . You may well object
to the use of an electrostatic formula for a manifestly time-dependent field. I
am implicitly assuming that the period of oscillation is long compared to the
time it takes the charge to move around (within the atom).

6   As usual, we assume the nucleus is heavy and stationary; it is the wave function
of the electron that concerns us.

7   The letter  is supposed to remind you of electric dipole moment (for which,
in electrodynamics, the letter p is customarily used—in this context it is
rendered as a squiggly  to avoid confusion with momentum). Actually,  is the
off-diagonal matrix element of the z component of the dipole moment operator, 

. Because of its association with electric dipole moments, radiation governed
by Equation 11.40 is called electric dipole radiation; it is overwhelmingly the
dominant kind, at least in the visible region. See Problem 11.31 for
generalizations and terminology.

8   For an accessible treatment see Rodney Loudon, The Quantum Theory of Light,
2nd edn (Clarendon Press, Oxford, 1983).

9   Einstein’s paper was published in 1917, well before the Schrödinger equation.
Quantum electrodynamics comes into the argument via the Planck blackbody
formula, which dates from 1900.

10   For an alternative derivation using “seat-of-the-pants” quantum
electrodynamics, see Problem 11.11.

11   David J. Griffiths, Introduction to Electrodynamics, 4th edn, (Cambridge
University Press, Cambridge, UK, 2017), Section 9.2.3. In general, the energy
per unit volume in electromagnetic fields is
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. Because of its association with electric dipole moments, radiation governed
by Equation 11.40 is called electric dipole radiation; it is overwhelmingly the
dominant kind, at least in the visible region. See Problem 11.31 for
generalizations and terminology.

8   For an accessible treatment see Rodney Loudon, The Quantum Theory of Light,
2nd edn (Clarendon Press, Oxford, 1983).

9   Einstein’s paper was published in 1917, well before the Schrödinger equation.
Quantum electrodynamics comes into the argument via the Planck blackbody
formula, which dates from 1900.

10   For an alternative derivation using “seat-of-the-pants” quantum
electrodynamics, see Problem 11.11.

11   David J. Griffiths, Introduction to Electrodynamics, 4th edn, (Cambridge
University Press, Cambridge, UK, 2017), Section 9.2.3. In general, the energy
per unit volume in electromagnetic fields is

For electromagnetic waves, the electric and magnetic contributions are equal,
so

and the average over a full cycle is , since the average of cos2 (or sin2)
is 1/2.

12   Equation 11.46 assumes that the perturbations at different frequencies are
independent, so that the total transition probability is a sum of the individual
probabilities. If the different components are coherent (phase-correlated), then
we should add amplitudes , not probabilities , and there will be
cross-terms. For the applications we will consider the perturbations are always
incoherent.

13   I’ll treat  as though it were real, even though in general it will be complex.
Since
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been lifted out of equilibrium, and are in the process of cascading back down to
their equilibrium levels.

20   See, for example, Griffiths, footnote 11, Section 11.2.1.
21   This is an example of Bohr’s Correspondence Principle. In fact, if we express

P in terms of the energy above the ground state, the two formulas are identical.
22   See Equation 6.62 (Equation 6.26 eliminates , or derive them from

scratch using Problems 11.14 and 11.15.
23   This is the same set of approximations we made in Equations 11.46–11.48.
24   In deriving Equation 11.35, our perturbation was

since we dropped the other (off-resonance) exponential. That is the source of
the two inside the absolute value in Equation 11.81. Fermi’s Golden rule can
also be applied to a constant perturbation, , if we set  drop the 2:

25   It is actually due to Dirac, but Fermi is the one who gave it the memorable
name. See T. Visser, Am. J. Phys. 77, 487 (2009) for the history. Fermi’s
Golden Rule doesn’t just apply to transitions to a continuum of states. For
instance, Equation 11.54 can be considered an example. In that case, we
integrated over a continuous range of perturbation frequencies—not a
continuum of final states—but the end result is the same.

26   Periodic boundary conditions are discussed in Problem 5.39. In the present
context we use periodic boundary conditions—as opposed to impenetrable
walls—because they admit traveling-wave solutions.

27   Each state in k-space “occupies” a volume of , as shown in Problem
5.39.

28   See footnote 24.
29   This is an approximation; we really should be using a scattering state of

hydrogen. For an extended discussion of the photoelectric effect, including
comparison to experiment and the validity of this approximation, see W.
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25   It is actually due to Dirac, but Fermi is the one who gave it the memorable
name. See T. Visser, Am. J. Phys. 77, 487 (2009) for the history. Fermi’s
Golden Rule doesn’t just apply to transitions to a continuum of states. For
instance, Equation 11.54 can be considered an example. In that case, we
integrated over a continuous range of perturbation frequencies—not a
continuum of final states—but the end result is the same.

26   Periodic boundary conditions are discussed in Problem 5.39. In the present
context we use periodic boundary conditions—as opposed to impenetrable
walls—because they admit traveling-wave solutions.

27   Each state in k-space “occupies” a volume of , as shown in Problem
5.39.

28   See footnote 24.
29   This is an approximation; we really should be using a scattering state of

hydrogen. For an extended discussion of the photoelectric effect, including
comparison to experiment and the validity of this approximation, see W.
Heitler, The Quantum Theory of Radiation, 3rd edn, Oxford University Press,
London (1954), Section 21.

30   The result here is too large by a factor of four; correcting this requires a more
careful derivation of the matrix element for radiative transitions (see Problem
11.30). Only the overall factor is affected though; the more interesting features
(the dependence on k and  are correct.

31   For an interesting discussion of classical adiabatic processes, see Frank S.
Crawford, Am. J. Phys. 58, 337 (1990).

32   See, for example, Jerry B. Marion and Stephen T. Thornton, Classical
Dynamics of Particles and Systems, 4th edn, Saunders, Fort Worth, TX (1995),
Example 10.5. Geographers measure latitude  up from the equator, rather
than down from the pole, so .

33   The adiabatic theorem, which is usually attributed to Ehrenfest, is simple to
state, and it sounds plausible, but it is not easy to prove. The argument will be
found in earlier editions of this book, Section 10.1.2.

34   I’m suppressing the dependence on other variables; only the time dependence
is at issue here.
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where the interaction- and Schrödinger-picture operators are related by

and the wave functions satisfy

If you apply the Dyson series to the Schrödinger equation in the interaction
picture, you end up with precisely the perturbation series derived in
Section 11.1.2. For more details see Ramamurti Shankar, Principles of
Quantum Mechanics, 2nd edn, Springer, New York (1994), Section 18.3.

39   For a systematic treatment (including the role of the magnetic field) see David
Park, Introduction to the Quantum Theory, 3rd edn (McGraw-Hill, New York,
1992), Chapter 11.

40   See Masataka Mizushima, Quantum Mechanics of Atomic Spectra and Atomic
Structure, Benjamin, New York (1970), Section 5.6.

41   George B. Arfken and Hans J. Weber, Mathematical Methods for Physicists,
7th edn, Academic Press, San Diego (2013), p. 744.

42   Electric and magnetic dipole moments have different units—hence the factor of
 (which you can check by dimensional analysis).

43   Julio Gea-Banacloche, Am. J. Phys. 70, 307 (2002) uses a rectangular barrier;
the delta-function version was suggested by M. Lakner and J. Peternelj,
Am. J. Phys. 71, 519 (2003).

44   Gea-Banacloche (footnote 43) discusses the evolution of the wave function
without using the adiabatic theorem.

45   S. W. Doescher and M. H. Rice, Am. J. Phys. 37, 1246 (1969).
46   See Y. Nogami, Am. J. Phys. 59, 64 (1991), and references therein.
47   This phenomenon doesn’t have much to do with Zeno, but it is reminiscent of

the old adage, “a watched pot never boils,” so it is sometimes called the
watched pot effect.

48   In the argument leading to linear time dependence, we assumed that the
function  in Equation 11.46 was a sharp spike. However, the
width of the “spike” is of order , and for extremely short t this
assumption fails, and the integral becomes .
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41   George B. Arfken and Hans J. Weber, Mathematical Methods for Physicists,
7th edn, Academic Press, San Diego (2013), p. 744.

42   Electric and magnetic dipole moments have different units—hence the factor of
 (which you can check by dimensional analysis).
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47   This phenomenon doesn’t have much to do with Zeno, but it is reminiscent of

the old adage, “a watched pot never boils,” so it is sometimes called the
watched pot effect.

48   In the argument leading to linear time dependence, we assumed that the
function  in Equation 11.46 was a sharp spike. However, the
width of the “spike” is of order , and for extremely short t this
assumption fails, and the integral becomes .

49   This argument was introduced by B. Misra and E. C. G. Sudarshan,
J. Math. Phys. 18, 756 (1977). The essential result has been confirmed in the
laboratory: W. M. Itano, D. J. Heinzen, J. J. Bollinger, and D. J. Wineland,
Phys. Rev. A 41, 2295 (1990). Unfortunately, the experiment is not as
compelling a test of the collapse of the wave function as its designers hoped,
for the observed effect can perhaps be accounted for in other ways—see
L. E. Ballentine, Found. Phys. 20, 1329 (1990); T. Petrosky, S. Tasaki, and
I. Prigogine, Phys. Lett. A 151, 109 (1990).

50   If you choose  small enough, you can actually use this exact form. Routines
such as Mathematica’s MatrixExp can be used to find (numerically) the
exponential of a matrix.

51   See A. Goldberg et al., Am. J. Phys. 35, 177 (1967) for further discussion of
these approximations.

52   A tri-diagonal matrix has nonzero entries only along the diagonal and one
space to the right or left of the diagonal.
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12
Afterword

◈

Now that you have a sound understanding of what quantum mechanics
says, I would like to return to the question of what it means—continuing
the story begun in Section 1.2. The source of the problem is the
indeterminacy associated with the statistical interpretation of the wave
function. For  (or, more generally, the quantum state—it could be a
spinor, for example) does not uniquely determine the outcome of a
measurement; all it tells us is the statistical distribution of possible results.
This raises a profound question: Did the physical system “actually have”
the attribute in question prior to the measurement (the so-called realist
viewpoint), or did the act of measurement itself “create” the property,
limited only by the statistical constraint imposed by the wave function (the
orthodox position)—or can we duck the issue entirely, on the grounds that
it is “metaphysical” (the agnostic response)?

According to the realist, quantum mechanics is an incomplete theory,
for even if you know everything quantum mechanics has to tell you about
the system (to wit: its wave function), still you cannot determine all of its
features. Evidently there is some other information, unknown to quantum
mechanics, which (together with ) is required for a complete description
of physical reality.

The orthodox position raises even more disturbing problems, for if
the act of measurement forces the system to “take a stand,” helping to
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(12.1)

create an attribute that was not there previously,1 then there is something
very peculiar about the measurement process. Moreover, in order to
account for the fact that an immediately repeated measurement yields the
same result, we are forced to assume that the act of measurement collapses
the wave function, in a manner that is difficult, at best, to reconcile with
the normal evolution prescribed by the Schrödinger equation.

In light of this, it is no wonder that generations of physicists retreated
to the agnostic position, and advised their students not to waste time
worrying about the conceptual foundations of the theory.

12.1 The EPR Paradox

In 1935, Einstein, Podolsky, and Rosen2 published the famous EPR
paradox, which was designed to prove (on purely theoretical grounds) that
the realist position is the only tenable one. I’ll describe a simplified
version of the EPR paradox, due to David Bohm (call it EPRB). Consider
the decay of the neutral pi meson into an electron and a positron:

Assuming the pion was at rest, the electron and positron fly off in opposite
directions (Figure 12.1). Now, the pion has spin zero, so conservation of
angular momentum requires that the electron and positron occupy the
singlet spin configuration:

If the electron is found to have spin up, the positron must have spin down,
and vice versa. Quantum mechanics can’t tell you which combination
you’ll get, in any particular pion decay, but it does say that the
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measurements will be correlated, and you’ll get each combination half the
time (on average). Now suppose we let the electron and positron fly far off
—10 meters, in a practical experiment, or, in principle, 10 light years—
and then you measure the spin of the electron. Say you get spin up.
Immediately you know that someone 20 meters (or 20 light years) away
will get spin down, if that person examines the positron.

 

Figure 12.1: Bohm’s version of the EPR experiment: A  at rest decays into
an electron–positron pair.

To the realist, there’s nothing surprising about this—the electron
really had spin up (and the positron spin down) from the moment they
were created …it’s just that quantum mechanics didn’t know about it. But
the “orthodox” view holds that neither particle had either spin up or spin
down until the act of measurement intervened: Your measurement of the
electron collapsed the wave function, and instantaneously “produced” the
spin of the positron 20 meters (or 20 light years) away. Einstein, Podolsky,
and Rosen considered such “spooky action-at-a-distance” (Einstein’s
delightful term) preposterous. They concluded that the orthodox position is
untenable; the electron and positron must have had well-defined spins all
along, whether quantum mechanics knows it or not.

