Date: / /20	
General Science & Ability	
Assignment no. 1.	
Mention the full as statement for	
proper evaluation. Without that	
these are just notes and cannot be awarded marks and Lipids	
Do awaraoa marko	
1. Carbohydrates.	
Definition:	
Carbohydrates	
are organic molecules of	
carbon, hydrogen and onygen	
atoms, typically with a	
hydrogen-onygen atom ratio	
of 2:1, as in water. They	
are one of the main types	
of nutrients and the most	
important source of energy for	
our body.	
Do not use the ehighlighters	
Classification/ Types of	
Carbohydrates.	

Date: / /20
Based on their chemical
structure and complenity,
carbohydrates are classified
into:
2. Simple car bohydrates
2. Complen car bohydrates.
1. Simple Carbohydrates
Simple carbohydrates, also
known as simple sugars, consist
of one or two sugar molecules.
They are quickly broken down by
the body to prince a rapid
source of energy.
Types
1. Monosaccharides: As the
name suggests, from Greek, mono
= one and rakkron sugar,
monosaccharides consist of me

Date://20
a single sugar molecules
· Enamples: glucose, tructose,
and galactose.
Draw the structures as well
2. Disaccharides: Formed by
the combination of two
mono saccharides molecules.
· Enamples: sucrose (table
sugar), lactise, and maltose:
Sources:
Fruits, honey, milk,
table sugar, candy and sweets.
2. Complen Carbohydrates
Complen carbohydrates
Sugar molecules. These take
longer to break down down
and provide sustained
energy. These are also called

Date:/_/20
They fall between simple
and complen carbohydrates
in terms of size and
complenity.
Enamples . Rattinose Stachyose.
Carbohydrates
Simple Complen
Mono Oligo Poly
(single sugar) (2-10 sugar) (ten or more sugar molecules)
+ Gilucose + Sucrose Starch
+ Fructose + Lactose + Gilycogen
Galactose , Rattinose , Cellulose.
Characteristics of Carbohy-
drates
· Carbohydrates are chemical
compounds that contain
onygen, hydrogen, and carbon atom

consumed, they are broken down into glucose, which is used by cells to produce ATD (adenosine triphosphate) through cellular respiration.

	Date://20
	2. Energy Storage
	Excess glucose from carbohydrate
	can be stored in the liner and
	muscles as glycogen. This
	glycogen can be broken down
	to glucose when evergy is
	needed, such as between
	meals or during physical activity
	1
1	3. Prevent protein breakdown
Total Control	Carbohydrates help prevent
	the break-down of proteins
	for energy, allowing them to
	be used for their primary
	tunctions such as building
	and repairing tissues.
	4. Assisting tat metabolism
	9
	Carbohydrates are necessary
	for the proper onidation of fats.
,	Without enough carbolaydrates,

the body cannot completely

I	Date: / /20
	break down fats, leading to
	Ketosis.
	5. Regulation of blood glucose
	Consistent intake of carbohydrate
	helps keep glucose levels stable,
	preventing hypersycemia (high
	blood sugal and hypoglycemia
	(low blood sugar).
	e and between any force by a comme
	6. Grastrointestinal health
	Dietary Liber, a type of complex
	carbohydrate, is essential for
	preventing constipation and
	promoting regular bowel
	movements.
	7. Stuctural Function.
	In plants, carbohydrates like
_	cellulose provide structural
	support.
1600	

ate:	_	/20
------	---	-----

1. Structural proteins: These provide support and shape to cells and tissues. · Enamples: Collagen Hound in skin and bones , Keratin (tound in hair and nails). 2. Enzymatic proteins: Enzymes catalyse biochemical reactions. · Enamples: Amylase (breaks down starch) DNA polymerase (synthesizes DNA). 3. Transport proteins: These proteins carry substances throughout the blood stream or across call membranes. · Enamples: Haemontobin (carries oxygen in blood, GILUTI (glucose transporter). 4. Detensive proteins: These

Date: _/_/20
protect the body from
pathogens and disease.
· Enamples: Antibodies (immune
response), tibringen (blood
clotting).
5. Storage Protein: These store
amino acids and other
substances for future use.
· Enamples: Casein Stores
amino acids in nik), Ferritin
(stores iron).
Classification based on
Structure
Based on structure, proteins
are classified int four main
categories:
1. Primary stucture: The
1. Primary stocture: The segmence of amino acids in

D	ate: / /20
	a polypeptide chain.
	2. Secondary structure: Refers
	to local tolded structures like
	alpha-helices and beta-sheets.
	3. Tertiary streture: The overall
	three-dimensional structure of
	a polypeptide.
	4. Quaternary structure: The
-	structure formed by multiple
	popypeptide chains (subunits)
	joining together.
	Sources of Proteins
	Protein can be sourced from
	both plants and animals. Some
	common protein sources include
	egg, milk, meat, leese, Fish,
	nuts, seeds and lentils.

	Date:/_/20
	Characteristics of Protein
	· Proteins are made up of
	20 different amino acids,
	which determine their structure
	and function.
	· Amino acids in proteins are
	linked by peptide bonds
	tormed through dehydration
- 11	synthesis.
	· Proteins can have various.
	functions, such as catalysis,
	support, movement, regulation
	and protection.
	· Protein structure and
- 11	Function can be affected
	by changes in pH, temper-
	ature, and chemical
- 11	environment.

3. Lipids. Definition: Lipids are organic compounds, mainly composed of hydrocarbon chains. Lipids are commonly known as oils and Fats. These molecules gield high energy of a are responsible for different bodily Functions. Classification of Lipids. Lipids can be classified on the basis of their structure, chemical composition and saturation les a ob their Tatty acids. Classification based on Structure and chemical

_	Date: /_/20
	composition
	1. Simple Lipids: These
	include only two main
	components: Tatty acids and
	alcohol.
•	Enamples: Fato and oils
	(triglyce ides) and wanes.
	2. Complen Lipids: These
	include additional groups
	such as phosphorous and
	nitrogen, alongside fatty acids
	and alcohol.
	· Enamples: nospholipids and
	glycolipids.
	Classification based on
	Saturating level
	1. Saturated Lipids: Saturated
	tats remain solid at room

Date:__/__/20___ Fat contains a single double bond and can be Found in avocado, nuts and regetable oils, such as canda and olive oil · Example. Oleic acid (in olive oil). b. Polyunsaturated fat This type of fat contains multiple double bonds and can be found mainly in vegetable oils and seatood. · Enamples: Omega-6 fatty acid Tound it vegetable oil. and omego - 3 - Tatty acid Found in Flanseed oil. 3. Trans Lipids: These are unsaturated fats produced

industrially by hydrogenating

Date: __/______ regetable oils. Hydrogenation increases their shelf-life and makes the fat solid semi-solid at room temperature. Trans Fat can be found in processed Toods, margarine and baked goods. Trans Fat should be avoided. Characteristics of Lipids · Lipids do not dissolve in water · Lipids are soluble in organic solvents in like chlorotorm and ether. · Most lipids are hydrophic i-e., water-repellent. · The basic unit of lipids

Date:__/__/20_ is triglyceride, and fatty acids. · Lipids provide more than twice the evergy per gram impared to carbohydrates and protein. Functions of Lipids 1. Energy storage Lipids store energy effeciently. Trigly cerides are the main form of energy stored in armals. 2. Structural Components Phospholipids are cholestrol are crucial components of cell membrane, maintaining

integrity and Fluidily.