The fundamental assumption on which the EPR argument rests is that
no influence can propagate faster than the speed of light. We call this the
principle of locality. You might be tempted to propose that the collapse of
the wave function is not instantaneous, but “travels” at some finite
velocity. However, this would lead to violations of angular momentum
conservation, for if we measured the spin of the positron before the news
of the collapse had reached it, there would be a fifty–fifty probability of
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finding both particles with spin up. Whatever you might think of such a

theory in the abstract, the experiments are unequivocal: No such violation
occurs—the (anti-)correlation of the spins is perfect. Evidently the collapse
of the wave function—whatever its ontological status—is instantaneous.3

Problem 12.1 Entangled states. The singlet
spin configuration (Equation 12.1) is the
classic example of an entangled state—a two-
particle state that cannot be expressed as the
product of two one-particle states, and for
which, therefore, one cannot really speak of
“the state” of either particle separately.4 You
might wonder whether this is somehow an
artifact of bad notation—maybe some linear
combination of the one-particle states would
disentangle the system. Prove the following
theorem:

Consider a two-level system,  and , with 
. (For example,  might represent

spin up and  spin down.) The two-particle state

(with  and ) cannot be expressed as a
product

for any one-particle states  and .

Hint: Write  and  as linear combinations
of  and .
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Problem 12.2 Einstein’s Boxes. In an
interesting precursor to the EPR paradox,
Einstein proposed the following gedanken
experiment:5 Imagine a particle confined to a
box (make it a one-dimensional infinite square
well, if you like). It’s in the ground state, when
an impenetrable partition is introduced,
dividing the box into separate halves,  and 

, in such a way that the particle is equally
likely to be found in either one.6 Now the two
boxes are moved very far apart, and a
measurement is made on  to see if the
particle is in that box. Suppose the answer is
yes. Immediately we know that the particle will
not be found in the (distant) box .

(a)   What would Einstein say about this?
(b)   How does the Copenhagen

interpretation account for it? What is
the wave function in , right after the
measurement on ?

12.2 Bell’s Theorem

Einstein, Podolsky, and Rosen did not doubt that quantum mechanics is
correct, as far as it goes; they only claimed that it is an incomplete
description of physical reality: The wave function is not the whole story—
some other quantity, , is needed, in addition to , to characterize the state
of a system fully. We call  the “hidden variable” because, at this stage,
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we have no idea how to calculate or measure it.7 Over the years, a number
of hidden variable theories have been proposed, to supplement quantum

mechanics;8 they tend to be cumbersome and implausible, but never mind
—until 1964 the program seemed eminently worth pursuing. But in that
year J. S. Bell proved that any local hidden variable theory is incompatible

with quantum mechanics.9

Bell suggested a generalization of the EPRB experiment: Instead of
orienting the electron and positron detectors along the same direction, he
allowed them to be rotated independently. The first measures the
component of the electron spin in the direction of a unit vector a, and the
second measures the spin of the positron along the direction b
(Figure 12.2). For simplicity, let’s record the spins in units of ; then
each detector registers the value  (for spin up) or  (spin down), along
the direction in question. A table of results, for many  decays, might
look like this:

 

Figure 12.2: Bell’s version of the EPRB experiment: detectors independently
oriented in directions a and b.
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(12.4)

(12.2)

(12.3)

(12.5)

Bell proposed to calculate the average value of the product of the
spins, for a given set of detector orientations. Call this average . If
the detectors are parallel , we recover the original EPRB
configuration; in this case one is spin up and the other spin down, so the
product is always , and hence so too is the average:

By the same token, if they are anti-parallel , then every product is 
, so

For arbitrary orientations, quantum mechanics predicts

(see Problem 4.59). What Bell discovered is that this result is incompatible
with any local hidden variable theory.

The argument is stunningly simple. Suppose that the “complete” state
of the electron–positron system is characterized by the hidden variable(s) λ
(λ varies, in some way that we neither understand nor control, from one
pion decay to the next). Suppose further that the outcome of the electron
measurement is independent of the orientation (b) of the positron detector
—which may, after all, be chosen by the experimenter at the positron end
just before the electron measurement is made, and hence far too late for
any subluminal message to get back to the electron detector. (This is the
locality assumption.) Then there exists some function  which
determines the result of an electron measurement, and some other function 

 for the positron measurement. These functions can only take on the
values :10
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(12.7)

(12.8)

(12.11)

(12.12)

(12.6)

(12.9)

(12.10)

When the detectors are aligned, the results are perfectly (anti)-correlated:

regardless of the value of .
Now, the average of the product of the measurements is

where  is the probability density for the hidden variable. (Like any
probability density, it is real, nonnegative, and satisfies the normalization
condition , but beyond this we make no assumptions about 

; different hidden variable theories would presumably deliver quite
different expressions for ρ.) In view of Equation 12.6, we can eliminate B:

If c is any other unit vector,

Or, since :

But it follows from Equation 12.5 that 
; moreover , so

or, more simply:
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This is the famous Bell inequality. It holds for any local hidden variable
theory (subject only to the minimal requirements of Equations 12.5 and
12.6), for we have made no assumptions whatever as to the nature or
number of the hidden variable(s), or their distribution .

But it is easy to show that the quantum mechanical prediction
(Equation 12.4) is incompatible with Bell’s inequality. For example,
suppose the three vectors lie in a plane, and c makes a 45° angle with a
and b (Figure 12.3); in this case quantum mechanics says

which is patently inconsistent with Bell’s inequality:

 

Figure 12.3: An orientation of the detectors that demonstrates quantum
violations of Bell’s inequality.

With Bell’s modification, then, the EPR paradox proves something
far more radical than its authors imagined: If they are right, then not only
is quantum mechanics incomplete, it is downright wrong. On the other
hand, if quantum mechanics is right, then no hidden variable theory is
going to rescue us from the nonlocality Einstein considered so
preposterous. Moreover, we are provided with a very simple experiment to
settle the issue once and for all.11

Many experiments to test Bell’s inequality were performed in the
1960s and 1970s, culminating in the work of Aspect, Grangier, and
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Roger.12 The details do not concern us here (they actually used two-photon

atomic transitions, not pion decays). To exclude the remote possibility that
the positron detector might somehow “sense” the orientation of the
electron detector, both orientations were set quasi-randomly after the
photons were already in flight. The results were in excellent agreement
with the predictions of quantum mechanics, and inconsitent with Bell’s
inequality by a wide margin.13

Ironically, the experimental confirmation of quantum mechanics
came as something of a shock to the scientific community. But not because
it spelled the demise of “realism”—most physicists had long since adjusted
to this (and for those who could not, there remained the possibility of
nonlocal hidden variable theories, to which Bell’s theorem does not
apply).14 The real shock was the demonstration that nature itself is
fundamentally nonlocal. Nonlocality, in the form of the instantaneous
collapse of the wave function (and for that matter also in the
symmetrization requirement for identical particles) had always been a
feature of the orthodox interpretation, but before Aspect’s experiment it
was possible to hope that quantum nonlocality was somehow a
nonphysical artifact of the formalism, with no detectable consequences.
That hope can no longer be sustained, and we are obliged to reexamine our
objection to instantaneous action-at-a-distance.

Why are physicists so squeamish about superluminal influences?
After all, there are many things that travel faster than light. If a bug flies
across the beam of a movie projector, the speed of its shadow is
proportional to the distance to the screen; in principle, that distance can be
as large as you like, and hence the shadow can move at arbitrarily high
velocity (Figure 12.4). However, the shadow does not carry any energy,
nor can it transmit any information from one point on the screen to
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another. A person at point X cannot cause anything to happen at point Y by
manipulating the passing shadow.

 

Figure 12.4: The shadow of the bug moves across the screen at a velocity 
greater than c, provided the screen is far enough away.

On the other hand, a causal influence that propagated faster than light
would carry unacceptable implications. For according to special relativity
there exist inertial frames in which such a signal propagates backward in
time—the effect preceding the cause—and this leads to inescapable logical
anomalies. (You could, for example, arrange to kill your infant
grandfather. Think about it …not a good idea.) The question is, are the
superluminal influences predicted by quantum mechanics and detected by
Aspect causal, in this sense, or are they somehow ethereal enough (like the
bug’s shadow) to escape the philosophical objection?

Well, let’s consider Bell’s experiment. Does the measurement of the
electron influence the outcome of the positron measurement? Assuredly it
does—otherwise we cannot account for the correlations in the data. But
does the measurement of the electron cause a particular outcome for the
positron? Not in any ordinary sense of the word. There is no way the
person manning the electron detector could use his measurement to send a
signal to the person at the positron detector, since he does not control the
outcome of his own measurement (he cannot make a given electron come
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out spin up, any more than the person at X can affect the passing shadow

of the bug). It is true that he can decide whether to make a measurement at
all, but the positron monitor, having immediate access only to data at his
end of the line, cannot tell whether the electron has been measured or not.
The lists of data compiled at the two ends, considered separately, are
completely random. It is only later, when we compare the two lists, that
we discover the remarkable correlations. In another reference frame the
positron measurements occur before the electron measurements, and yet
this leads to no logical paradox—the observed correlation is entirely
symmetrical in its treatment, and it is a matter of indifference whether we
say the observation of the electron influenced the measurement of the
positron, or the other way around. This is a wonderfully delicate kind of
influence, whose only manifestation is a subtle correlation between two
lists of otherwise random data.

We are led, then, to distinguish two types of influence: the “causal”
variety, which produce actual changes in some physical property of the
receiver, detectable by measurements on that subsystem alone, and an
“ethereal” kind, which do not transmit energy or information, and for
which the only evidence is a correlation in the data taken on the two
separate subsystems—a correlation which by its nature cannot be detected
by examining either list alone. Causal influences cannot propagate faster
than light, but there is no compelling reason why ethereal ones should not.
The influences associated with the collapse of the wave function are of the
latter type, and the fact that they “travel” faster than light may be
surprising, but it is not, after all, catastrophic.15

Problem 12.3 One example16 of a (local)
deterministic (“hidden variable”) theory is …
classical mechanics! Suppose we carried out
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the Bell experiment with classical objects
(baseballs, say) in place of the electron and
proton. They are launched (by a kind of double
pitching machine) in opposite directions, with
equal and opposite spins (angular momenta), 

 and . Now, these are classical
objects—their angular momenta can point in
any direction, and this direction is set (let’s say
randomly) at the moment of launch. Detectors
placed 10 meters or so on either side of the
launch point measure the spin vectors of their
respective baseballs. However, in order to
match the conditions for Bell’s theorem, they
only record the sign of the component of S
along the directions a and b:

Thus each detector records either  or , in
any given trial.

In this example the “hidden variable” is
the actual orientation of , specified (say) by
the polar and azimuthal angles θ and ϕ: 

:
(a)   Choosing axes as in the figure, with a

and b in the x–y plane and a along the
x axis, verify that

where η is the angle between a and b
(take it to run from  to ).
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(b)   Assuming the baseballs are launched
in such a way that  is equally likely
to point in any direction, compute 

. Answer: .
(c)   Sketch the graph of , from 

 to , and (on the same
graph) the quantum formula
(Equation 12.4, with ). For what
values of η does this hidden variable
theory agree with the quantum-
mechanical result?

(d)   Verify that your result satisfies Bell’s
inequality, Equation 12.12. Hint: The
vectors a, b, and c define three points
on the surface of a unit sphere; the
inequality can be expressed in terms
of the distances between those points.

Figure 12.5:  Axes for Problem 12.3.
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(12.13)

(12.15)

(12.16)

(12.14)

(12.17)

(12.18)

12.3 Mixed States and the Density Matrix

12.3.1 Pure States

In this book we have dealt with particles in pure states, —a harmonic
oscillator in its nth stationary state, for instance, or in a specific linear
combination of stationary states, or a free particle in a gaussian wave
packet. The expectation value of some observable A is then

it’s the average of measurements on an ensemble of identically-prepared
systems, all of them in the same state . We developed the whole theory
in terms of  (a vector in Hilbert space, or, in the position basis, the wave
function).

But there are other ways to formulate the theory, and a particularly
useful one starts by defining the density operator,17

With respect to an orthonormal basis  an operator is represented by a
matrix; the ij element of the matrix  representing the operator  is

In particular, the ij element of the density matrix ρ is

The density matrix (for pure states) has several interesting properties:
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(12.19)

(12.21)

(12.22)

(12.20)

The expectation value of an observable A is

We could do everything using the density matrix, instead of the wave
function, to represent the state of a particle.

Example 12.1
In the standard basis

representing spin up and spin down along the z direction (Equation
4.149), construct the density matrix for an electron with spin up
along the x direction.

Solution: In this case

(Equation 4.151). So
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(12.23)

(12.25)

(12.24)

(12.26)

and hence

Or, more efficiently,

Note that ρ is hermitian, its trace is 1, and

Problem 12.4
(a)   Prove properties 12.17, 12.18, 12.19,

and 12.20.
(b)   Show that the time evolution of the

density operator is governed by the
equation

(This is the Schrödinger equation,
expressed in terms of .)

Problem 12.5 Repeat Example 12.1 for an
electron with spin down along the y direction.
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(12.27)

(12.28)

(12.29)

(12.30)

12.3.2 Mixed States

In practice it is often the case that we simply don’t know the state of the
particle. Suppose, for example, we are interested in an electron emerging
from the Stanford Linear Accelerator. It might have spin up (along some
chosen direction), or it might have spin down, or it might be in some linear
combination of the two—we just don’t know.18 We say that the particle is
in a mixed state.19

How should we describe such a particle? I could simply list the
probability, , that it’s in each possible state . The expectation value
of an observable would now be the average of measurements taken over an
ensemble of systems that are not identically prepared (they are not all in
the same state); rather, a fraction  of them is in each (pure) state :

There’s a slick way to package this information, by generalizing the
density operator:

Again, it becomes a matrix when referred to a particular basis:

The density matrix encodes all the information available to us about the
system.

Like any probabilities,
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(12.34)

(12.36)

(12.37)

(12.31)

(12.32)

(12.33)

(12.35)

The density matrix for mixed states retains most of the properties we
identified for pure states:

but ρ is idempotent only if it represents a pure state:

(indeed, this is a quick way to test whether the state is pure).

Example 12.2
Construct the density matrix for an electron that is either in the
spin-up state or the spin-down state (along z), with equal
probability.

Solution: In this case , so

Note that ρ is hermitian, and its trace is 1, but

this is not a pure state.
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(12.38)

Problem 12.6
(a)   Prove properties 12.31, 12.32, 12.33,

and 12.34.
(b)   Show that Tr , and equal to 1

only if ρ represents a pure state.
(c)   Show that  if and only if ρ

represents a pure state.

Problem 12.7
(a)   Construct the density matrix for an

electron that is either in the state spin
up along x (with probability 1/3) or in
the state spin down along y (with
probability 2/3).

(b)   Find  for the electron in (a).

Problem 12.8
(a)   Show that the most general density

matrix for a spin-1/2 particle can be
written in terms of three real numbers 

:

where  are the
three Pauli matrices. Hint: It has to be
hermitian, and its trace must be 1.
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(12.39)

(b)   In the literature, a is known as the
Bloch vector. Show that ρ represents
a pure state if and only if , and
for a mixed state . Hint: Use
Problem 12.6(c). Thus every density
matrix for a spin-1/2 particle
corresponds to a point in the Bloch
sphere, of radius 1. Points on the
surface are pure states, and points
inside are mixed states.

(c)   What is the probability that a
measurement of  would return the
value , if the tip of the Bloch
vector is at (i) the north pole 

, (ii) the center of the
sphere , (iii) the south
pole ?

(d)   Find the spinor χ representing the
(pure) state of the system, if the Bloch
vector lies on the equator, at azimuthal
angle ϕ.

12.3.3 Subsystems

There is another context in which one might invoke the density matrix
formalism: an entangled state, such as the singlet spin configuration of an
electron/positron pair,
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(12.40)

Suppose we are interested only in the positron: what is it’s state? I cannot
say …a measurement could return spin up (fifty–fifty probability) or spin
down. This has nothing to do with ignorance; I know the state of the
system precisely. But the subsystem (the positron) by itself does not
occupy a pure state. If I insist on talking about the positron alone, the best
I can do is to tell you its density matrix:

representing the 50/50 mixture.
Of course, this is the same as the density matrix representing a

positron in a specific (but unknown) spin state (Example 12.2). I’ll call it a
subsystem density matrix, to distinguish it from an ignorance density
matrix. The EPRB paradox illustrates the difference. Before the electron
spin was measured, the positron (alone) was represented by the
“subsystem” density matrix (Equation 12.40); when the electron is
measured the positron is knocked into a definite state …but we (at the
distant positron detector) don’t know which. The positron is now
represented by the “ignorance” density matrix (Equation 12.36). But the
two density matrices are identical! Our description of the state of the
positron has not been altered by the measurement of the electron—all that
has changed is our reason for using the density matrix formalism.

12.4 The No-Clone Theorem

Quantum measurements are typically destructive, in the sense that they
alter the state of the system measured. This is how the uncertainty
principle is enforced in the laboratory. You might wonder why we don’t
just make a bunch of identical copies (clones) of the original state, and
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(12.41)

(12.42)

measure them, leaving the system itself unscathed. It can’t be done.
Indeed, if you could build a cloning device (a “quantum Xerox machine”),
quantum mechanics would be out the window.

For example, it would then be possible to send superluminal
messages using the EPRB apparatus.20 Say the message to be transmitted,
from the operator of the electron detector (conventionally “Alice”) to the
operator of the positron detector (“Bob”), is either “yes” (“drop the
bomb”) or “no.” If the message is to be “yes,” Alice measures  (of the
electron). Never mind what result she gets—all that matters is that she
makes the measurement, for this means that the positron is now in the pure
state  or  (never mind which). If she wants to say “no,” she measures ,
and that means the positron is now in the definite state  or  (never
mind which). In any case, Bob makes a million clones of the positron, and
measures  on half of them, and  on the other half. If the first group are
all in the same state (all  or all ), then Alice must have measured , and
the message is “yes” (the  group should be a 50/50 mixture). If all the 
measurements yield the same answer (all  or all ), then Alice must
have measured , and the message is “no” (in that case the 
measurements should be a 50/50 mixture).

It doesn’t work, because you can’t make a quantum Xerox machine,
as Wootters, Zurek, and Dieks proved in 1982.21 Schematically, we want
the machine to take as input a particle in state  (the one to be copied),
plus a second particle in state  (the “blank sheet of paper”), and spit out
two particles in the state  (original plus copy):

Suppose we have made a device that successfully clones the state :

and also works for state :
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(12.43)

(12.44)

(12.45)

(  and  might be spin up and spin down, for example, if the particle
is an electron). So far, so good. But what happens when we feed in a linear
combination ? Evidently we get22

which is not at all what we wanted—what we wanted was

You can make a machine to clone spin-up electrons and
spin-down electrons, but it will fail for any nontrivial linear combinations
(such as eigenstates of ). It’s as though you bought a Xerox machine that
copies vertical lines perfectly, and also horizontal lines, but completely
distorts diagonals.

The no-clone theorem turned out to have an importance well beyond
“merely” protecting quantum mechanics from superluminal
communication (and hence an inescapable conflict with special
relativity).23 In particular, it opened up the field of quantum
cryptography, which exploits the theorem to detect eavesdropping.24 This
time Alice and Bob want to agree on a key for decoding messages, without
the cumbersome necessity of actually meeting face-to-face. Alice is to
send the key (a string of numbers) to Bob via a stream of carefully
prepared photons.25 But they are worried that their nemesis, Eve, might try
to intercept this communication, and thereby crack the code, without their
knowledge. Alice prepares a string of photons in four different states:
linearly polarized (horizontal  and vertical ), and circularly polarized
(left  and right ), which she sends to Bob. Eve hopes to capture and
clone the photons en route, sending the originals along to Bob, who will be
none the wiser. (Later on, she knows, Alice and Bob will compare notes on
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a sample of the photons, to make sure there has been no tampering—that’s
why she has to clone them perfectly, to go undetected.) But the no-clone
theorem guarantees that Eve’s Xerox machine will fail;26 Alice and Bob
will catch the eavesdropping when they compare the samples. (They will
then, presumably, discard that key.)

12.5 Schrödinger’s Cat

The measurement process plays a mischievous role in quantum mechanics:
It is here that indeterminacy, nonlocality, the collapse of the wave
function, and all the attendant conceptual difficulties arise. Absent
measurement, the wave function evolves in a leisurely and deterministic
way, according to the Schrödinger equation, and quantum mechanics looks
like a rather ordinary field theory (much simpler than classical
electrodynamics, for example, since there is only one field , instead of
two (E and B), and it’s a scalar). It is the bizarre role of the measurement
process that gives quantum mechanics its extraordinary richness and
subtlety. But what, exactly, is a measurement? What makes it so different
from other physical processes?27 And how can we tell when a
measurement has occurred?

Schrödinger posed the essential question most starkly, in his famous
cat paradox:28

A cat is placed in a steel chamber, together with the following hellish
contraption…. In a Geiger counter there is a tiny amount of radioactive substance,
so tiny that maybe within an hour one of the atoms decays, but equally probably
none of them decays. If one decays then the counter triggers and via a relay
activates a little hammer which breaks a container of cyanide. If one has left this
entire system for an hour, then one would say the cat is living if no atom has
decayed. The first decay would have poisoned it. The wave function of the entire
system would express this by containing equal parts of the living and dead cat.
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(12.46)

At the end of the hour, then, the wave function of the cat has the schematic
form

The cat is neither alive nor dead, but rather a linear combination of the
two, until a measurement occurs—until, say, you peek in the window to
check. At that moment your observation forces the cat to “take a stand”:
dead or alive. And if you find him to be dead, then it’s really you who
killed him, by looking in the window.

Schrödinger regarded this as patent nonsense, and I think most people
would agree with him. There is something absurd about the very idea of a
macroscopic object being in a linear combination of two palpably different
states. An electron can be in a linear combination of spin up and spin
down, but a cat simply cannot be in a linear combination of alive and dead.
But how are we to reconcile this with quantum mechanics?

The Schrödinger cat paradox forces us to confront the question “What
constitutes a ‘measurement,’ in quantum mechanics”? Does the
“measurement” really occur when we peek in the keyhole? Or did it
happen much earlier, when the atom did (or did not) decay? Or was it
when the Geiger counter registered (or did not) the decay, or when the
hammer did (or did not) hit the vial of cyanide? Historically, there have
been many answers to this question. Wigner held that measurement
requires the intervention of human consciousness; Bohr thought it meant
the interaction between a microscopic system (subject to the laws of
quantum mechanics) and a macroscopic measuring apparatus (described
by classical laws); Heisenberg maintained that a measurement occurs
when a permanent record is left; others have pointed to the irreversible
nature of a measurement. The embarrassing fact is that none of these
characterizations is entirely satisfactory. Most physicists would say that
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the measurement occurred (and the cat became either alive or dead) well
before we looked in the window, but there is no real consensus as to when
or why.

And this still leaves the deeper question of why a macroscopic system
cannot occupy a linear combination of two clearly distinct states—a
baseball, say, in a linear combination of Seattle and Toronto. Suppose you
could get a baseball into such a state, what would happen to it? In some
ultimate sense the macroscopic system must itself be described by the laws
of quantum mechanics. But wave functions, in the first instance, represent
individual elementary particles; the wave function of a macroscopic object
would be a monstrously complicated composite structure, built out of the
wave functions of its  constituent particles. And it is subject to constant
bombardment from the environment29 —subject, that is, to continuous
“measurement” and the attendant collapse. In this process, presumably,
“classical” states are statistically favored, and in practice the linear
combination devolves almost instantaneously into one of the ordinary
configurations we encounter in everyday life. This phenomenon is called
decoherence, and although it is still not entirely understood it appears to
be the fundamental mechanism by which quantum mechanics reduces to
classical mechanics in the macroscopic realm.30

In this book I have tried to tell a consistent and coherent story: The wave
function  represents the state of a particle (or system); particles do not
in general possess specific dynamical properties (position, momentum,
energy, angular momentum, etc.) until an act of measurement intervenes;
the probability of getting a particular value in any given experiment is
determined by the statistical interpretation of ; upon measurement the
wave function collapses, so that an immediately repeated measurement is
certain to yield the same result. There are other possible interpretations—
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nonlocal hidden variable theories, the “many worlds” picture, “consistent
histories,” ensemble models, and others—but I believe this one is
conceptually the simplest, and certainly it is the one shared by most
physicists today.31 It has stood the test of time, and emerged unscathed
from every experimental challenge. But I cannot believe this is the end of
the story; at the very least, we have much to learn about the nature of
measurement and the mechanism of collapse. And it is entirely possible
that future generations will look back, from the vantage point of a more
sophisticated theory, and wonder how we could have been so gullible.

1   This may be strange, but it is not mystical, as some popularizers would like to
suggest. The so-called wave–particle duality, which Niels Bohr elevated to the
status of a cosmic principle (complementarity), makes electrons sound like
unpredictable adolescents, who sometimes behave like adults, and sometimes,
for no particular reason, like children. I prefer to avoid such language. When I
say that a particle does not have a particular attribute before its measurement, I

have in mind, for example, an electron in the spin state ; a measurement

of the x-component of its angular momentum could return the value , or
(with equal probability) the value , but until the measurement is made it
simply does not have a well-defined value of .

2   A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777 (1935).
3   Bohr wrote a famous rebuttal to the EPR paradox (Phys. Rev. 48, 696 (1935)). I

doubt many people read it, and certainly very few understood it (Bohr himself
later admitted that he had trouble making sense of his own argument), but it
was a relief that the great man had solved the problem, and everybody else
could go back to business. It was not until the mid-1960s that most physicists
began to worry seriously about the EPR paradox.

4   Although the term “entanglement” is usually applied to systems of two (or
more) particles, the same basic notion can be extended to single particle states
(Problem 12.2 is an example). For an interesting discussion see
D. V. Schroeder, Am. J. Phys. 85, 812 (2017).

5   See T. Norsen, Am. J. Phys. 73, 164 (2005).

866



6   The partition is inserted rapidly; if it is done adiabatically the particle may be
forced into the (however slightly) larger of the two, as you found in Problem
11.34.

7   The hidden variable could be a single number, or it could be a whole collection
of numbers; perhaps  is to be calculated in some future theory, or maybe it is
for some reason of principle incalculable. It hardly matters. All I am asserting is
that there must be something—if only a list of the outcomes of every possible
experiment—associated with the system prior to a measurement.

8   D. Bohm, Phys. Rev. 85, 166, 180 (1952).
9   Bell’s original paper (Physics 1, 195 (1964), reprinted as Chapter 2 in

John S. Bell, Speakable and Unspeakable in Quantum Mechanics, Cambridge
University Press, UK (1987)) is a gem: brief, accessible, and beautifully
written.

10   This already concedes far more than a classical determinist would be prepared
to allow, for it abandons any notion that the particles could have well-defined
angular momentum vectors with simultaneously determinate components. The
point of Bell’s argument is to demonstrate that quantum mechanics is
incompatible with any local deterministic theory—even one that bends over
backwards to be accommodating. Of course, if you reject Equation 12.5, then
the theory is manifestly incompatible with quantum mechanics.

11   It is an embarrassing historical fact that Bell’s theorem, which is now
universally recognized as one of the most profound discoveries of the twentieth
century, was barely noticed at the time, with the exception of an inspired fringe
element. For a fascinating account, see David Kaiser, How the Hippies Saved
Physics, W. W. Norton, New York, 2011.

12   A. Aspect, P. Grangier, and G. Roger, Phys. Rev. Lett. 49, 91 (1982). There
were logically possible (if implausible) loopholes in the Aspect experiment,
which were gradually closed over the ensuing years; see J. Handsteiner et al.,
Phys. Rev. Lett. 118, 060401 (2017). It is now possible to test Bell’s inequality
in the undergraduate laboratory: D. Dehlinger and M. W. Mitchell, Am. J. Phys.
70, 903 (2002).

13   Bell’s theorem involves averages and it is conceivable that an apparatus such
as Aspect’s contains some secret bias which selects out a nonrepresentative
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sample, thus distorting the average. In 1989, an improved version of Bell’s
theorem was proposed, in which the contrast between the quantum prediction
and that of any local hidden variable theory is even more dramatic. See D.
Greenberger, M. Horne, A. Shimony, and A. Zeilinger, Am. J. Phys. 58, 1131
(1990) and N. D. Mermin, Am. J. Phys. 58, 731, (1990). An experiment of this
kind suitable for an undergraduate laboratory has been carried out by Mark
Beck and his students: Am. J. Phys. 74, 180 (2006).

14   It is a curious twist of fate that the EPR paradox, which assumed locality in
order to prove realism, led finally to the demise of locality and left the issue of
realism undecided—the outcome (as Bell put it) Einstein would have liked
least. Most physicists today consider that if they can’t have local realism,
there’s not much point in realism at all, and for this reason nonlocal hidden
variable theories occupy a rather peripheral niche. Still, some authors—notably
Bell himself, in Speakable and Unspeakable in Quantum Mechanics (footnote 9
in this chapter)—argue that such theories offer the best hope of bridging the
conceptual gap between the measured system and the measuring apparatus, and
for supplying an intelligible mechanism for the collapse of the wave function.

15   An enormous amount has been written about Bell’s theorem. My favorite is an
inspired essay by David Mermin in Physics Today (April 1985, page 38). An
extensive bibliography will be found in L. E. Ballentine, Am. J. Phys. 55, 785
(1987).

16   This problem is based on George Greenstein and Arthur G. Zajonc, The
Quantum Challenge, 2nd edn., Jones and Bartlett, Sudbury, MA (2006),
Section 5.3.

17   It’s actually the “projection operator” onto the state —see Equation 3.91.
18   I’m not talking about any fancy quantum phenomenon (Heisenberg uncertainty

or Born indeterminacy, which would apply even if we knew the precise state);
I’m talking here about good old-fashioned ignorance.

19   Do not confuse a linear combination of two pure states, which itself is still a
pure state (the sum of two vectors in Hilbert space is another vector in Hilbert
space) with a mixed state, which is not represented by any (single) vector in the
Hilbert space.
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20   Starting around 1975, members of the so-called “Fundamental Fysiks Group”
proposed a series of increasingly ingenious schemes for faster-than-light
communication—inspiring in turn a succession of increasingly sophisticated
rebuttals, culminating in the no-clone theorem, which finally put a stop to the
whole misguided enterprise. For a fascinating account, see Chapter 11 of
Kaiser’s How the Hippies Saved Physics (footnote 11, page 451).

21   W. K. Wootters and W. H. Zurek, Nature 299, 802 (1982); D. Dieks,
Phys. Lett. A 92, 271 (1982).

22   This assumes that the device acts linearly on the state , as it must, since the
time-dependent Schrödinger equation (which presumably governs the process)
is linear.

23   The no-clone theorem is one of the foundations for quantum information
theory, “teleportation,” and quantum computation. For a brief history and a
comprehensive bibliography, see F. W. Strauch, Am. J. Phys. 84, 495 (2016).

24   For a brief summary, see W. K. Wootters and W. H. Zurek, Physics Today,
February 2009, page 76.

25   Electrons would do, but traditionally the story is told using photons. By the
way, there is no entanglement involved, and they’re not in a hurry—this has
nothing to do with EPR or superluminal signals.

26   If Alice and Bob were foolish enough to use just two orthogonal photon states
(say,  and ), then Eve might get lucky, and use a quantum Xerox machine
that does faithfully clone those two states. But as long as they include nontrivial
linear combinations (such as  and ), the cloning is certain to fail, and the
eavesdropping will be detected.

27   There is a school of thought that rejects this distinction, holding that the system
and the measuring apparatus should be described by one great big wave
function which itself evolves according to the Schrödinger equation. In such
theories there is no collapse of the wave function, but one must typically
abandon any hope of describing individual events—quantum mechanics (in this
view) applies only to ensembles of identically prepared systems. See, for
example, Philip Pearle, Am. J. Phys. 35, 742 (1967), or Leslie E. Ballentine,
Quantum Mechanics: A Modern Development, 2nd edn, World Scientific,
Singapore (1998).
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28   E. Schrödinger, Naturwiss. 48, 52 (1935); translation by Josef M. Jauch,
Foundations of Quantum Mechanics, Addison-Wesley, Reading, MA (1968),
page 185.

29   This is true even if you put it in an almost complete vacuum, cool it down
practically to absolute zero, and somehow shield out the cosmic background
radiation. It is possible to imagine a single electron avoiding all contact for a
significant time, but not a macroscopic object.

30   See, for example, M. Schlosshauer, Decoherence and the Quantum-to-
Classical Transition, Springer, (2007), or W. H. Zurek, Physics Today,
October, 2014, page 44.

31   See Daniel Styer et al., Am. J. Phys. 70, 288 (2002).
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(A.1)

(A.2)

(A.3)

Appendix
Linear Algebra

◈

Linear algebra abstracts and generalizes the arithmetic of ordinary vectors,
as we encounter them in first-year physics. The generalization is in two
directions: (1) we allow the scalars to be complex numbers, and (2) we do
not restrict ourselves to three dimensions.

A.1 Vectors

A vector space consists of a set of vectors ( , , , … ), together with
a set of scalars (a, b, c, … ),1 which is closed2 under two operations:
vector addition and scalar multiplication.

The “sum” of any two vectors is another vector:

Vector addition is commutative:

and associative:

There exists a zero (or null) vector,3 , with the property that

Vector Addition
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(A.4)

(A.6)

(A.7)

(A.8)

(A.9)

(A.10)

(A.5)

for every vector . And for every vector  there is an associated
inverse vector ,4 such that

The “product” of any scalar with any vector is another vector:

Scalar multiplication is distributive with respect to vector addition:

and with respect to scalar addition:

It is also associative with respect to the ordinary multiplication of
scalars:

Multiplication by the scalars 0 and 1 has the effect you would expect:

Evidently  (which we write more simply as .
There’s a lot less here than meets the eye—all I have done is to write

down in abstract language the familiar rules for manipulating vectors. The
virtue of such abstraction is that we will be able to apply our knowledge
and intuition about the behavior of ordinary vectors to other systems that
happen to share the same formal properties.

A linear combination of the vectors , , , … , is an expression
of the form

Scalar Multiplication
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(A.11)

(A.12)

(A.13)

(A.14)

(A.15)

(A.16)

(A.17)

A vector  is said to be linearly independent of the set , , , … , if
it cannot be written as a linear combination of them. (For example, in three
dimensions the unit vector  is linearly independent of  and , but any
vector in the xy plane is linearly dependent on  and .) By extension, a set
of vectors is “linearly independent” if each one is linearly independent of
all the rest. A collection of vectors is said to span the space if every vector
can be written as a linear combination of the members of this set.5 A set of
linearly independent vectors that spans the space is called a basis. The
number of vectors in any basis is called the dimension of the space. For
the moment we shall assume that the dimension  is finite.

With respect to a prescribed basis

any given vector

is uniquely represented by the (ordered) n-tuple of its components:

It is often easier to work with the components than with the abstract
vectors themselves. To add vectors, you add their corresponding
components:

to multiply by a scalar you multiply each component:

the null vector is represented by a string of zeroes:
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∗

(A.18)

and the components of the inverse vector have their signs reversed:

The only disadvantage of working with components is that you have to
commit yourself to a particular basis, and the same manipulations will look
very different to someone using a different basis.

Problem A.1  Consider the ordinary vectors in
three dimensions , with

complex components.
(a)   Does the subset of all vectors with 

 constitute a vector space? If so,
what is its dimension; if not, why not?

(b)   What about the subset of all vectors
whose z component is 1? Hint: Would
the sum of two such vectors be in the
subset? How about the null vector?

(c)   What about the subset of vectors
whose components are all equal?

Problem A.2  Consider the collection of all
polynomials (with complex coefficients) of
degree  in x.

(a)   Does this set constitute a vector space
(with the polynomials as “vectors”)? If
so, suggest a convenient basis, and
give the dimension of the space. If not,
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(A.20)

(A.21)

which of the defining properties does
it lack?

(b)   What if we require that the
polynomials be even functions?

(c)   What if we require that the leading
coefficient (i.e. the number
multiplying ) be 1?

(d)   What if we require that the
polynomials have the value 0 at ?

(e)   What if we require that the
polynomials have the value 1 at ?

Problem A.3  Prove that the components of a
vector with respect to a given basis are unique.

A.2 Inner Products

In three dimensions we encounter two kinds of vector products: the dot
product and the cross product. The latter does not generalize in any natural
way to n-dimensional vector spaces, but the former does—in this context it
is usually called the inner product. The inner product of vectors  and 
is a complex number (which we write as ), with the following
properties:
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(A.23)

(A.22)

(A.24)

(A.25)

(A.26)

Apart from the generalization to complex numbers, these axioms simply
codify the familiar behavior of dot products. A vector space with an inner
product is called an inner product space.

Because the inner product of any vector with itself is a non-negative
number (Equation A.20), its square root is real—we call this the norm of
the vector:

it generalizes the notion of “length.” A unit vector (one whose norm is 1)
is said to be normalized (the word should really be “normal,” but I guess
that sounds too judgmental). Two vectors whose inner product is zero are
called orthogonal (generalizing the notion of “perpendicular”). A
collection of mutually orthogonal normalized vectors,

is called an orthonormal set. It is always possible (see Problem A.4), and
almost always convenient, to choose an orthonormal basis; in that case
the inner product of two vectors can be written very neatly in terms of their
components:

the norm (squared) becomes

and the components themselves are

(These results generalize the familiar formulas , 
, and , , , for the three-
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(A.28)

∗

(A.27)

dimensional orthonormal basis , , .) From now on we shall always work
in orthonormal bases, unless it is explicitly indicated otherwise.

Another geometrical quantity one might wish to generalize is the
angle between two vectors. In ordinary vector analysis 

, but because the inner product is in general a
complex number, the analogous formula (in an arbitrary inner product
space) does not define a (real) angle θ. Nevertheless, it is still true that the
absolute value of this quantity is a number no greater than 1,

This important result is known as the Schwarz inequality; the proof is
given in Problem A.5. So you can, if you like, define the angle between 
and  by the formula

Problem A.4  Suppose you start out with a
basis  that is not
orthonormal. The Gram–Schmidt procedure
is a systematic ritual for generating from it an
orthonormal basis . It goes
like this:

(i)   Normalize the first basis vector (divide
by its norm):

(ii)   Find the projection of the second
vector along the first, and subtract it
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off:

This vector is orthogonal to ;
normalize it to get .

(iii)   Subtract from  its projections
along  and :

This is orthogonal to  and ; normalize it
to get . And so on.

Use the Gram–Schmidt procedure to
orthonormalize the 3-space basis  

.

Problem A.5  Prove the Schwarz inequality
(Equation A.27). Hint: Let 

, and use 
.

Problem A.6  Find the angle (in the sense of
Equation A.28) between the vectors 

 and 
.
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(A.29)

(A.30)

Problem A.7  Prove the triangle inequality: 
  .

A.3 Matrices

Suppose you take every vector (in 3-space) and multiply it by 17, or you
rotate every vector by 39° about the z axis, or you reflect every vector in
the xy plane—these are all examples of linear transformations. A linear
transformation6  takes each vector in a vector space and “transforms” it
into some other vector , subject to the condition that the
operation be linear:

for any vectors  and any scalars a, b.
If you know what a particular linear transformation does to a set of

basis vectors, you can easily figure out what it does to any vector. For
suppose that

or, more compactly,

If  is an arbitrary vector,
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(A.31)

(A.33)

(A.35)

(A.36)

(A.32)

(A.34)

then

Evidently  takes a vector with components 
into a vector with components7

Thus the  elements  uniquely characterize the linear transformation 
(with respect to a given basis), just as the n components  uniquely
characterize the vector  (with respect to that basis):

If the basis is orthonormal, it follows from Equation A.30 that

It is convenient to display these complex numbers in the form of a
matrix:8

The study of linear transformations reduces, then, to the theory of
matrices. The sum of two linear transformations  is defined in the

natural way:
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(A.37)

(A.39)

(A.40)

(A.38)

this matches the usual rule for adding matrices (you add the corresponding
elements):

The product of two linear transformations  is the net effect of

performing them in succession—first , then :

What matrix  represents the combined transformation ? It’s not
hard to work it out:

Evidently

—this is the standard rule for matrix multiplication: to find the ikth
element of the product, you look at the ith row of S, and the kth column of
T, multiply corresponding entries, and add. The same prescription allows
you to multiply rectangular matrices, as long as the number of columns in
the first matches the number of rows in the second. In particular, if we
write the n-tuple of components of  as an  column matrix (or
“column vector”):9
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(A.41)

(A.44)

(A.43)

(A.42)

(A.45)

the transformation rule (Equation A.33) can be expressed as a matrix
product:

Now some matrix terminology:

For a square matrix taking the transpose amounts to reflecting in the
main diagonal (upper left to lower right):

A (square) matrix is symmetric if it is equal to its transpose; it is
antisymmetric if this operation reverses the sign:

The transpose of a matrix (which we shall write with a tilde: ) is
the same set of elements, but with rows and columns interchanged.
In particular, the transpose of a column matrix is a row matrix:

The (complex) conjugate of a matrix (which we denote, as usual,
with an asterisk, ), consists of the complex conjugate of every
element:
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(A.46)

(A.48)

(A.49)

(A.47)

(A.50)

A matrix is real if all its elements are real, and imaginary if they are
all imaginary:

A square matrix is hermitian (or self-adjoint) if it
is equal to its hermitian conjugate; if hermitian conjugation
introduces a minus sign, the matrix is skew hermitian (or anti-
hermitian):

In this notation the inner product of two vectors (with respect to an
orthonormal basis—Equation A.24), can be written very neatly as a
matrix product:

Notice that each of the three operations defined in this paragraph, if
applied twice, returns you to the original matrix.

Matrix multiplication is not, in general, commutative ; the
difference between the two orderings is called the commutator:10

The hermitian conjugate (or adjoint) of a matrix (indicated by a
dagger, ) is the transpose conjugate:
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(A.52)

(A.53)

(A.54)

(A.57)

(A.51)

(A.55)

(A.56)

The transpose of a product is the product of the transposes in reverse
order:

(see Problem A.11), and the same goes for hermitian conjugates:

The identity matrix (representing a linear transformation that carries
every vector into itself) consists of ones on the main diagonal, and zeroes
everywhere else:

In other words,

The inverse of a (square) matrix (written ) is defined in the obvious
way:11

A matrix has an inverse if and only if its determinant12 is nonzero; in fact,

where  is the matrix of cofactors (the cofactor of element  is 
times the determinant of the submatrix obtained from  by erasing the ith
row and the jth column). A matrix that has no inverse is said to be
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(A.58)

(A.60)

∗

∗

(A.59)

singular. The inverse of a product (assuming it exists) is the product of the
inverses in reverse order:

A matrix is unitary if its inverse is equal to its hermitian conjugate:13

Assuming the basis is orthonormal, the columns of a unitary matrix
constitute an orthonormal set, and so too do its rows (see Problem A.12).
Linear transformations represented by unitary matrices preserve inner
products, since (Equation A.50)

Problem A.8  Given the following two
matrices:

compute: (a) , (b) , (c) , (d) ,
(e) , (f) , (g) , and (h) . Check
that . Does  have an inverse?

Problem A.9  Using the square matrices in
Problem A.8, and the column matrices
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find: (a) , (b) , (c) , (d) .

Problem A.10  By explicit construction of the
matrices in question, show that any matrix T
can be written

(a)   as the sum of a symmetric matrix S
and an antisymmetric matrix A;

(b)   as the sum of a real matrix R and an
imaginary matrix M;

(c)   as the sum of a hermitian matrix H and
a skew-hermitian matrix K.

Problem A.11  Prove Equations A.52, A.53,
and A.58. Show that the product of two unitary
matrices is unitary. Under what conditions is
the product of two hermitian matrices
hermitian? Is the sum of two unitary matrices
necessarily unitary? Is the sum of two
hermitian matrices always hermitian?

Problem A.12  Show that the rows and
columns of a unitary matrix constitute
orthonormal sets.
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(A.61)

(A.62)

Problem A.13  Noting that ,
show that the determinant of a hermitian
matrix is real, the determinant of a unitary
matrix has modulus 1 (hence the name), and
the determinant of an orthogonal matrix
(footnote 13) is either  or .

A.4 Changing Bases

The components of a vector depend, of course, on your (arbitrary) choice
of basis, and so do the elements of the matrix representing a linear
transformation. We might inquire how these numbers change when we
switch to a different basis. The old basis vectors,  are—like all vectors
—linear combinations of the new ones, :

(for some set of complex numbers ), or, more compactly,

This is itself a linear transformation (compare Equation A.30),14 and we
know immediately how the components transform:
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(A.63)

(A.64)

(A.65)

(where the superscript indicates the basis). In matrix form

What about the matrix representing a linear transformation —how is
it modified by a change of basis? Well, in the old basis we had (Equation
A.42)

and Equation A.63—multiplying both sides by —entails15 ,
so

Evidently

In general, two matrices (  and ) are said to be similar if 
for some (nonsingular) matrix . What we have just found is that matrices
representing the same linear transformation, with respect to different
bases, are similar. Incidentally, if the first basis is orthonormal, the second
will also be orthonormal if and only if the matrix  is unitary (see Problem
A.16). Since we always work in orthonormal bases, we are interested
mainly in unitary similarity transformations.

While the elements of the matrix representing a given linear
transformation may look very different in the new basis, two numbers
associated with the matrix are unchanged: the determinant and the trace.
For the determinant of a product is the product of the determinants, and
hence
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(A.66)

(A.68)

(A.67)

And the trace, which is the sum of the diagonal elements,

has the property (see Problem A.17) that

(for any two matrices  and ), so

Problem A.14  Using the standard basis 
 for vectors in three dimensions:

(a)   Construct the matrix representing a
rotation through angle θ
(counterclockwise, looking down the
axis toward the origin) about the z
axis.

(b)   Construct the matrix representing a
rotation by 120  (counterclockwise,
looking down the axis) about an axis
through the point (1,1,1).

(c)   Construct the matrix representing
reflection through the xy plane.

(d)   Check that all these matrices are
orthogonal, and calculate their
determinants.
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Problem A.15  In the usual basis ,

construct the matrix  representing a rotation
through angle θ about the x axis, and the
matrix  representing a rotation through angle
θ about the y axis. Suppose now we change
bases, to . Construct the
matrix S that effects this change of basis, and
check that  and  are what you
would expect.

Problem A.16  Show that similarity preserves
matrix multiplication (that is, if ,
then ). Similarity does not, in
general, preserve symmetry, reality, or
hermiticity; show, however, that if  is unitary,
and  is hermitian, then  is hermitian. Show
that  carries an orthonormal basis into another
orthonormal basis if and only if it is unitary.

Problem A.17  Prove that Tr  = Tr .
It follows immediately that Tr  = Tr

, but is it the case that Tr  = Tr
, in general? Prove it, or disprove it.

Hint: The best disproof is always a
counterexample—the simpler the better!
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(A.69)

(A.70)

(A.71)

A.5 Eigenvectors and Eigenvalues

Consider the linear transformation in 3-space consisting of a rotation,
about some specified axis, by an angle θ. Most vectors (with tails at the
origin) will change in a rather complicated way (they ride around on a
cone about the axis), but vectors that happen to lie along the axis have
very simple behavior: They don’t change at all . If θ is 180°,
then vectors which lie in the the “equatorial” plane reverse signs 

. In a complex vector space16 every linear transformation has
“special” vectors like these, which are transformed into scalar multiples of
themselves:

they are called eigenvectors of the transformation, and the (complex)
number  is their eigenvalue. (The null vector doesn’t count, even though
in a trivial sense it obeys Equation A.69 for any  and any ; technically,
an eigenvector is any nonzero vector satisfying Equation A.69.) Notice
that any (nonzero) multiple of an eigenvector is still an eigenvector, with
the same eigenvalue.

With respect to a particular basis, the eigenvector equation assumes
the matrix form

or

(Here 0 is the (column) matrix whose elements are all zero.) Now, if the
matrix  had an inverse, we could multiply both sides of Equation
A.71 by , and conclude that . But by assumption  is not
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(A.74)

(A.72)

(A.73)

zero, so the matrix  must in fact be singular, which means that its
determinant is zero:

Expansion of the determinant yields an algebraic
equation for :

where the coefficients  depend on the elements of  (see Problem A.20).
This is called the characteristic equation for the matrix; its solutions
determine the eigenvalues. Notice that it’s an nth-order equation, so (by
the fundamental theorem of algebra) it has n (complex) roots.17

However, some of these may be multiple roots, so all we can say for
certain is that an  matrix has at least one and at most n distinct
eigenvalues. The collection of all the eigenvalues of a matrix is called its
spectrum; if two (or more) linearly independent eigenvectors share the
same eigenvalue, the spectrum is said to be degenerate.

To construct the eigenvectors it is generally easiest simply to plug
each  back into Equation A.70 and solve “by hand” for the components of

. I’ll show you how it goes by working out an example.

Example 1.1
Find the eigenvalues and eigenvectors of the following matrix:
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(A.76)

(A.75)

Solution: The characteristic equation is

and its roots are 0, 1, and i. Call the components of
the first eigenvector ; then

which yields three equations:

The first determines  (in terms of ): ; the second
determines : ; and the third is redundant. We may as well
pick  (since any multiple of an eigenvector is still an
eigenvector):

For the second eigenvector (recycling the same notation for the
components) we have

which leads to the equations
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(A.77)

(A.78)

with the solution , ; this time I’ll
pick , so

Finally, for the third eigenvector,

which gives the equations

whose solution is , with  undetermined. Choosing 
, we conclude

If the eigenvectors span the space (as they do in the preceding
example), we are free to use them as a basis:
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(A.79)

(A.80)

(A.81)

In this basis the matrix representing  takes on a very simple form, with
the eigenvalues strung out along the main diagonal, and all other elements
zero:

and the (normalized) eigenvectors are

A matrix that can be brought to diagonal form (Equation A.79) by a
change of basis is said to be diagonalizable (evidently a matrix is
diagonalizable if and only if its eigenvectors span the space). The
similarity matrix that effects the diagonalization can be constructed by
using the eigenvectors (in the old basis) as the columns of :

Example 1.2
In Example A.1,
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(A.82)

so (using Equation A.57)

you can check for yourself that

and

There’s an obvious advantage in bringing a matrix to diagonal form:
it’s much easier to work with. Unfortunately, not every matrix can be
diagonalized—the eigenvectors have to span the space. If the characteristic
equation has n distinct roots, then the matrix is certainly diagonalizable,
but it may be diagonalizble even if there are multiple roots. (For an
example of a matrix that cannot be diagonalized, see Problem A.19.) It
would be handy to know in advance (before working out all the
eigenvectors) whether a given matrix is diagonalizable. A useful sufficient
(though not necessary) condition is the following: A matrix is said to be
normal if it commutes with its hermitian conjugate:
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(A.83)

(A.84)

Every normal matrix is diagonalizable (its eigenvectors span the space). In
particular, every hermitian matrix is diagonalizable, and so is every
unitary matrix.

Suppose we have two diagonalizable matrices; in quantum
applications the question often arises: Can they be simultaneously
diagonalized (by the same similarity matrix )? That is to say, does there
exist a basis all of whose members are eigenvectors of both matrices? In
this basis, both matrices would be diagonal. The answer is yes if and only
if the two matrices commute, as we shall now prove. (By the way, if two
matrices commute with respect to one basis, they commute with respect to
any basis—see Problem A.23.)

We first show that if a basis of simultaneous eigenvectors exists then
the matrices commute. Actually, it’s trivial in the (simultaneously)
diagonal form:

The converse is trickier. We start with the special case where the
spectrum of  is nondegenerate. Let the basis of eigenvectors of  be
labeled 

We assume  and we want to prove that  is also an eigenvector
of .
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(A.85)

(A.86)

(A.87)

and from Equation A.84

Equation A.86 says that the vector  is an eigenvector of  with
eigenvalue . But by assumption, the spectrum of  is nondegenerate and
that means that  must be (up to a constant)  itself. If we call the
constant ,

so  is an eigenvector of .
All that remains is to relax the assumption of nondegeneracy. Assume

now that  has at least one degenerate eigenvalue such that both  and 
 are eigenvectors of  with the same eigenvalue :

We again assume that the matrices  and  commute, so

which leads to the conclusion (as in the nondegenerate case) that both 
 and  are eigenvectors of  with eigenvalue . But

this time we can’t say that  is a constant times  since any linear
combination of  and  is an eigenvector of  with eigenvalue . All
we know is that
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(A.88)

(A.90)

∗

(A.91)

(A.89)

for some constants . So  and  are not eigenvectors of  (unless the
constants  and  just happen to vanish). But suppose we choose a
different basis of eigenvectors ,

for some constants , such that  and  are eigenvectors of :

The s are still eigenvectors of , with the same eigenvalue , since any
linear combinations of  and  are. But can we construct linear
combinations (A.88) that are eigenvectors of V—how do we get the
appropriate coefficients ? Answer: We solve the eigenvalue problem18

I’ll let you show (Problem A.24) that the eigenvectors  constructed in
this way satisfy Equation A.88, completing the proof.19 What we have
seen is that, when the spectrum contains degeneracy, the eigenvectors of
one matrix aren’t automatically eigenvectors of a second commuting
matrix, but we can always choose a linear combination of them to form a
simultaneous basis of eigenvectors.

Problem A.18  The  matrix representing a
rotation of the xy plane is
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(A.92)

Show that (except for certain special angles—
what are they?) this matrix has no real
eigenvalues. (This reflects the geometrical fact
that no vector in the plane is carried into itself
under such a rotation; contrast rotations in
three dimensions.) This matrix does, however,
have complex eigenvalues and eigenvectors.
Find them. Construct a matrix S that
diagonalizes T. Perform the similarity
transformation  explicitly, and show

that it reduces T to diagonal form.

Problem A.19  Find the eigenvalues and
eigenvectors of the following matrix:

Can this matrix be diagonalized?

Problem A.20  Show that the first, second, and
last coefficients in the characteristic equation
(Equation A.73) are:

For a  matrix with
elements , what is ?
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Problem A.21  It’s obvious that the trace of a
diagonal matrix is the sum of its eigenvalues,
and its determinant is their product (just look at
Equation A.79). It follows (from Equations
A.65 and A.68) that the same holds for any
diagonalizable matrix. Prove that in fact

for any matrix. (The ’s are the
n solutions to the characteristic equation—in
the case of multiple roots, there may be fewer
linearly-independent eigenvectors than there
are solutions, but we still count each  as many
times as it occurs.) Hint: Write the
characteristic equation in the form

and use the result of Problem A.20.

Problem A.22  Consider the matrix

(a)   Is it normal?
(b)   Is it diagonalizable?
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∗

Problem A.23  Show that if two matrices
commute in one basis, then they commute in
any basis. That is:

Hint: Use Equation A.64.

Problem A.24  Show that the  computed
from Equations A.88 and A.90 are
eigenvectors of .

Problem A.25  Consider the matrices

(a)   Verify that they are diagonalizable and
that they commute.

(b)   Find the eigenvalues and eigenvectors
of  and verify that its spectrum is
nondegenerate.

(c)   Show that the eigenvectors of  are
eigenvectors of  as well.

Problem A.26  Consider the matrices
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(a)   Verify that they are diagonalizable and
that they commute.

(b)   Find the eigenvalues and eigenvectors
of  and verify that its spectrum is
degenerate.

(c)   Are the eigenvectors that you found in
part (b) also eigenvectors of ? If not,
find the vectors that are simultaneous
eigenvectors of both matrices.

A.6 Hermitian Transformations

In Equation A.48 I defined the hermitian conjugate (or “adjoint”) of a
matrix as its transpose-conjugate: . Now I want to give you a more
fundamental definition for the hermitian conjugate of a linear
transformation: It is that transformation  which, when applied to the first
member of an inner product, gives the same result as if  itself had been
applied to the second vector:

(for all vectors  and ).20 I have to warn you that although everybody
uses it, this is lousy notation. For α and β are not vectors (the vectors are 

 and ), they are names. In particular, they are endowed with no
mathematical properties at all, and the expression “ ” is literally
nonsense: Linear transformations act on vectors, not labels. But it’s pretty
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(A.98)

(A.96)

(A.97)

clear what the notation means:  is the name of the vector , and 
 is the inner product of the vector  with the vector . Notice

in particular that

whereas

for any scalar c.
If you’re working in an orthonormal basis (as we always do), the

hermitian conjugate of a linear transformation is represented by the
hermitian conjugate of the corresponding matrix; for (using Equations
A.50 and A.53),

So the terminology is consistent, and we can speak interchangeably in the
language of transformations or of matrices.

In quantum mechanics, a fundamental role is played by hermitian
transformations . The eigenvectors and eigenvalues of a
hermitian transformation have three crucial properties:

1.   The eigenvalues of a hermitian transformation are real.

Proof:   Let  be an eigenvalue of : , with 
. Then

Meanwhile, if  is hermitian, then
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But  (Equation A.20), so , and hence  is real.
QED

2.   The eigenvectors of a hermitian transformation belonging to
distinct eigenvalues are

Proof:   Suppose  and , with .
Then

and if  is hermitian,

But  (from (1)), and , by assumption, so 
. QED

3.   The eigenvectors of a hermitian transformation span the space.
As we have seen, this is equivalent to the statement that any
hermitian matrix can be diagonalized. This rather technical fact is,
in a sense, the mathematical support on which much of quantum
mechanics leans. It turns out to be a thinner reed than one might
have hoped, because the proof does not carry over to infinite-
dimensional vector spaces.

Problem A.27  A hermitian linear
transformation must satisfy 
for all vectors  and . Prove that it is
(surprisingly) sufficient that 
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for all vectors . Hint: First let 
, and then let .

Problem A.28  Let

(a)   Verify that T is hermitian.
(b)   Find its eigenvalues (note that they are

real).
(c)   Find and normalize the eigenvectors

(note that they are orthogonal).
(d)   Construct the unitary diagonalizing

matrix S, and check explicitly that it
diagonalizes T.

(e)   Check that  and Tr(T) are the
same for T as they are for its
diagonalized form.

Problem A.29  Consider the following
hermitian matrix:

(a)   Calculate  and Tr .
(b)   Find the eigenvalues of T. Check that

their sum and product are consistent
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with (a), in the sense of Equation
A.93. Write down the diagonalized
version of T.

(c)   Find the eigenvectors of T. Within the
degenerate sector, construct two
linearly independent eigenvectors (it is
this step that is always possible for a
hermitian matrix, but not for an
arbitrary matrix—contrast Problem
A.19). Orthogonalize them, and check
that both are orthogonal to the third.
Normalize all three eigenvectors.

(d)   Construct the unitary matrix S that
diagonalizes T, and show explicitly
that the similarity transformation using
S reduces T to the appropriate
diagonal form.

Problem A.30  A unitary transformation is
one for which .

(a)   Show that unitary transformations
preserve inner products, in the sense
that , for all vectors 

, .
(b)   Show that the eigenvalues of a unitary

transformation have modulus 1.
(c)   Show that the eigenvectors of a

unitary transformation belonging to
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(A.100)

(A.99)

(A.101)

distinct eigenvalues are orthogonal.

Problem A.31  Functions of matrices are
typically defined by their Taylor series
expansions. For example,

(a)   Find , if

(b)   Show that if M is diagonalizable, then

Comment: This is actually true even if
M is not diagonalizable, but it’s harder
to prove in the general case.

(c)   Show that if the matrices M and N
commute, then

Prove (with the simplest
counterexample you can think up) that
Equation A.101 is not true, in general,
for non-commuting matrices.21 

(d)   If H is hermitian, show that  is
unitary.
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1   For our purposes, the scalars will be ordinary complex numbers.
Mathematicians can tell you about vector spaces over more exotic fields, but
such objects play no role in quantum mechanics. Note that α, β, γ …are not
(ordinarily) numbers; they are names (labels)—“Charlie,” for instance, or
“F43A-9GL,” or whatever you care to use to identify the vector in question.

2   That is to say, these operations are always well-defined, and will never carry
you outside the vector space.

3   It is customary, where no confusion can arise, to write the null vector without
the adorning bracket: .

4   This is funny notation, since α is not a number. I’m simply adopting the name
“–Charlie” for the inverse of the vector whose name is “Charlie.” More natural
terminology will suggest itself in a moment.

5   A set of vectors that spans the space is also called complete, though I
personally reserve that word for the infinite-dimensional case, where subtle
questions of convergence may arise.

6   In this chapter I’ll use a hat (^) to denote linear transformations; this is not
inconsistent with my convention in the text (putting hats on operators), for (as
we shall see) quantum operators are linear transformations.

7   Notice the reversal of indices between Equations A.30 and A.33. This is not a
typographical error. Another way of putting it (switching  in Equation
A.30) is that if the components transform with , the basis vectors transform
with .

8   I’ll use boldface capital letters, sans serif, to denote square matrices.
9   I’ll use a boldface lower-case letters, sans serif, for row and column matrices.

10   The commutator only makes sense for square matrices, of course; for
rectangular matrices the two orderings wouldn’t even be the same size.

11   Note that the left inverse is equal to the right inverse, for if  and ,
then (multiplying the second on the left by  and invoking the first) we get 

.
12   I assume you know how to evaluate determinants. If not, see Mary L. Boas,

Mathematical Methods in the Physical Sciences, 3rd edn (John Wiley, New
York, 2006), Section 3.3.
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13   In a real vector space (that is, one in which the scalars are real) the hermitian
conjugate is the same as the transpose, and a unitary matrix is orthogonal: 

. For example, rotations in ordinary 3-space are represented by
orthogonal matrices.

14   Notice, however, the radically different perspective: In this case we’re talking
about one and the same vector, referred to two completely different bases,
whereas before we were thinking of a completely different vector, referred to
the same basis.

15   Note that  certainly exists—if  were singular, the s would not span the
space, so they wouldn’t constitute a basis.

16   This is not always true in a real vector space (where the scalars are restricted to
real values). See Problem A.18.

17   It is here that the case of real vector spaces becomes more awkward, because
the characteristic equation need not have any (real) solutions at all. See
Problem A.18.

18   You might worry that the matrix  is not diagonalizable, but you need not. The
matrix  is a 2 2 block of the transformation  written in the basis ; it is
diagonalizable by virtue of the fact that  itself is diagonalizable.

19   I’ve only proved it for a two-fold degeneracy, but the argument extends in the
obvious way to a higher-order degeneracy; you simply need to diagonalize a
bigger matrix .

20   If you’re wondering whether such a transformation necessarily exists, that’s a
good question, and the answer is “yes.” See, for instance, Paul R. Halmos,
Finite Dimensional Vector Spaces, 2nd edn, van Nostrand, Princeton (1958),
Section 44.

21   See Problem 3.29 for the more general “Baker–Campbell–Hausdorff” formula.
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adiabatic approximation 426–433
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adiabatic theorem 408, 428–433
adjoint 45, 95, 471
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alpha decay 360–361
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addition 176–180
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conservation 162, 250–251
eigenfunctions 162–164
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intrinsic 166
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anharmonic oscillator 324
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anti-unitary operator 274
Aspect, A. 451
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associated Legendre function 135, 137, 192, 439
atomic nomenclature 213–215
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azimuthal quantum number 147
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Baker–Campbell–Hausdorff formula 121, 272
Balmer series 155–156, 304
band structure 220–225
baryon 180
basis 113–115, 465, 473
bead on a ring 79, 97, 183–184, 293–294, 317–318, 325
Bell, J. 5–6, 449
Bell’s inequality 451
Bell’s theorem 449–454
Berry, M. 430
Berry’s phase 185, 430–433
Bessel function 140–141, 381–382

spherical 140–141
binding energy 148
Biot–Savart law 300
blackbody spectrum 416
Bloch, F. 3, 216

function 240, 326
sphere 458
theorem 220–221, 238–240
vector 458

Bohm, D. 6, 447
Bohr, N. 5, 107, 462

energies 147, 194, 295–296
formula 147
Hamiltonian 143, 295
magneton 226, 306
radius 147, 298

Boltzmann constant 23, 88
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Boltzmann factor 88, 416
bonding 340, 344
Born, M. 4

approximation 380, 388–397
–Oppenheimer approximation 428
series 395–397
statistical interpretation 3–8

boson 201, 202
bouncing ball 332, 369
boundary conditions 32, 64–65

delta-function 64–65
finite square well 71–72
impenetrable wall 216, 230
periodic 230–231, 424

bound states 61–63, 143, 352
degenerate 78
delta-function 64–66
finite cylindrical well 70–72, 188–189
finite spherical well 143
finite square well 72
variational principle 352

box normalization 424
bra 117–118
Brillouin zone 241
bulk modulus 220

C
canonical commutation relation 41, 132
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cat paradox 461–462
Cauchy’s integral formula 389
causal influence 452–453
Cayley’s approximation 443
central potential 132, 199
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centrifugal term 139
Chandrasekhar, S. 349
Chandrasechar limit 228
change of basis 121–123
characteristic equation 476, 481
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classical region 354–358, 362–363
classical scattering theory 376–379, 395
classical velocity 55–56, 58–59
classical wave equation 417
Clebsch–Gordan coefficients 178–180, 190, 259–262
coefficient

A and B 416–417
Clebsch–Gordan 178–180, 190, 259–262
reflection 67, 75, 375
transmission 67, 359, 370

cofactor 472
coherent radiation 414
coherent state 126–127
cohesive energy 84–85, 225
coincident spectral lines 190
“cold” solid 218, 220
collapse 6, 102, 170, 443, 446–447, 453
column matrix 470
commutator 41, 108

angular momentum 157, 162, 303, 421
canonical 41, 132
matrix 471
uncertainty principle and 106–107

commuting operators 40–41
compatible observables 107–108, 251
complementarity principle 446
complete inner product space 92
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completeness
eigenfunctions 34–36, 99
set of functions 34–36, 93
Hilbert space 92
quantum mechanics 5, 446, 449

complete set of vectors 465
component 465
conductor 223
conjugate

complex 471
hermitian 471

connection formulas 362–371
conservation laws 242–243

angular momentum 162, 250–251
energy 37, 112–113, 266–267
momentum 240–241
parity 244–246
probability 22, 187–188

conservative system 3
continuity equation 187
continuous spectrum 99–102
continuous symmetry 232
continuous variable 11–14
continuum state 143
contour integral 390
Copenhagen interpretation 5
correspondence principle 420
Coulomb barrier 360, 349–350
Coulomb potential 143, 209, 213, 381, 394
Coulomb repulsion 360
covalent bond 340, 344
Crandall’s puzzle 324–325
cross product 466
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cross-section 377–378, 426
crystal 229–230, 320–321, 398

momentum 239–240, 275
cubic symmetry 321
cyclotron motion 182

D
d (diffuse) 213
D4 232
de Broglie formula 19, 55
de Broglie wavelength 19, 23
decay modes 418
decoherence 462
degeneracy 252–253, 269–271

free particle 254
higher-order 294–295
hydrogen 149, 253, 270–272
infinite spherical well 253
Kramers’ 275
lifting 287–288
pressure 219, 227–228
rotational 253
three-dimensional oscillator 253
two-fold 286–294

degenerate perturbation theory 283, 286–295, 314–315
first-order 290
second-order 317–318

degenerate spectra 96, 476
degenerate states 78
delta-function potential 61–70

barrier 68–69, 440
bound state 64–66, 329, 331
bump 283, 285, 294, 323, 325, 440
Dirac comb 221
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interaction 284
moving 80
scattering states 66–69
shell 385, 387
source 388
time-dependent 433
well 64–70, 329, 331

density
matrix 455–459
of states 228–229, 423
operator 455
plot 151–152

d’Espagnat, B. 5
destructive measurement 459
determinant 206, 472
determinate state 96–97
deuterium 320
deuteron 320, 351
diagonal form 478
diagonalization 294, 478–480
diamagnetism 196, 322
Dieks, D. 459
differential scattering cross-section 377, 424–425
dihedral group 232
dimension 465
dipole moment

electric 246–248, 302, 319
magnetic 172, 299–301, 305

Dirac, P. 301
comb 220–223
delta function 61–70, 74, 78, 80, 82–83, 99–102, 330
equation 304
notation 117–123
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orthonormality 99–102
direct integral 339
Dirichlet’s theorem 34, 60
discrete spectrum 98–99
discrete symmetry 232
discrete variable 8–11
dispersion relation 59
distinguishable particles 203
distribution 63
domain 130
doping 223–224
dot product 466
double-slit experiment 7–8
double well 70, 79, 372–374
dual space 118
dynamic phase 429–430
Dyson’s formula 434

E
effective nuclear charge 335–336
effictive mass 326
effective potential 138
Ehrenfest’s theorem 18, 48, 80, 132, 162, 174
eigenfunction 96

angular momentum 162–164
continuous spectra 99–102
determinate states 96
Dirac notation 117–123
discrete spectra 98–99
hermitian operators 97–102
incompatible observables 107
momentum 99–100
position 101

eigenspinor 169
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eigenvalue 96, 475–482
angular momentum 157–160
determinate states 96
generalized statistical interpretation 102–105
hermitian transformations 483

eigenvector 475–484
Einstein, A. 5

A and B coefficients 416–417
boxes 448
EPR paradox 447–448, 452
mass-energy formula 362
temperature 89

electric dipole moment 246–248, 302, 319, 411
electric dipole radiation 411
electric dipole transition 438
electric quadrupole transition 438
electromagnetic

field 181–182, 411
Hamiltonian 181
interaction 181–186
wave 411

electron
configuration 213–215
gas 216–220
g-factor 301, 311
in magnetic field 172–176, 430–432
interference 7–8
magnetic dipole moment 300–301
volt 148

electron–electron repulsion 209–211, 325, 333–335, 343
elements 213–216
energy

binding 148
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cohesive 84–85
conservation 37, 112–113, 266–267
ionization 148, 333, 336
photon 155
relativistic 296
second-order 284–286

energy-time uncertainty principle 109–113
ensemble 16
entangled state 199, 448
EPR paradox 447–448, 451
ethereal influence 453
Euler’s formula 26
even function 30, 33, 71–72
event rate 378
exchange force 203–205
exchange integral 339
exchange operator 207
exchange splitting 344
excited state 33

helium 211–212
infinite square well 33
lifetime 418

exclusion principle 202, 213, 218, 223
exotic atom 313
expectation value 10, 16–18

effect of perturbation 323–324
generalized Ehrenfest theorem 110
generalized statistical interpretation 103–104
Hamiltonian 30
harmonic oscillator 47–48
stationary state 27
time derivative 110

extended uncertainty principle 127–128
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F
f (fundamental) 213
Fermi, E. 423

energy 218, 225
Golden Rule 422–426
surface 218
temperature 219

fermion 201–208, 218
ferromagnetism 345
Feynman diagram 396
Feynman–Hellmann theorem 316, 318–319, 321
fine structure 295–304

constant 295
exact 304
hydrogen 295–304
relativistic correction 295–299
spin-orbit coupling 295–296, 299–304

finite spherical well 143
finite square well 70–76

shallow, narrow 72
deep, wide 72

first Born approximation 391–395
flux quantization 184
forbidden energies 223–224
forbidden transition 246, 421, 438
Foucault pendulum 426–428
Fourier series 34
Fourier transform 56, 69–70, 104

inverse 56
Fourier’s trick 34, 100–102
fractional quantum Hall effect 209
free electron density 221
free electron gas 216–220
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free particle 55–61, 111–112, 267–268
frustration 193
fundamental theorem of algebra 476
fusion 349–350

G
Galilean transformation 272
Gamow, G. 360

theory of alpha decay 360–361
gap 223–224
gauge invariance 182
gauge transformation 182–183
gaussian 108–109

function 14, 328–329, 331–332, 347
integral 61
wave packet 61, 77, 108–109, 130

generalized Ehrenfest theorem 110
generalized function 63
generalized statistical interpretation 102–105
generalized symmetrization principle 207
generalized uncertainty principle 105–108
generating function 54
generator

rotations 248–249
translations in space 235
translations in time 263

geometric phase 429–430
g-factor 301

deuteron 320
electron 301, 311
Landé 306
muon 313
positron 313
proton 311
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Golden Rule 422–426
“good” quantum number 298, 305–308
“good” state 287–295
Gram–Schmidt orthogonalization 98, 468
graphical solution 72
Green’s function 388–391, 397
ground state 33, 327

delta function well 329
elements 214–215
harmonic oscillator 328
helium 332–336
hydrogen atom 148
hydrogen ion (H−) 336, 349
hydrogen molecule 341–346
hydrogen molecule ion 337–341
infinite spherical well 139
infinite square well 33, 329–331, 346
lithium atom 212
upper bound 327, 332
variational principle 327–332

group theory 180
group velocity 58–59
gyromagnetic ratio 172, 300, 305

H
half harmonic oscillator 77, 368, 371
half-integer angular momentum 160, 164, 201
half-life 361, 420
Hamiltonian 27–28

atom 209
discrete and continuous spectra 102
electromagnetic 181
helium 210, 333
hydrogen atom 143
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hydrogen molecule 341
hydrogen molecule ion 337
magnetic dipole in magnetic field 172–176, 195–196, 299
relativistic correction 296–297

Hankel function 381–382
hard-sphere scattering 376–378, 384
harmonic chain 229–230
harmonic crystal 229–230
harmonic oscillator 39–54, 267–268, 315

algebraic solution 48–54
allowed energies 44
analytic solution 39–48
changing spring constant 432
coherent states 44, 126–127
driven 441–442, 444
ground state 328, 332, 346–347
half 368, 371
perturbed 283–284, 286–289, 324
relativistic correction 298
radiation from 419–420
stationary states 46, 52
three-dimensional 187, 315
two-dimensional 287–288, 322–323
WKB approximation 370

heat capacity 89
Heisenberg, W. 462

picture 264–267, 434
uncertainty principle 19–20, 107, 132

Heitler–London approximation 341–342, 344
helium 210–212

electron-electron repulsion 210, 325
excited states 211, 325, 336
ground state 325, 332–336
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ion  211, 336
ionization energy 336
ortho- 211–212
para- 211–212
“rubber band” model 348–349

helium-3 220
Helmholtz equation 388, 391
Hermite polynomial 52–54
hermitian conjugate 45, 95, 161, 471
hermitian matrix 471
hermitian operator 94–95, 297, 299

continuous spectra 99–102
discrete spectra 98–99
eigenfunctions 97–102
eigenvalues 97–102, 483

hermitian transformation 482–485
hidden variable 5–6, 449, 454
Hilbert space 91–94, 100–101, 113–114
hole 223–224
Hooke’s law 39
Hund’s rules 214–215, 346
hydrogen atom 143–156

allowed energies 147, 149. 194
binding energy 148
degeneracy 149, 253, 270–272
fine structure 295–304
ground state 148, 312, 347
hyperfine structure 295–296, 311–313
in infinite spherical well 194
muonic 200, 313
potential 143
radial wave function 144, 152–154
radius 147
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spectrum 155–156
Stark effect 319–320, 322, 374
variational principle 347
wave functions 151
Zeeman effect 304–310

hydrogenic atom 155–156
hydrogen ion (H−) 336, 349
hydrogen molecule 341–346
hydrogen molecule ion 337–341
hyperfine splitting 295–296, 311–313, 320, 439

I
idempotent operator 119
identical particles 198–231

bosons 201, 205
fermions 201, 205
two-particle systems 198–207

identity matrix 472
identity operator 118, 121–122
impact parameter 376
impenetrable walls 216, 230
impulse approximation 395
incident wave 66–68, 379
incoherent perturbation 413–415
incompatible observables 107–108, 158
incompleteness 5, 446, 449
indeterminacy 4, 452
indistinguishable particles 201
infinite cubical well 132, 216–217, 294
infinite spherical well 139–142, 194
infinite square well 31–39

moving wall 428–429, 432, 440
perturbed 279–286, 323
rising barrier 440
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rising floor 436
two particles 202–203, 205
variational principle 329–331, 346
WKB approximation 356–357

infinitesimal transformation 240
inner product 92–93, 466–468
inner product space 467
interaction picture 434
intrinsic angular momentum 166
insulator 223
integration by parts 17
interference 7–8
inverse beta decay 228
inverse Fourier transform 56
inverse matrix 472
inversion symmetry 243–244
ionization 148, 336, 422, 425

J
Jordan, P. 5

K
ket 117–118
kinetic energy 18, 296–297
Kramers’ degeneracy, 275
Kramers’ relation 319
Kronecker delta 33–34
Kronig–Penney model 221–222

L
ladder operators 41–47, 158–159, 163, 229–230
Laguerre polynomial 150
Lamb shift 295–296
Landau levels 182
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Landé g-factor 306
Laplacian 131, 133
Larmor formula 419
Larmor frequency 173
Larmor precession 172
laser 412–413
Laughlin wave function 208
LCAO representation 337
Legendre function 135, 137
Legendre polynomial 90, 135–136, 138
Levi-Civita symbol 171
Lie group 235
lifetime 23, 112, 361–362, 418

excited state 418–420
lifting degeneracy 287
linear algebra 464–485

changing bases 473–475
eigenvectors and eigenvalues 475–484
inner product 466–468
matrices 468–473
vectors 464–466

linear combination 28, 465
linear independence 465
linear operator 94
linear transformation 91, 94, 468
lithium atom 212
lithium ion 336
locality 447
Lorentz force law 181
lowering operator 41–47, 159, 161–162
luminosity 378
Lyman series 155–156

M
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magnetic dipole 172
anomalous moment 301
electron 301, 311
energy 172, 299, 304
force on 174
moment 172, 299, 300–301, 305
proton 311
transition 438

magnetic
field 172–176, 300, 430
flux 183–184
frustration 193
quantum number 149
resonance 436–437
susceptibility 226

magnetization 226
Mandelstam–Tamm uncertainty principle 111
many worlds interpretation 6, 462
matrix 91, 468–473

adjoint 471
antisymmetric 471
characteristic equation 476
column 476
complex conjugate 471
density 455–459
determinant 472
diagonal 478
eigenvectors and eigenvalues 475–482
element 115, 120, 126, 469
function of 485
hermitian 471, 483–484
hermitian conjugate 471
identity 472
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imaginary 471
inverse 472
normal 479
orthogonal 472
Pauli 168, 171
real 471
row 470
similar 474
simultaneous diagonalization 479
singular 472
skew hermitian 471
spectrum 476
spin 168, 171–172, 191
symmetric 471
transpose 470–471
tri-diagonal 444
unitary 472, 474
zero 476

mean 9–11
measurement 3–8, 30, 170, 462

cat paradox 461–462
destructive 459
generalized statistical interpretation 102–105
indeterminacy 96, 452
repeated 6, 170
sequential 124, 194–195
simultaneous
uncertainty principle 107–108

median 9–10
Mermin, N. 5, 453
meson 180, 447
metal 84, 223
metastable state 421
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minimal coupling 181–182
minimum-uncertainty 108–109, 193
mixed state 456–458
momentum 16–18

angular 157–165
canonical 183
conservation 240–241
de Broglie formula 19, 23
eigenfunctions/eigenvalues 99–100
generator of translations 235
mechanical 197
operator 17, 41, 95, 99–100, 131
relativistic 296–297
transfer 392

momentum space 104–105, 121–123, 188
most probable configuration 9
Mott insulator 223
muon 313, 349
muon catalysis 349–350
muonic hydrogen 200, 313
muonium 313

N
nearly-free electron approximation 314
Neumann function 140–141
neutrino oscillation 117
neutron diffraction 397–398
neutron star 228
no-clone theorem 459–460
node 33, 140–142, 146
nomenclature (atomic) 213–215
nondegenerate perturbation theory 279–286
noninteracting particles 198–199
nonlocality 447, 451–452
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non-normalizable function 14, 56, 66
norm 467
normal matrix 479
normalization 14–16, 30, 93

box 424
free particle 56, 424
harmonic oscillator 45–46
hydrogen 150
spherical coordinates 136
spherical harmonics 191–192
spinor 169
three dimensions 131
two-particle systems 198, 203
variational principle 327
vector 467
wave function 14–16

nuclear fusion 349–350
nuclear lifetime 360–362
nuclear magnetic resonance 437
nuclear motion 200–201, 209
nuclear scattering length 398
null vector 96, 464

O
observable 94–97, 99

determinate state 96–97
hermitian operator 94–95
incompatible 107–108

observer 461–462
odd function 33
operator 17

anti-unitary 274
angular mometum 157, 163
anti-hermitian 124
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commuting 40–41
differentiating 121
Dirac notation 120
exchange 207
Hamiltonian 27–28
hermitian 94–95
identity 118, 121–122
incompatible 252–253
ladder 41–47, 158–159, 161–163
linear 94
lowering 41–47, 159, 161–163
momentum 17, 41
noncommuting 252–253
parity 233–234, 243–248
position 17, 101
product rule 121
projection 118, 121–122, 314
raising 41–47, 159, 161–163
rotation 233–234, 248–251
scalar 250
vector 249–250

optical theorem 397
orbital 213, 337
orbital angular momentum 165
orthodox position 5, 446
orthogonality 33

eigenfunctions 98–99
functions 93
Gram–Schmidt procedure 98, 468
hydrogen wave functions 151
spherical harmonics 137
vectors 467

orthogonal matrix 472
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orthohelium 211–212
orthonormality 33, 46, 467

Dirac 99–102, 118
eigenfunctions 100
functions 93
vectors 467

orthorhombic symmetry 321
overlap integral 339

P
p (principal) 213
parahelium 211–212
paramagnetism 196, 226
parity 233–234, 243–248

hydrogen states 234
polar coordinates 234
spherical harmonics 234

partial wave 380–387
Paschen-Back effect 307
Paschen series 155–156
passive transformation 236–237
Pasternack relation 319
Pauli, W. 5

exclusion principle 202, 213, 218, 223
paramagnetism 226
spin matrices 168, 171

periodic boundary conditions
Periodic Table 213–216
permanent 206
perturbation theory 279–326

constant 281–282
degenerate 283, 286–295, 314–315, 317
expectation value 323–324
first order 279–284, 332
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higher order 285, 317
nondegenerate 279–286
second order 279, 284–286
time-independent 279–326
time-dependent 402, 405–411

phase
Berry’s 185, 430–433
dynamic 429–430
gauge transformation 183, 185
geometric 429–430
wave function 18, 32, 38, 185

phase shift 385–387
phase velocity 58–59
phonon 230
photoelectric effect 422, 425–426
photon 7, 155, 412, 417
Plancherel’s theorem 56, 60, 69–70
Planck formula 155, 312
Planck’s blackbody spectrum 416–417
Planck’s constant 3
polar angle 133
polarization 411, 414
polarizability 324
population inversion 413
position

eigenfunctions/eigenvalues 101
generalized statistical interpretation 104–105
operator 17, 265–265
space

position-momentum uncertainty principle 19–20, 107
position space wave function 104, 121–123
positronium 200, 313
potential 25
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Coulomb 143
delta-function 61–70
Dirac comb 221
effective 138
finite square well 70–76
hydrogen 143
infinite square well 31–39
Kronig–Penney 221–222
power law 371
reflectionless 81
scalar 181
sech-squared 81, 371, 375
spherically symmetrical 132, 371, 393–394
step 75–76
super- 129
vector 181
Yukawa 347, 351–352

potential well 352, 355–358, 367–369
power law potential 371
power series method 40, 49–50, 145
principal quantum number 140, 147
probability 8–14

Born statistical interpretation 3–8
conservation 22, 188
continuous variables 11–14
current 22, 60, 187–188
density quad 12–13
discrete variables 8–11
generalized statistical interpretation 102–105
reflection 67, 375
transition 409
transmission 67, 359

projection operator 118, 121–122, 314
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propagator 267–268, 396
proton

g-factor 311
magnetic moment 311
magnetic field 300

pseudovector 245–247, 250
pure state 455–456

Q
quantum

computation 460
cryptography 460
dot 350–351
dynamics 402–445
electrodynamics 181, 301, 412, 417
Hall effect 209
information 460
jump 155, 402
Xerox machine 459–460
Zeno effect 442–443

quantum number
angular momentum 160, 166
azimuthal 147
“good” 298, 305–308
magnetic 147
principal 140, 147

quark 180

R
Rabi flopping 410, 414
radial equation 138–143
radial wave function 138, 144, 152
radiation 411–418
radiation zone 381
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radius
Bohr 147, 298
classical electron 167

raising operator 41–47, 159, 161–162
Ramsauer-Townsend effect 74
Rayleigh’s formula 383
realist position 5, 170, 446
reciprocal lattice 399
recursion formula 50–52, 148
reduced mass 200
reduced matrix element 256
reflected wave 66–68
reflection coefficient 67, 375
reflectionless potential 81
relativistic correction 296–299

harmonic oscillator 298
hydrogen 295–299

relativistic energy 296
relativistic momentum 296
resonance curve 437
revival time 76
Riemann zeta function 36–37
rigged Hilbert space 100–101
rigid rotor 165
Rodrigues formula 54, 135
“roof lines” 351
rotating wave approximation 410
rotations 233–234, 248–262

generator 248–249
infinitesimal 248–251
spinor 269

row matrix 470
Runge–Lenz vector 270–272
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Rutherford scattering 379, 394
Rydberg constant 155
Rydberg formula 155

S
s (sharp) 213
scalar 464

pseudo- 246, 250
“true” 246, 250

scalar multiplication 465
scalar operator 250
scalar potential 181
scattering 376–401, 424–425

amplitude 380
angle 376
Born approximation 380, 388–397
classical 376–379
cross-section 377–378
hard-sphere 376–378, 384, 387
identical particles 400–401
length 398
low energy 393
matrix 81–82
one dimensional
partial wave analysis 380–387
phase shift 385–387
Rutherford 379, 394
soft-sphere 393, 395, 397
two dimensional 399–400
Yukawa 394–395

scattering states 61–63, 66–70, 81–82
delta function 66–70
finite square well 73–76
tunneling 68–69, 358–362, 370, 375
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Schrödinger, E. 188
Schrödinger equation 3, 131–132

electromagnetic 181
helium 348
hydrogen 143
integral form 388–391
momentum space 130
normalization 14–16
radial 138
spherical coordinates 133
three-dimensional 131–132
time dependent 3, 15, 24–31, 131, 402–403
time independent 25–26, 132
two-particle systems 198–200
WKB approximation 354–375

Schrödinger picture 265, 434
Schrödinger’s cat 461–462
Schwarz inequality 92, 106, 467–468
screening 213, 335–336
sech-squared potential 81, 371, 375
selection rules 246, 420–422

parity 246–248
scalar operator 255–258
vector operator 258–262

self-adjoint matrix 471
self-adjoint operator 130
semiclassical regime 358
semiconductor 223
separable solution 25–31
separation of variables 25–26, 133–134
sequential measurements 194–195
shell 213
shielding 335–336
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shooting method 194
similar matrices 474
simple harmonic oscillator equation 31
simultaneous diagonalization 479
singlet configuration 177, 206, 312
singular matrix 472
sinusoidal perturbation 408–411
sinusoidal wave 56
skew-hermitian matrix 124, 471
skew-hermitian operator 124
Slater determinant 206
S-matrix 81–82
solenoid 183–184
solids 23–24, 84, 216–225

band structure 220–224
free electron model 216–220
Kronig–Penney model 221–222

Sommerfeld, A. 216
span 465
spectral decomposition 120
spectrum 96, 476

blackbody 416–417
coincident lines 190
degenerate 96, 476
hydrogen 155–156
matrix 476

spherical Bessel function 140–141, 381–382
spherical coordinates 132–134

angular equation 134–138
radial equation 138–154
separation of variables 133

spherical Hankel function 381–382
spherical harmonic 137–138, 191–192, 234
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spherical Neumann function 140–141
spherically symmetric potential 132–134, 371, 393–394
spherical tensor 258
spin 165–180, 191

commutation relations 166
down 167
entangled states 177, 199, 447
matrix 168, 191
one 172
one-half 167–171
singlet 177
statistics 201
three-halves 191
triplet 177
up 167

spinor 167, 247
spin-orbit coupling 295, 299–304
spin-spin coupling 312, 344
spontaneous emission 412–413, 416–422

hydrogen 439
lifetime of excited state 418–420
selection rules 420–422

square-integrable function 14, 92–93
square well

double 79
finite 70–76
infinite 31–39

standard deviation 11
Stark effect 286, 319–320, 322, 374
state

mixed 456–458
pure 455–456

stationary states 25–31, 324–325
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delta-function well 66
free particle 55–56
harmonic oscillator 44
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